
Structured Data and Source Code Analysis for Financial Fraud Investigations

Joe Sremack

Financial and Enterprise Data Analytics

FTI Consulting

Washington, DC USA

joseph.sremack@fticonsulting.com

Abstract— Financial fraud investigations are becoming

increasingly complex. The volume of data continues to increase

along with the volume and complexity of underlying source

code logic. As the volume and complexity increase, so too does

the importance of identifying techniques for reducing the data

to manageable sizes and identifying fraudulent activity as

quickly as possible. This paper presents how to ensure that all

data was properly collected and a methodology for reducing the

complexity of such investigations by identifying similarities and

differences between the source code and structured data.

Keywords-structured data analysis, source code review, fraud

investigation.

I. INTRODUCTION

Structured data and proprietary source code are two of
the most critical sources of information for large-scale
financial fraud investigations. Proprietary source code is
used to execute in-house investment strategies for
investment banks, hedge funds, and other financial
institutions. In the financial setting, source code review
yields information about how the organization carried out its
operations. The second source of information, structured
data, are an organized form of data in which connected data
are stored in a discrete, atomic form. Structured data are
continuously generated during the course of business, and
most business events and transactions create structured data
that chronicle the organization’s history – most notably the
financial transactions. The most common form of structured
data is data stored in databases. Together, structured data
analysis and source code review can reveal how a business
operated in a way that is not possible with only one method.

Financial fraud investigations introduce unknowns about

the quality and completeness of both the source code and
structured data that were produced. Since most transactions
are generated from automated events from the source code,
analyzing both in junction with each other is critical for not
only validating the completeness of both, but also how the
organization truly operated. Falsifying both the transactions
and the source code together so that there are no
discrepancies is infeasible for virtually any type of fraud.
The complexity of synchronizing the source code and the
structured data, while carrying out the fraud and creating
falsified financial reports, is beyond the capabilities of even
the best fraud operatives.

The complexity of synchronizing source code and
structured data is what makes analyzing both together so
critical. Several failed attempts at uncovering financial
frauds have demonstrated that merely analyzing the
transactions is not enough, the most famous of which is the
Bernard Madoff Ponzi scheme scandal [1]. Analyzing
structured data alone does not necessarily tell you how the
data entered the data repository or what data was excluded,
modified, or code-generated. Likewise, analyzing the
source code alone does not provide sufficient evidence,
since the source code does not necessarily contain
information on what steps were actually run and when, nor
the extent of the fraud. The source code would most likely
have parameters and input data passed into it, and the data
could be altered outside of the source code environment.
Combining source code review with the structured data
analysis identifies data points and values that could not be
generated from a normal, non-fraudulent course of business,
such as account values and financial charges.

Analyzing source code in a fraud investigation setting is

a complex and time-consuming process. A fraud
investigation typically hinges on identifying key anomalous
transactions or data patterns that diverge from normal
business operations and then identifying how the fraud was
conducted within the transactions, source code, and business
processes. Most key employees have either been laid off or
fired when a financial firm is accused of fraud. As such,
information about the source code and locating key
documentation is difficult or impossible. The source code
may be poorly documented, which requires identifying
which files and sections of code need to be reviewed, and
volume may be in the tens of thousands of files and millions
of lines of code. Reviewing every line of code would not be
realistic, regardless of the number of analysts. The culling
process of reducing the amount of code that needs to be
reviewed requires a precise process that reduces the volume
to a manageable size for review but does not exclude key
information.

This paper discusses the methodology for performing
source code review and structured data analysis that have
been applied in several financial fraud investigations.
Elements of this methodology have been employed on
several large-scale financial fraud investigations. The
second section covers the general observations an
investigator looks for during the course of this type of

24Copyright (c) IARIA, 2012. ISBN: 978-1-61208-242-4

DATA ANALYTICS 2012 : The First International Conference on Data Analytics

investigation. The next section covers the basics of
collecting and validating both sources of information. The
fourth section discusses data element mapping and function
call mapping, which is followed by a section on data value
mapping. The concluding section summarizes the process.

II. CURRENT RESEARCH

Current research in source code analysis and
classification have yielded several techniques that work well
under ideal conditions, but those techniques are not always
well-suited to real-world fraud investigations. Major
research has been conducted on creating dependence graphs
and semantic analysis [2][3]. Most of the topical topics and
challenges related to source code analysis are based on those
outlined in the seminal paper “Reverse Engineering: A
Roadmap.” Several techniques, such as island parsing and
lake parsing, are better suited for the constraints of a large-
scale fraud investigation [5]. Likewise, the field of
structured data reverse engineering has produced techniques
and a roadmap for analysts [6][7]; however, the need to
understand the relationship between the source code and the
structured data has not been addressed for practical,
complex investigations.

A modern approach to reverse engineering source code

is the use of Unified Modeling Language (UML) tools to
automatically identify and document source code language
constructs, call maps, program behavior, and architecture
[8][9]. A common standard that is based on UML has
developed called the Knowledge Discovery Metamodel
(KDM). The model is based on an Object Management
Group Standard that has become an ISO standard in 2012
[10]. Practical objections to UML-based reverse
engineering approaches, including KDM, limit the
usefulness of using such an approach when time limitations
exist and prior knowledge of the relationships of the source
code is required [11]. For purposes of a fraud investigation,
the total set of source code need not be analyzed, and the
analysis should assist with limiting the amount of
information that needs to be analyzed. Moreover, the time
required for setting up a KDM or other UML-related
documentation process with an unknown set of source code
can be more time-consuming than operating without any
such tool.

Fraud detection and reverse engineering research is a

growing field because of the proliferation of cases of fraud
and the increasingly complex manner in which they are
conducted. The majority of current financial fraud detection
literature is based on the analysis of financial transactions
using anomaly detection data mining approaches (e.g.,
Bayesian belief networks, neural networks, and cluster
analysis) [12][13][14][15]. The assumption throughout the
majority of the literature is that data is pre-cleansed and do
not incorporate information about the systems that generated
the data.

III. ANALYSIS MOTIVATIONS

There are several purposes for performing this type of
analysis. One purpose is to identify how the source code
and structured data relate to one another and whether they
both tell the same story about the business operations that
were performed. The relationship has many dimensions and
attributes and depends on the layout of the structured data
and the function(s) of the source code. The relationship
depends on how the source code affects the structured data
and whether the structured data fully adheres to the rules in
the source code. For example, one set of source code can
modify all sales transaction fields except for customer
service inquiries, so the relationship is defined on those
fields based on how the structured data adheres to the rules
in the source code. The structured data may vary from the
source code rules, and that difference shows where other
means for modifying the data exist.

A second purpose is to identify key data points in the

structured data. Some structured data contains cryptic field
names, obscure data values, and a large volume of objects.
Analyzing which data points the source code affects can
help with defining what certain fields contain. The source
code will show where the outputs of the code are stored
within the structured data and which inputs and operations
are performed on the data before they are stored. Several
examples of these are database inserts, deletes, and updates
and the generation of output files that are later stored in the
database. The process of identifying which inputs and
functions generate which outputs in the structured data can
also be performed to pare down the number of fields for
analysis. The key fields can be identified by locating the
outputs from the source code that either have the input
sources or the actions that are critical for the investigation.
Likewise, some fields may simply be unimportant for the
investigation; identifying the unimportant fields that can be
ignored in future analyses is valuable for reducing the
complexity of the investigation.

Third, the structured data can be compared to the data

modification rules in the source code to detect whether any
of the data were modified outside of the source code. In the
case of a Ponzi scheme, stock trades may be entered by a
non-fraudulent program, while a fraudulent process will
later correct those trades to represent that different trades
were executed. This is critical in fraud investigations
because of the possibility of data modifications that occur
outside of normal business processes. For example, a rogue
program or manual data manipulation can be used to
perpetrate the fraud, and the data modified by a rogue
process can be difficult to detect otherwise. Several other
possibilities, such as a different version of the code having
been run or the code was later modified to appear to be non-
fraudulent, can exist, but the comparison of source code
rules to structured data will detect these differences
regardless.

25Copyright (c) IARIA, 2012. ISBN: 978-1-61208-242-4

DATA ANALYTICS 2012 : The First International Conference on Data Analytics

The fourth purpose is to reduce the number of lines of
source file code that need to be analyzed. A common
problem in any analysis is reducing the volume of data to a
manageable size without compromising the completeness of
the relevant analysis. The relevant sections in the source
code can be more quickly located by analyzing where the
key data fields are manipulated and how. A casual chain
can be created from those sections to create a network of
related sections, and any isolated sections of code can be
more easily categorized or deemed non-relevant.

This paper highlights the key types of analysis

techniques that have been applied in practical situations
with success. As such, these techniques form an agile
toolbox for quickly and effectively analyzing large volumes
of source code and structured data in the absence of
adequate documentation for financial fraud investigations.
While the techniques listed are known in the areas of data
and source code reverse engineering, their usefulness and
practicality have neither been documented in current
research circles, nor presented in a manner in which the
combined source code and structured data can reside in a
single analysis repository.

IV. DATA COLLECTION

The initial steps of any investigation are to collect all
data and documentation and verify that the collection is
complete. The first step is to survey the data and test that
all objects – such as schemas and views – exist in the copied
data. Next, comparisons of control totals from the source
system to the copied data are performed to provide extra
assurance that no data were lost or corrupted. For example,
the summation of several numeric columns and the counts
of distinct text values in several columns across every table
between the source system and copied data are compared
and verified. Finally, all available documentation about the
source system are collected. The documentation should
cover data information (e.g., Entity-Relationship Diagrams,
Data Dictionaries, and data value definitions) and business
purposes and use (e.g., list of system users and business
requirements) [16].

Like structured data analysis, source code review does

not begin until after validating the data collection and
gathering all supporting documentation. Unlike with
structured data analysis, however, ensuring that all source
code has been collected is much more complex.
Determining if the complete set of source code is available
is a critical step that requires reviewing additional
documentation, and this step sometimes requires that the
source code in question be compiled.

Compiling source code is a dependable method for

validating each individual program, for if it does not
compile, an issue is known. Compiling another institution’s
source code is rarely a simple operation, though. Many
obstacles make compiling unfeasible, such as compiler
settings, compiler versions, and the availability of third-

party and custom library files. As a result of these
obstacles, compiling the source code is not always possible.

Source code documentation is critical for quickly

understanding how the program operates, what functions it
serves, the entry points to the source code, and which
individual files constitute the complete set of source code.
Comments embedded in the source code are valuable, but
they rarely provide any insight into the business purpose of
the source code or the function call order of the source code.
Comments alone also do not offer a reliable method for
determining versioning, business purpose, or testing. The
following types of documentation are some of the standard
documentation that should be collected:

• Compiler logs;

• Source code change history;

• Use case testing documentation;

• Configuration management documentation, and

• Business requirements documentation.

Not all companies fully document all of their source
code. Interviews or depositions of programmers and key
business owners can greatly assist with understanding how
the source code functions and how to analyze the structured
data [17]. These interviews, however, cannot always be
conducted due to employees refusing to be interviewed or
an inability to otherwise question them. These difficulties
make the analysis more difficult and are further motivation
for why source code and structured data should be analyzed
together.

V. ANALYSIS TECHNIQUES

The analysis of source code and structured data is an
iterative process of conducting a series of related analyses
that assist with the investigation. This section details three
analysis methods that have been successfully employed on
several large-scale financial fraud investigations. The
methods are: data element mapping, function call mapping,
and data value analysis. Together, the analysis techniques in
this section provide a template for streamlining the analysis
process and identifying key relationships between the
structured data and the source code. As with any analysis,
the methods needed for each investigation vary depending on
requirements and available information. Moreover, the
techniques in this section do not constitute a full
methodology for any type of investigation. Standard
analysis techniques for the structured data and source code
should still be conducted (e.g., structured data surveying and
searching the source code for particular functions, such as
file printing).

A. Data Element Mapping

Data element mapping is a process for searching the set
of source code by the field and object names in the structured
data. The process is often referred to as “crawling code,”
whereby a code base is scanned for particular values or
operations [18]. The information gained from this process is
a listing of source code files and line numbers where there

26Copyright (c) IARIA, 2012. ISBN: 978-1-61208-242-4

DATA ANALYTICS 2012 : The First International Conference on Data Analytics

are search term matches on particular data field and object
names. Data element mapping is typically conducted before
the other two steps, for it offers both a survey of the source
code and data elements, as well as a set of potential entry
points for the analysis.

The first step is to collect the set of structured data field

and object names that are to be searched. All potentially
relevant names should be included, such as:

• The database name;

• Schema names;

• Known database object owners;

• Table names;

• XML tags, and

• Table field names.

Common names that would result in too many false

positive keyword search matches should be excluded from
the search set, including “date,” “ID,” “comment,” and
“owner.”

Next, the searching is performed against the source code.

The source code should be indexed in a document repository,
which is an application that allows for keyword searching
and regular expression matching, and the keywords should
be searched, with the resulting output containing a list of all
keyword matches, the file and line where the match
occurred, and the matching line of text from the source code.

The output is then reviewed to compile a list of key

source code files. The results should be quantified by
matches per keyword, and any keyword with a number of
results that are anomalously too high or too low should be
reviewed further to ensure that they had proper matches.
Too many matches can be explained by a keyword that is
often used in the source code language or is an alias that has
meaning beyond the structured data object name. Too few
matches can sometimes be the result of the field or object
name not being explicitly called. Further analysis of the
other fields in its table or related objects is required to
determine if an alias or function is manipulating that field or
object instead. For example a stored procedure within a
database may be called instead. Any outliers that are
identified that are truly anomalies should be removed from
the result set.

The resulting set should be quantified once more to

generate a count of search matches per source code file. The
source code files with the most search matches are to be the
starting points for the investigation. These are the files that
generate the most transactional activity and should, at a
minimum, be reviewed for the structured data operations. In
addition, any source code files that had search term matches
for the most critical object or field names are critical sources
of information that should be analyzed in depth.

B. Function Call Mapping

The second technique is creating a mapping of how the
various elements within the source code relate to one
another, which is called function call mapping. The purpose
is to identify additional sections of the source code that relate
to other critical sections. Function call links from the critical
sections of source code from data element mapping or other
processes are used to locate additional code that may not
have been initially deemed to be relevant. The function call
links can be carried out to quickly gain a better
understanding of how the source code sections relate to one
another and which sections are either isolated or truly not
relevant to the investigation.

Performing data element mapping alone may not

sufficiently identify all relevant sections of source code.
Most enterprise-level applications are designed with layers
of abstraction for code reuse and ease of development. This
is true for object-oriented programming languages,
functional languages, and other modern language types.
Relying on a method such as data element mapping will
result in the investigator missing the ancillary sections of
code that perform data operations. For example, the source
code may have a main section of code that explicitly operates
on several critical structured data fields, but those records are
updated in a secondary portion of the source code that had no
search matches in data element mapping.

Function call mapping is performed by identifying all

possible mechanisms by which sections of source code can
call or reference other sections of the source code and then
searching for those keywords and referencing the results.
The process is akin to data element mapping in that a set of
keywords is created, the source code is searched based on
those keywords, and the results are categorized and analyzed.

The first step, identifying all mechanisms for calling or

referencing other sections of code, is conducted by creating a
list of potential keywords specific to the programming
language(s) in the source code and pattern indexes for how to
identifying the reference. The investigator creates a list of
keywords and regular expressions that will return the
command that performed the calling or referencing and the
section of code that was called. A common example in the C
language is a function. The syntax will remain relatively
consistent with parentheses after the function name and
possible parameters within the parentheses. There are,
however, additional mechanisms for calling or referencing
additional sections of code. The source code could be stored
as a .h “header” file that is referenced with the #include
command. In addition, other code could be compiled and
called as an external program via the ShellExecute()
command. Regular expressions to store the calling
command and referenced section of call need to be generated
for any of the identified mechanisms.

The second step is to run the regular expressions from the

previous step against the entire set of source code. The
output should store the following:

27Copyright (c) IARIA, 2012. ISBN: 978-1-61208-242-4

DATA ANALYTICS 2012 : The First International Conference on Data Analytics

• Calling/referencing mechanism;

• Called/referenced section of source code;

• Source code file where the match occurred, and

• Line of code where the match occurred.

The output from the second step next needs to be
analyzed to identify key relationships and remove anomalies.
Similar to data mapping, the first step is to quantify which
source code objects are referenced most frequently.
Examine the results to ensure those results are not false
positives due to an incorrect regular expressions or a
keyword that is used in other ways in the source code. The
same is done for source code files that had too few or no
search matches.

The findings from these steps can be shown in various

ways. The simplest is simply identifying any sections of
source code that are related critical sections of code. The
critical code can be source code already known to be critical,
results from the data element mapping, or source code that
received a large number of search matches in the function
call mapping phase. In addition, the findings can be depicted
in graphic form to document the process flow for the source
code. For example, Figure 1 was generated for a fraud
investigation to show which AS/400 libraries either called or
were called by the main source code library. Performing this
analysis allowed the investigators to generate a map of all
possible entry points for the enterprise investment trading
platform

Figure 1. Function call mapping output.

Function call mapping is an iterative process that is

typically run multiple times to refine the results. The critical
sections of source code may contain additional mechanisms
for calling or referencing other sections of source code,
which requires the creational of additional regular
expressions and searching the source code again. The
amount of source code can affect the results, and in order to

reduce the volume of search matches, investigators can limit
their search population to key source code.

C. Data Value Analysis

The source code can be utilized to validate the data

stored in the structured data. Most data in structured data

repositories arrive via an external source and remained

unchanged or were entered through automated logic. Data

value analysis is performed to analyze for the latter. Under

normal circumstances, structured data that are entered or

updated through automated logic should be limited to only

the types of values possible in the source code.

Acceptable value analysis is the process by which the

constraints from the source code for particular fields are

documented and then compared to the values in the

structured data. In a fraud investigation, detecting anomalies

is a key component for identifying areas in which fraud may

have occurred. This analysis is typically performed only

against key fields that are altered in the source code.

Analyzing non-key fields is typically too time consuming.

The process is performed by identifying how the data is

altered in the source using the results from the data element

mapping result set and then constructing a list of all unique

values or patterns from the structured data set. A

comparison will either show conformity or some anomaly.

Anomalies may be caused by manual updates or data that

were never altered by the source code. Both of these

conditions require further analysis, as either case can be the

result of fraud.

Unaltered field analysis is performed by analyzing all

fields from the structured data that did not appear in the data

element mapping process. Some fields may legitimately

never be altered by the source code; however, if these fields

appear in key tables, there is a possibility that that field is

being manually updated. This analysis is performed by

comparing the full field list for key tables against the data

element mapping results for those tables. Any fields that do

not appear in the data element mapping result set should be

analyzed further.

 Date value analysis, the third form of data value analysis,

is a multi-step analysis based on either acceptable value

analysis or external event analysis aimed at creating a

chronology of the structured data and when the collected

source code may have been operational. The first step is to

identify the date range of records in key tables that have

“unacceptable” values if there are any date values stored in

the table or a linked, related table. These types of date fields

are commonly stored in the table or in an audit table that

stores a history of transactions. Since source code versions

change over time, having a baseline date range is critical for

knowing when the process for storing data in a particular

table began. Next, identify any information about the source

28Copyright (c) IARIA, 2012. ISBN: 978-1-61208-242-4

DATA ANALYTICS 2012 : The First International Conference on Data Analytics

code version history from embedded comments or related

documentation. The investigator should analyze the data for

acceptable values from the structured data and find the latest

unacceptable value. That result is then compared to the

source code change history documentation to identify any

possible discrepancies.

External events can be analyzed in conjunction with the

date value analysis by examining for higher volume of

certain transactions or new transaction patterns. Most

financial companies have fixed transaction patterns based on

holidays, normal trading hours, and regulatory and legal

events. The investigator should create a chronological list of

important regulatory and legal events and normal trading

dates. The normal trading dates should be compared to

transaction volume from the structured data. In addition, that

analysis should be compared to the acceptable value analysis

to determine if the source code was modified in accordance

with the regulatory and legal events. In many fraud cases,

the source code and underlying data change dramatically

when there is a regulatory or legal threat.

VI. CONCLUSION

Financial fraud investigations are becoming increasingly

complex and require practical, agile approaches to reduce the

volume to a manageable size. The volume of data continues

to increase, as does the volume of underlying source code

logic and the variance and interrelationships of the source

code. As the volume and complexity increase, so too does

the importance of identifying techniques for reducing the

data to manageable sizes and identifying fraudulent activity

as quickly as possible. Practical limitations make common

theoretical approaches, such as semantic analysis, unfeasible

and require techniques that do not depend on a priori

knowledge of the source code and data.

Current research the related fields of data mining, source

code reverse engineering, and fraud investigations provide

useful tools and techniques that are appropriate for certain

applications. Static analysis and UML-based approaches,

when employed properly, can yield great results and provide

useful insights in an automated fashion. Likewise, statistical

data mining techniques allow an analyst to survey large

volumes of data and understand the meaning and

interrelationships of the data. The difficulty is that many of

those techniques do not always have practical value when so

many data variables are unknown, documentation is not

available, and time constraints exist. Practical techniques

where the meaning of the data and source code meet offer an

alternative in those cases.

This paper presented the main practical techniques for

ensuring that all data were properly collected and three

critical methods for reducing the complexity of financial

fraud investigations by identifying similarities and

differences between the source code and structured data.

Proper data collection is the vital first step for ensuring that

all information is available for further analysis. By properly

collecting and validating the data, one can be confident that

the full investigation can commence. Data element mapping

is a semi-automated method for reducing the volume of

source code that needs to be analyzed when looking for a

relationship between the source code and structured data.

Function call mapping is a rapid method for identifying

relationships between source code files and entry points in

the application. Function call mapping is made more

powerful by limiting the results to only related source code

that have at least one section of code deemed critical to the

investigation. Finally, data value analysis is a series of

techniques to validate the contents of the structured data and

identify potential anomalies.

The nature of financial fraud and the technologies used to

conduct them continue to change, and as such, so too will
fraud investigations change. Technological advancements
and changing business practices, such as cloud computing
and offshore data processing, introduce new complexity that
will require advanced techniques for identifying critical
information. So long as investigators remember to focus on
identifying key data relationships and identify anomalies,
advanced data analysis and visualization tools and
techniques will allow investigators to be able to distill large
volumes of information into their critical components and
unravel the fraud.

REFERENCES

[1] U.S. Securities and Exchange Commission Office of
Investigations, "Investigation of failure of the SEC to uncover
Bernard Madoff’s Ponzi scheme," August 31, 2009. J. Clerk
Maxwell, A Treatise on Electricity and Magnetism, 3rd ed.,
vol. 2. Oxford: Clarendon, 1892, pp. 68–73.

[2] G. Canfora and M. DiPenta, "New Frontiers of Reverse
Engineering," Future of Software Engineering, Future of
Software Engineering (FOSE), 2007, pp. 326-341.

[3] A. Yazdanshenas and L. Moonen, “Crossing the Boundaries
while Analyzing Heterogeneous Component-Based Software
Systems,” 27th IEEE International Conference on Software
Maintenance, 2011.

[4] H. Mueller, J. Jahnke, D. Smith, M. Storey , S. Tilley, and K.
Wong, “Reverse Engineering: A Roadmap,” ICSE – Future of
SE Track, 2000, pp. 47-60.

[5] L. Moonen, “Generating Robust Parsers using Island
Grammars,” Proceedings of the Working Conference on
Reverse Engineering, 2001, pp. 13-22.

[6] W. Premerlani, M. Blaha, “An Approach for Reverse
Engineering of Relational Databases,” Communications of the
ACM, Volume 37, Issue 5, May 1994, pp. 42-50.

[7] N. Mian, T. Hussain, “Database Reverse Engineering Tools,”
Proceedings of the 7th WSEAS International Conference on
Software Engineering, February 2008, pp. 2006-2011.

[8] S. Rugaber and K. Stirewalt, “Model-Driven Reverse
Engineering,” IEEE Software Volume 21, 2004, pp. 45-53.

[9] F. Barbier, S. Eveillard, K. Youbi, O. Guitton, A. Perrier, E.
Cariou, “Model Driven Reverse Engineering of COBOL,”
Information System Transformations: Architecture Driven

29Copyright (c) IARIA, 2012. ISBN: 978-1-61208-242-4

DATA ANALYTICS 2012 : The First International Conference on Data Analytics

Modernization Case Studies, Mogran Kaufmann, 2010, pp.
283-299.

[10] ISO/IEC 19506:2012, “Information Technology – Object
Management Group Architecture-Driven Modernization
(ADM) – Knowledge Discovery Meta-Model (KDM), 2012.

[11] R. Kollmann, P. Selonen, E. Stroulia, “A Study on the Current
State of the Art in Tool-Supported UML-based Static Reverse
Engineering,” Proceedings of the Ninth Working Conference
on Reverse Engineering, 2002, pp. 22-32.

[12] I. Jacobson, “Ivar Jacobson on UML, MDA, and the Future of
Methodologies,” UML Forum FAQ,

[13] A. Sharma, P. Panigrahi, “A Review of Financial Accounting
Fraud Detection based on Data Mining Techniques,” IJCA
Journal, Volume 1, 2012, pp. 37-47.

[14] K. Fanning, K. Cogger, R. Srivastava, “Detection of
Management Fraud: A Neureal Network Approach,”
International Journal of Intelligent Systems in Accounting,

Finance, and Management, Volume 4, June 1995, pp. 113-
126.

[15] S. Wang, “A Comprehensive Survey of Data Mining-Based
Accounting – Fraud Detection Research,” International
Conference on Intelligent Computation Technology and
Automation, Vollume 1, 2010, pp. 50-53.

[16] E. Kirkos, C. Spathis, Y. Manolopoulos, “Data Mining
Techniques for the Detection of Fraudulent Financial
Statements,” Expert Systems with Applications, Volume 32,
2007, pp. 995-1003.

[17] J. Sremack, "The collection of large-scale structured data
systems," Digital Evidence Magazine, January/February
2012.

[18] L. Hollaar, "Requesting and examining computer source
code," in Expert Evidence Report, Vol. 4, No. 9, May 10,
2004, pp. 238-241.

[19] OWASP Foundation, "OWASP code review guide," Version
1.1, 2008, pp 49-50.

30Copyright (c) IARIA, 2012. ISBN: 978-1-61208-242-4

DATA ANALYTICS 2012 : The First International Conference on Data Analytics

