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Abstract—The research on Internet of Things (IoT) devices
has advanced tremendously over the past few years. IoT-based
systems have their applications in almost every sphere of human
life. Modern IoT devices are of quite heterogeneous nature and
they are going to be involved in every thing from turning home
lights ON/OFF to handling life critical data of a patient in
smart health system. Because of the amount and nature of
the data handled by IoT devices, they are a lucrative target
for various kinds of security attacks. Among the many coun-
termeasures against the security threats, Advanced Encryption
Standard (AES) is a popular cryptographic scheme as it offers
robust and platform independent implementation. In this work,
keeping in view of the heterogeneous nature of the target
IoT devices, we explore five different implementations of AES
algorithm. These implementations use different algorithmic and
architecture optimizations. The results obtained through these
implementations reveal that some of them are very suitable for
resource constrained edge IoT devices while others are useful
for performance hungry middle layer gateways of an IoT-based
system. Experimental results reveal that in an IoT-based system, a
uniform cryptographic implementation should not be considered
and that the implementations should be altered as per the nature
of the target device.
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I. INTRODUCTION

Over the past few years, the research in embedded systems,
especially their miniaturized form i.e. the Internet of Things
(IoTs) devices has made huge progress. The IoT devices are
going to be part of human life for a long time to come and
they are speculated to change the way humans perceive about
their life [1]. The IoT devices powered by high performance
embedded systems have their applications in almost every
sphere of human life like smart vehicles, homes, health sys-
tems, environmental monitoring, supply chains, etc. [2]. The
aforementioned applications of IoT devices indicate that they
have to handle enormous amounts of critical data. The handling
of the data means processing, transmission, and storage of
data. The critical nature of the data handled by IoT devices
makes them a lucrative target for potential security attacks.
The potential security threats can result in the compromise of
integrity and the availability of data. A compromised IoT-based
system can put even lives in danger [3] [4]. Hence, a secured
IoT-based system, where the integrity and authenticity of the
data is ensured through proper security measures becomes of
paramount importance [5].

The importance of security for an IoT-based system is clear
from the discussion presented above. However, there is no one
standard way to make an IoT-based system secure [6]. This is

because of the fact the IoT-based systems are normally multi-
layered systems and different layers require different measures
to make them secure. For example, the top layers like appli-
cation and network layer are made secure easily through well
established firewalls and security protocols. But the security
of edge side layer is a hugely challenging task because of
the varying nature of the edge side IoT devices and different
types of security threats [7]. The edge side nodes of an IoT-
based system are normally quite heterogeneous in nature. They
have different hardware resources with varying performance
requirements. These nodes are normally subjected to a range
of security attacks like hardware trojans, side channel attacks,
denial of service attacks [8]. All the aforementioned attacks
compromise the authenticity, integrity, or the availability of the
data in an IoT-based system. A number of countermeasures to
these attacks like side channel analysis, isolation, blocking,
and implementation of cryptographic algorithms have been
proposed in the past [9] [10]. Among these countermeasures,
the cryptographic schemes are of particular importance as they
offer robust and hardware independent solutions. There are
many cryptographic schemes that have been used in the past to
secure embedded systems. Some of the most commonly used
techniques include Data Encryption Standard (DES), 3-DES,
and Advanced Encryption Standard (AES) techniques. AES
is a cryptographic technique that uses symmetric cipher and
offers highest possible security level. Standard implementation
of AES on the hardware is quite challenging in terms of
resource and performance requirements and it is not normally
suited for resource constrained and performance critical IoT
devices.

A lot of work has been done in the recent past to improve
the efficiency of AES algorithm in embedded system. The
improvement in efficiency means mainly reduced resource
requirement with improved performance. Most of the work
in the state-of-the-art considers the implementation of AES
on FPGA. For example, the authors in [11] implement the
AEs algorithm in a completely sequential manner. The se-
quential implementation results in a design that requires fewer
resources as compared to existing solutions and this kind
of implementation is well suited for resource constrained
embedded systems. Similarly, the authors in [12] present the
power efficient implementation of AES algorithm that is well
suited for power constrained devices. Authors in [13] present
another efficient implementation of AES that uses concepts of
loop unrolling and parallelism to achieve high performance.
This kind of implementation is well suited for applications
requiring high speed and where the resources are not a
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constraint. Moreover, authors in [14]–[16] explore further high
speed implementations of AES algorithm that provide very low
delay numbers but require high number of resources on the
target architecture. Although these implementations give good
results in terms pf performance, they are not well suited for
resource constrained IoT devices as they require huge amount
of resources. To address this problem, authors in [17] present a
version of AES implementation that is well suited for resource
constrained IoT devices. Moreover, the authors in [9] propose
another version of AES implementation that is well suited for
IoT devices. It is important to mention here that both afore-
mentioned works target only a single AES implementation
and they do not take into account the heterogeneous nature of
IoT devices. This kind of implementations might be useful in
certain scenarios. However, this kind of static approach cannot
be applied across a group of heterogeneous devices.

In this work, we explore five different implementation
techniques of AES algorithm. We apply different types of
optimizations and based on those optimizations, we obtain
different area and performance results for each technique. For
example, some of the proposed techniques require very small
resources which is very suitable for resource constrained IoT
devices. However, their execution speed is also low. On the
other hand, there are some other techniques which have very
high performance and they can satisfy the requirements of
performance constrained IoT devices. But at the same time,
they require higher number of resources as well. So, the main
contribution of this paper is the provision of a pool of AES
implementation techniques that are well suited for the target
IoT device. The implementation results of the proposed tech-
niques show that by carefully optimizing the algorithms and by
exploiting the resources of target architecture, better area and
speed results can be obtained. In the remainder of the paper,
Section II gives an overview of AES encryption algorithm.
Section III discusses the five implementation techniques and
also highlights how these techniques can result in good area
and delay trade-offs. Experimental results are discussed in
Section IV and the paper is finally concluded in Section V.

II. OVERVIEW OF AES ALGORITHM

AES was selected by National Institute of Standards and
Technology (NIST) [18] as a replacement of old DES. The
main reason behind its selection was its agility and simple
iplementation. At the same time, it provided robust security
against all kinds of security threats. AES is an iterative
algorithm that is implemented over multiple rounds and it
supports key sizes of 128, 192, and 256 bits. Larger the key
size, better the security. However, larger key sizes require more
resources. In this work, we focus on the AES implementations
with 128 bit key size. However, the results obtained with this
key size can be extrapolated to larger key sizes as well. In
the remaining part of this section, an overview of the AES
algorithm is presented.

An overview of the implementation of AES algorithm is
shown in Figure 1. It can be seen from this figure that AES
implementation in hardware can mainly be divided into two
parts: one is called the cipher module and the other is called
the key expansion module. Both modules run in parallel where
key expansion module generates the key and the cipher module
uses that key to encrypt or decrypt the text under consideration.
Normally, for 128 bit key size implementation, cipher module
performs 10 rounds of operations. In the first nine rounds,
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Figure 1. Standard Overview of AES Algorithm

the cipher module performs SubByte, ShiftRow, MixColumn,
and AddRoundKey operations. In the final round, MixCol-
umn operation is removed and only SubByte, ShiftRow, and
AddRoundKey operations are performed. During each of the
ten rounds, key expansion module provides the cipher module
with the expanded key through its SubWord, RotWord, and
RoundConst operations. It can be seen from Figure 1 that the
AES algorithm acts on the input data in an iterative manner to
give the encrypted data. Further discussion on the individual
operations of two modules of AES algorithm is provided next.

It can be seen from Figure 1 that the cipher module starts
with SubByte operation. This operation takes the input data
one byte at a time and replaces it with a byte from the substi-
tution box (also called as S-box). S-box is constructed through
two transformations. In the first transformation, multiplicative
inverse is taken while in the second part, affine transformation
is performed. In this transformation, the input data is multiplied
by constant matrix M and the result is then added to an eight
bit vector C given below.

M =



1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1


,C =



1
1
0
0
0
1
1
0


After the SubByte operation, as the name implies, the

ShiftRow operation performs the circular shift on the rows
of the input data. It is important to mention here that the
input data is represented as 4x4 matrix where each entry is
a byte. The ShiftRow operation performs circular shifting on
last three rows while leaving the first row unchanged. This
function rotates the second row by one byte, third row by two
bytes, and fourth row by three bytes.

TheShiftRow operation operates on the rows of input data
whereas the MixColumn function operates on each of the four
columns of the input data. In this function, each column of the
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input data is considered as polynomials and given by

a(x) = {03}x3 +{01}x2 +{01}x+{02} (1)

Finally, the AddRoundKey is the operation that mixes the
key with the data using a bit-wise XOR operation and gives
the output of the round.

As described earlier, the main purpose of key expansion
module is to give the expanded key for each round. In this
module, SubWord function applies S-box to perform substi-
tution and give the output. The RotWord function performs
cyclic permutation and RoundConst performs bit-wise XOR
operation.

III. PROPOSED AES ALGORITHM IMPLEMENTATION

It is clear from the discussion presented in Section II that
the implementation of AES algorithm can mainly be divided
into two parts: one is the implementation of cipher module
and the other is the implementation of key expansion module.
The cipher module is mainly an iterative process and its
implementation can be paralleled by applying the concept of
loop unrolling. In loop unrolling, the N iteration of cipher
module are unrolled and they are executed in parallel. The
parallelism obtained in cipher module is further aided through
splitting in the key expansion module. So, the loop unrolling
in cipher module and splitting in key expansion module
completely parallelize the implementation of AES algorithm
on hardware. This parallel implementation of AES algorithm
has the potential to significantly increase the performance of
AES algorithm. However, it can also severely increase the
resource requirement of the AES algorithm.

Apart from the algorithmic optimizations like loop un-
rolling and splitting, the decision to choose appropriate re-
sources of the target architecture also plays a significant
role in the final performance of the implemented algorithm.
For example, in this work, we choose Spartan-6 FPGA of
Xilinx. This FPGA mainly uses Configurable Logic Blocks
(CLBs) for the implementation of computing operations. The
CLBs are generic computation blocks. Apart from CLBs,
Spartan-6 FPGAs also have some dedicated blocks, which if
chosen wisely can give significant advantages is performance
and the overall resources requried for the implementation.
Careful analysis of the different computation operation of
AES algorithm indicates that operations like AddRoundkey,
MixColumn, etc. can be implemented using CLBs only. How-
ever, the SubByte operation that involves S-box can either be
implemented using CLBs or Block RAMs (BRAMs). It is
clear from the discussion presented in previous section that
the S-box values are predefined and they can be stored in
BRAMs at the configuration time or they can also be stored
in CLBs as CLBs can act both as computation blocks or
the storage blocks. The usage of CLBs as storage blocks
for S-box values can significantly shift the balance of AES
algorithm implementation either in favor of performance or the
resource requirements. In the following part of this section, we
use different combinations of the algorithmic and architecture
optimizations and explore their effect on the design of different
implementation techniques.

Based on the discussion presented above, we have explored
five different implementation techniques for AES algorithm.
Due to the different algorithmic and architecture optimizations,
these techniques give different resource and performance re-
sults. An overview of the implementation of these techniques

is provided next.
Technique 1: In the first technique, the S-Box for both

cipher module and key expansion module is implemented in
the BRAMs of target architecture. Moreover, the both the key
expansion module and cipher module are executed in a serial-
ized manner. In this manner, first the key is expanded and next
the cipher module is executed. In terms of implementation,
this is the simplest of the five techniques that we explore
in this work. As the whole implementation is executed in a
serialized manner, this technique gives us the best results in
terms of resource requirement. However, the performance of
this technique is quite low. This kind of technique is well
suited for embedded devices with low resource availability and
no performance constraints. But, it is not suitable for devices
who are performance critical.

Technique 2: Just like the first technique, in this tech-
nique, the S-box for both cipher module and key expansion
module is implemented in BRAMs. However, contrary to first
technique, here the two modules are executed in parallel. The
parallel execution is achieved through loop unrolling in cipher
module where N iterations of cipher module are unrolled and
key generation through key expansion module is performed
online through splitting. Because of the parallel execution,
this technique greatly improves the critical path delay of the
implementation. however, it may require significantly more
resources as compared to the serialized implementation.

Technique 3: In this technique, the S-box for cipher
module is implemented in BRAMs whereas the entire key
expansion module is implemented using CLBs. Moreover, the
execution if the implementation is performed in a serialized
way. That means, first the key expansion module is executed
and they key is generated and next the cipher module is exe-
cuted where generated keys are used for encryption/decryption.
Compared to the first two techniques, this technique requires
smaller number of BRAMs because of the key expansion
module’s S-box implementation in CLBs. This fact may also
lead to better delay results as less number of BRAMs are
involved in the critical path of the implementation.

Technique 4: In this technique, the S-box for cipher
module is implemented in BRAMs whereas the entire key
expansion module is implemented using CLBs. Compared
to technique 3, this technique is executed in a parallelized
manner. The parallelism is achieved through loop unrolling and
online key generation. Compared to technique 3, this techniqu
gives better delay results but poor area results.

Technique 5: In the last technique that we explore, both
the cipher module and key expansion modules are implemented
entirely using CLBs. Furthermore, both modules are executed
in a serialized manner. Implementation of S-box in CLBs
leads to very good delay results. However, this implementation
results in very high number of CLBs that are required for the
implementation.

In this section, we have given an overview of the different
optimizations used for the exploration of different implemen-
tations. Further discussion on the results obtained for these
implementation techniques is presented in Section IV.

IV. RESULTS AND ANALYSIS

A. Experimental Setup

The five exploration techniques described in previous sec-
tion are implemented on a Spartan-6 FPGA from Xilinx. For

9Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-818-1

CYBER 2020 : The Fifth International Conference on Cyber-Technologies and Cyber-Systems



TABLE I. EXPERIMENTAL RESULTS

Technique Number of Number of Frequency Throughput Efficiency
Slice Register Slice LUTs (MHz) (Gb/S)

Technique 1 278 3315 137.29 17.57 4.85
Technique 2 1547 3253 223.03 28.54 5.89
Technique 3 280 4307 207.74 26.6 5.78
Technique 4 1589 4530 214.96 27.51 4.51
Technique 5 256 9375 886.64 113.49 11.78

this purpose, we have used xc6s1x150-3-fgg900 platform and
the techniques are implemented using Xilinx’s Vivado design
suite. The VHDL core of each technique is synthesized, placed,
and routed using this suite where explicit directives are used
to ensure the implementation of S-box in either BRAMs or in
CLBs. Moreover, parallel processes are used to ensure where
parallel execution is needed. The synthesized implementation
was used to measure a number of parameters pertaining to each
implementation. These parameters include number of slice
registers, slice LUTs (a term used alternatively for CLBs here),
maximum frequency, and critical path delay etc. Moreover,
theoretical throughput and efficiency of each implementation
technique are also calculated using (2) and (3) respectively.
Although the results presented in this work are based on
a Xilinx FPGA, the optimization techniques are generic in
nature and they are applicable to any underlying hardware.
A thorough discussion on the results of each technique is
provided next.

T put =
Processed bits

Delay
(2)

E f f iciency =
T put

Resources
(3)

B. Experimental Results
Experimental results obtained after the implementation of

five exploration techniques are given in Table I. In this table,
the first column corresponds to the technique while next five
columns indicate the number of slice registers, slice LUTs,
frequency, throughput, and efficiency values obtained for each
technique.

It can be seen from second column of Table I that the
techniques using parallelism (i.e., Technique 2 and 4) require
significantly more slice registers as compared to the techniques
that are implemented in a serialized manner. This is because
of the fact that while parallelizing the implementation, sig-
nificantly more registers are required for each stage of cipher
module and key expansion module. These registers are used to
keep the two modules in complete synchronization and without
them it will not possible to parallelize the implementation. The
next column gives a comparison of slice LUTs for different
exploration techniques. It is clear from the results presented
i column three that the techniques using BRAMs for their
S-box implementation require less number of slice LUTs as
compared to the techniques using CLB (or LUTs) for the
implementation of S-box. Furthermore, it can also be observed
from third column that technique 5 requires significantly more
slice LUTs than any other technique. This is because of the
reason that this technique is implementing the S-box of both
cipher module and key expansion module in LUTs.

The routing of each exploration technique also gives its
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Figure 2. Frequency-Delay Comparison

corresponding operating frequency. The frequency numbers of
each technique are given in the fourth column of Table I. It
can be seen from this table that in general the techniques em-
ploying parallelism have higher frequency and the techniques
implemented in a serialized manner have a lower operating
frequency. There is one exception however. Technique 5 is
implemented entirely in a serialized manner, but still it reports
high frequency results. This is because of the fact that complete
absence of BRAMs reduces the internal delay of BRAMs and
also eliminates the communication delay between CLBs and
BRAMS eventually resulting in better frequency results as
compared to all other techniques. We further consolidate the
frequency and critical path delay in the form of Figure 2. In this
figure, solid and dashed lines indicate the frequency and critical
path delay results respectively. It is clear from this figure that
the techniques with high frequency results hav lower critical
path delay and vice versa.

We have also computed the theoretical throughput results
using (2) and these results are depicted in the column 5 of
Table I. It can be seen from these numbers that in general
the techniques with higher frequency have better throughput
as compared to the techniques with lower frequency. The
efficiency results of each technique are also computed using
(3) and they are depicted in column 6 of Table I. It can be seen
from this table that technique 5 gives the best efficiency results.
This is mainly because of the reason that this technique uses
less number of registers and almost no BRAMs. Moreover,
this technique gives significantly better frequency results as
compared to all other techniques which eventually leads to the
best efficiency results for this technique.

Finally, to have a complete overview of the quality of an
implementation, we perform a comparison between the total
resource requirement and the critical path delay numbers of
all the techniques under consideration. In this comparison, the
resource requirement gives an overview of the area and critical
path delay number gives an overview of the performance of

n 
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Figure 3. Area-Delay Comparison

the technique. These results are shown in Figure 3. In this
figure, the resources are shown as solid line while critical path
delay values are shown as dashed line. It can be seen from this
figure that technique 1 requires smallest number of resources;
hence it is suitable for area constrained IoT devices. However,
it should be noted that this technique also has the poorest
critical path delay value. So, this kind of technique is suitable
to secure edge side nodes. On the other hand, technique 5
requires highest number of total resources but at the same time
it gives the best delay results as well. From these numbers, it
can be concluded that this kind of technique is well suited for
devices that are performance constrained and where number
of resources is not an issue for them.

V. CONCLUSION

IoT devices have gained tremendous popularity over the
past few years and they are now the driving force of a
multi-billion dollar industry. Modern IoT devices are quite
heterogeneous in nature and they are subject to all sorts of
security threats. In this work, based on various algorithmic
and architecture optimizations, we explore five different imple-
mentations of AES cryptographic scheme. We consider AES
as it is quite robust and its five different implementations
are well suited for the varying requirements of heterogeneous
IoT devices. Experimental results of these implementations
reveal that the serialized implementation of cipher and key
expansion modules of AES algorithms leads to the best area
results; hence making the serialized implementation suitable
for resource constrained edge IoT devices. However, this kind
of implementation is not suitable for high performance IoT
devices. For such devices, the experimental results reveal
that the implementations using parallelism are more suitable.
Although such implementations are quite resource hungry, they
give very good performance results.
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