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Abstract—Support Vector Machine (SVM) is a binary 
classification model, which aims to find the optimal separating 
hyperplane with the maximum margin in order to classify the 
data. The maximum margin SVM is obtained by solving a 
convex Quadratic Programming Problem (QPP) and is termed 
as the hard-margin linear SVM. This optimization problem 
can solve using commercial Quadratic Programming (QP) 
code, i.e., Lagrange multipliers. However, the training process 
is time-consuming. Several decomposition methods have been 
proposed, which split the problem into a sequence of smaller 
sub-problems. The Sequential Minimal Optimization (SMO) 
algorithm is a widely utilized decomposition for SVM. In this 
paper, SMO algorithm for SVM for regression is utilized to 
forecast forest fires. Moreover, the Stochastic Gradient 
Descent (SGD) algorithm is employed for comparison 
purposes. The comparative results analysis shows that SVR-
SMO model outperforms the SGDRegressor model in 
predicting forest fires. 
 
Keywords—Fast training of support vector machine; support 
vector regression; sequential minimal optimization; stochastic 
gradient descent; forest fire prediction. 
 

I. INTRODUCTION 
Support Vector Machine (SVM), as proposed by Vapnik 

[1] is a supervised learning model that is utilized for 
classification, regression, and outlier detection problems. 
SVM implements the structural risk minimization principle, 
which seeks to minimize the training error and construct 
confidence intervals for the accuracy. SVM is a robust 
methodology for solving several classes of problems with 
small samples, nonlinearity, high dimensionality, and local 
minimum [2]. SVM has been utilized within several fields, 
including a feature recognition process, which transforms 
data from the input space into higher dimensional space, and 
optimization is performed upon the new vector spaces. This 
distinguishes SVM from the pattern recognition solution in 
general, which optimizes the parameters in the 
transformation results space which is lower than the input 
space dimension.  

SVM has two phases: training and testing, where the 
training process is the most time-consuming. Training in 
SVM requires solving a Quadratic Programming (QP) 
problem. This problem is transformed utilizing the 
Lagrange multipliers method, and the solution is obtained 
for finding the set of optimal Lagrange coefficients [3]. 

Many methods have been proposed to solve the QP problem 
in the context of faster training. 

The majority of SVM training optimization problems are 
solved utilizing a decomposition algorithm. The proposed 
decomposition methods lead to faster training, whereby the 
problem is decomposed more quickly into sub-problems. 
These decomposition methods repeatedly select a subset of 
the free variables and optimizes over these variables. One of 
the utilized decomposition methods is Sequential Minimal 
Optimization (SMO) proposed by Platt [4]. SMO avoids 
numerical QP problems and solves the smallest 
optimization problem at each iteration. Another method for 
solving optimization problems, which has also been widely 
utilized for machine learning is that of the Stochastic 
Gradient Descent (SGD). SGD is an iterative method for 
optimizing formula use to achieve production goal. In this 
paper, the SMO algorithm for Support Vector Regression 
(SVR) is utilized to forecast the problem domain of peatland 
forest fires. The SGD algorithm is also employed for 
comparative study with the SVR-SMO model. 

Section I provided an introduction. The remainder of this 
paper is organized as follows. Section II describes related 
works regarding research implementation of SVM, SMO, 
etc. Section III provides details regarding the SVM theory, 
Lagrange Multipliers, Krush-Kuhn-Tucker (KKT) 
Condition, SVR and Section IV discusses the SVM training 
method consist of SMO, SGD, and Section V discusses the 
experiment and results. Finally, interim conclusions are 
summarized in Section VI. 

II. RELATED WORKS 
Lin et al. [5] formulated the original SVM problem as the 

Minimum Enclosing Ball (MEB) approach and proposed 
SMO for attaining fewer support vectors as well as 
obtaining an acceptable accuracy compared to the original 
SVM. The SMO has been modified by the idea of the active 
set and second order information. The result shows that the 
proposed method improves the efficiency and reduces 
memory consumption. 

Feng et al. [6] implemented the Modified SMO (MSMO) 
algorithm of SVM so as to enable and speed up the learning 
process of the hardware system, via the Integrated Circuit 
(IC). MSMO is applied with two threshold parameters 
instead of one. Experimental results show that the designed 
system has a high detection rate and fast learning process of 
SVM. 
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Qihua and Shuai [7] present a new fast SVM learning 
algorithm for large-scale training set under the condition of 
sample aliasing. The main idea of this proposed algorithm 
is that those aliasing training samples, which are not of the 
same class, are eliminated first, and then the Relative 
Boundary Vectors (RBVs) are calculated. According to 
Qihua and Shuai’s algorithm, not only the RBVs sample 
itself, but a near RBVs sample, whose distance to the RBVs 
is smaller than a certain value, is also selected for SVM 
training in order to prevent the loss of some critical sample 
points for the optimal hyperplane. The simulation results 
demonstrate that this fast learning algorithm is very 
effective and can be utilized as a pragmatic approach for 
large-scale SVM training. 

Wijnhoven and With [8] evaluated the performance of 
Stochastic Gradient Descent (SGD) when only a part of the 
training set is presented to the training algorithm. The SGD 
algorithm was implemented for learning a linear SVM 
classifier for object detection. The obtained classification 
performance of Wijnhoven and With’s model is similar to 
that of state-of-the-art SVM implementations as they are 
able to obtain a speed up factor in computation time of two 
or three orders of magnitude. 

Cao et al. [9], who solved the problem of fault prediction 
and failure prognosis for electro-mechanical actuators, 
utilized SVR. With the large size of sample data, the 
improved SMO algorithm was employed to solve the SVR 
model problems. The SMO algorithm is developed by 
improving stopping criteria as the SVR method can 
overcome drawbacks of slow convergence and local 
minimum. The simulation results demonstrate that the 
SMO-SVR method has characteristics of high prediction 
accuracy and time efficiency, as well as indicators for 
preventive measure actions before failure occurs. 

Priyadarshini et al. [10] utilized SVR and SMO for link 
load prediction of a network. SMO was utilized for model 
training, while SVR was utilized for forecasting. SVR 
models are robust to parameter variation and can generalize 
against unseen data and is quite proficient at continuous and 
adaptive online learning. The result indicates that SVR-
SMO performance is quite satisfactory and promising for 
applications, such as real-time traffic condition prediction. 

III. SUPPORT VECTOR MACHINE THEORY 
SVM is a binary classification model, which aims to find 

the optimal separating hyperplane with the maximum 
margin to separate the involved classes of data (please refer 
to Figure 1). SVM addresses generalization utilizing a 
theoretical framework and shows that the generalization 
error is related to the margin of a hyperplane classifier [11]. 
This hyperplane is represented by the following equation, 
where 𝑤𝑤 is called the weight vector, 𝑥𝑥 is the input data, and 
𝑏𝑏 is referred to as the bias: 

 
                               𝐻𝐻: 𝑤𝑤𝑇𝑇 ∙ 𝑥𝑥𝑖𝑖 + 𝑏𝑏 = 0  (1) 

𝐻𝐻+: 𝑤𝑤𝑇𝑇 ∙ 𝑥𝑥𝑖𝑖 + 𝑏𝑏 = +1   (2) 
𝐻𝐻−: 𝑤𝑤𝑇𝑇 ∙ 𝑥𝑥𝑖𝑖 + 𝑏𝑏 = −1   (3) 
 

Since the labels are the same as the {-1, 1} sides of the 
plane, the constraints can be rewritten as 𝑦𝑦(𝑤𝑤𝑇𝑇 ∙ 𝑥𝑥 + 𝑏𝑏) ≥ 1  

for all training points 𝑥𝑥 with label 𝑦𝑦 ∈ {−1,1}(will have one 
constraint for each training point) [12]. Though the principle 
of maximum margin is derived through certain inequalities, 
the larger the margin, the smaller is the probability that a 
hyperplane will determine the class of a test sample 
incorrectly [9]. Therefore, the maximum margin of SVM is 
obtained by solving the following optimization problem: 
 

min
(𝑤𝑤,𝑏𝑏)

1
2

‖𝑤𝑤‖2 (4) 

 
Equation 4 is a convex Quadratic Programming Problem 

(QPP) and is termed as the hard-margin linear SVM. The 
formulation may be more succinctly written as: 
 

min
(𝑤𝑤,𝑏𝑏)

1
2

𝑤𝑤𝑇𝑇𝑤𝑤  (5) 

 
𝑠𝑠. 𝑡𝑡 𝑦𝑦𝑖𝑖(𝑤𝑤𝑇𝑇 ∙ 𝑥𝑥 + 𝑏𝑏) ≥ 1,   𝑖𝑖 = 1, … , 𝑚𝑚 

 
 

 
 

Figure 1.  Optimal hyperplane within a two-dimensional space 
 
 

Figure 1 show the data with two bordering parallel lines 
that form a margin around central separating line. As a 
consequence, the algorithm uncovers the elements in the 
data that touch the margins [13]. These are called the 
support vector. The other elements distanced from the 
border are not relevant to the solution. Support vectors are 
found after an optimization step involving a convex 
quadratic objective and a linear constraint. This 
optimization problem can then be solved utilizing 
commercial QP code, i.e., Lagrange multipliers. The 
method of Lagrange multipliers can handle the inequality 
constraints and posit the necessary and sufficient conditions 
for minimizing the primal form of the SVM [14]. With this 
condition, the primal form turns into an equivalent dual 
form. 

A. Lagrange Multipliers 
Lagrange multipliers constitute a mathematical method 

utilized to solve constrained optimization problems of 
differentiable functions [15].  One Lagrange multiplier 𝛼𝛼𝑖𝑖 is 
defined for each constraint, and the constraints 𝑦𝑦𝑖𝑖𝑓𝑓(𝑥𝑥𝑖𝑖) ≥ 1 
are re-written as 𝑦𝑦𝑖𝑖𝑓𝑓(𝑥𝑥𝑖𝑖) − 1 ≥ 0. The Langrangian is: 
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ℒ(𝑤𝑤, 𝑏𝑏, 𝛼𝛼) = 1
2

𝑤𝑤𝑇𝑇𝑤𝑤 − ∑ 𝛼𝛼𝑖𝑖(𝑚𝑚
𝑖𝑖=1 𝑦𝑦𝑖𝑖(𝑤𝑤𝑇𝑇 ∙ 𝑥𝑥 + 𝑏𝑏) − 1)    (6) 

 
Then, ℒ is differentiated with respect to 𝑤𝑤, 𝑏𝑏, and the 
differential is set to zero: 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤

= 0 → 𝑤𝑤 = ∑ 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖 ,𝑚𝑚
𝑖𝑖=1  (7) 

 
                      𝜕𝜕𝜕𝜕

𝜕𝜕𝑏𝑏
= 0 → 𝑏𝑏 = ∑ 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖 = 0𝑚𝑚

𝑖𝑖=1   (8) 
 

and then the equation of 𝑤𝑤 and 𝑏𝑏 is placed back into the 
ℒ(𝑤𝑤, 𝑏𝑏, 𝛼𝛼) equation in order to eliminate (𝑤𝑤, 𝑏𝑏). 
Consequently, the Lagrange dual problem is obtained for 
the original SVM-primal problem. 
 
 ℒ(𝑤𝑤, 𝑏𝑏, 𝛼𝛼) = max

𝛼𝛼
∑ 𝛼𝛼𝑖𝑖 − 1

2
𝑚𝑚
𝑖𝑖=1 ∑ 𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗𝑥𝑥𝑖𝑖

𝑇𝑇𝑥𝑥𝑗𝑗
𝑚𝑚
𝑖𝑖,𝑗𝑗=1   (9) 

 
To train the SVM, the feasible region of the dual problem 
and the maximization of the objective function are 
necessary and sufficient to specify optimal solution. The 
optimal solution can then be checked utilizing the Krush-
Kuhn-Tucker conditions. 

B. Krush-Kuhn-Tucker Condition 
Although the Lagrange multipliers provide an important 

optimization technique, it can only be employed under 
equality constraints, while the SVM minimization problem 
is restricted by inequalities [16]. In order to tackle the 
maximal-margin problem, Krush-Kuhn-Tucker (KKT) 
must be satisfied when performing Lagrange multipliers for 
inequality constraints. There are five KKT conditions that 
affect the dual problem [13]: 

 
         𝜕𝜕𝜕𝜕

𝜕𝜕𝑤𝑤
ℒ(𝑤𝑤, 𝑏𝑏, 𝛼𝛼) = 𝑤𝑤 − ∑ 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖

𝑚𝑚
𝑖𝑖 = 0  (10) 

 
          𝜕𝜕𝜕𝜕

𝜕𝜕𝑏𝑏
ℒ(𝑤𝑤, 𝑏𝑏, 𝛼𝛼) = − ∑ 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖 = 0𝑚𝑚

𝑖𝑖  (11) 
 
         𝑦𝑦𝑖𝑖(𝑤𝑤𝑇𝑇 ∙ 𝑥𝑥 + 𝑏𝑏) − 1 ≥ 0 (12) 
 

     𝛼𝛼𝑖𝑖 ≥ 0 (13) 
 

    𝛼𝛼𝑖𝑖(𝑦𝑦𝑖𝑖(𝑤𝑤𝑇𝑇 ∙ 𝑥𝑥 + 𝑏𝑏)) − 1 = 0 (14) 
 

C. Support Vector Regression (SVR) 
The basic idea of SVR is to find a function 𝑓𝑓(𝑥𝑥) that has 

at most 𝜖𝜖 from the actualobtained target 𝑦𝑦𝑖𝑖  for all training 
data [17]. Referring to Figure 2, the region bound by 𝑦𝑦𝑖𝑖 ±  𝜖𝜖 
is called an 𝜖𝜖-insensitive tube. The samples deviating from 
𝜖𝜖-insensitive tube can be integrated to the optimization 
problem by using slack variables (𝜉𝜉). The error function for 
SVR can then be written as: 

 
           min

(𝑤𝑤,𝑏𝑏)
 1

2
‖𝑤𝑤‖2 + 𝐶𝐶 ∑ (𝜉𝜉𝑖𝑖

+ + 𝜉𝜉𝑖𝑖
−)𝑚𝑚

𝑖𝑖=1  (15) 

 
 

Consequently, the dual optimization problem can be 
rewritten as follows: 
 
max
α+,α-

�∑ �αi
*-αi�yi-m

i=1 ϵ ∑ �αi
*-αi�- 1

2
∑ �αi

*-αi��αj
*-αj�xi∙xj

m
i,j

m
i=1 � (16) 

 

 
 

Figure 2. SVR with 𝜖𝜖-tube 
 
Accordingly, the standard SVR to solve the approximation 
problem is as follows: 
 
              𝑓𝑓(𝑥𝑥) = ∑ (𝛼𝛼𝑖𝑖

∗ − 𝛼𝛼𝑖𝑖)𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥) + 𝑏𝑏𝑚𝑚
𝑖𝑖=1  (17) 

 
where 𝛼𝛼𝑖𝑖

∗ and 𝛼𝛼𝑖𝑖 are Lagrange multipliers and 𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥) is a 
kernel function. 

IV. SVM TRAINING METHOD 
To reduce the computational complexity of SVM 

training, the basic and the most commonly used method is 
to select the most informative samples that have the most 
possibility to become the support vectors in the training 
sample set before training the SVM. In this paper, SMO and 
SGD algorithm are utilized for fast training of SVM. The 
first review the training procedures of SMO algorithm, and 
then describe SGD algorithm simply. 

A. Sequential Minimal Optimization (SMO) 
The SMO approach minimizes memory storage for 

decomposing a large QP problem into a series of smaller QP 
sub-problems. Each sub-problem is solved analytically to 
avoid utilizing a time-consuming numerical QP 
optimization, via optimizing two elements of 𝛼𝛼𝑖𝑖 (Lagrange 
multipliers).  

 
       ℒ(𝑤𝑤, 𝑏𝑏, 𝛼𝛼) = ∑ 𝛼𝛼𝑖𝑖

𝑚𝑚
𝑖𝑖=1 − 1

2
∑ 𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗𝑥𝑥𝑖𝑖

𝑇𝑇𝑥𝑥𝑗𝑗
𝑚𝑚
𝑖𝑖,𝑗𝑗=1  (18) 

 

𝑠𝑠. 𝑡𝑡. 0 ≤ 𝛼𝛼𝑖𝑖 ≤ 𝐶𝐶  𝑎𝑎𝑎𝑎𝑎𝑎 � 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖 = 0
𝑚𝑚

𝑖𝑖=1
 

 
where C is a SVM hyper-parameter. Because of the linear 
equality constraint involving the Lagrange multipliers  𝛼𝛼𝑖𝑖, 
the smallest possible problem involves two such multipliers. 
Then, for any two multipliers α1and α2, the constraints are 
reduced to: 
 

  0 ≤ α1 ,  α2 ≤ 𝐶𝐶,   (19) 
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𝑦𝑦1𝛼𝛼1 + 𝑦𝑦2𝛼𝛼2 = 𝑘𝑘                     (20) 

 
 
where 𝑘𝑘 is the negative of the sum over the rest of terms 
within the equality constraint, which is fixed at each 
iteration. 

B. Stochastic Gradient Descent (SGD) 
The SGD algorithm is able to minimize the objective 

functions that depend upon an integral [18]. SGD has two 
major steps: individual gradient computation and weight 
update. SGD continuously fluctuates to converge, where the 
weight update jumps to a better local minimum for the non-
convex error function [19].  

 
Algorithm 1. Stochastic Gradient Descent (SGD) 
 
Input: Training data 𝑆𝑆, regularization parameters 𝜆𝜆, learning rate 

𝜂𝜂, initialization 𝜎𝜎 
Output: Model parameters Θ= (w0,w, V) 
𝑤𝑤0 ← 0; 𝑤𝑤 ← (0, … ,0); 𝑉𝑉~𝑁𝑁(0, 𝜎𝜎);   
repeat 
       for (𝒙𝒙, 𝒚𝒚) ∈ 𝑺𝑺 do 
              𝑤𝑤0 ← 𝑤𝑤0 −  𝜂𝜂 � 𝜕𝜕

𝜕𝜕𝑤𝑤0
𝑙𝑙(𝑦𝑦(𝑥𝑥|Θ,y) + 2𝜆𝜆0𝑤𝑤0� ; 

              for 𝑖𝑖 ∈ {1, … . 𝑝𝑝} ∧ 𝑥𝑥𝑖𝑖 ≠ 0  do 
                     𝑤𝑤𝑖𝑖 ← 𝑤𝑤𝑖𝑖 −  𝜂𝜂 � 𝜕𝜕

𝜕𝜕𝑤𝑤𝑖𝑖
𝑙𝑙(𝑦𝑦(𝑥𝑥|Θ,y) + 2𝜆𝜆𝜋𝜋

𝑤𝑤𝑤𝑤𝑖𝑖� ; 
      for 𝑓𝑓 ∈ {1, … , 𝑘𝑘} do 
             𝑣𝑣𝑖𝑖,𝑓𝑓 ← 𝑣𝑣𝑖𝑖,𝑓𝑓 −  𝜂𝜂 � 𝜕𝜕

𝜕𝜕𝑣𝑣𝑖𝑖,𝑓𝑓
𝑙𝑙(𝑦𝑦(𝑥𝑥|Θ,y) + 2𝜆𝜆𝑓𝑓

𝑣𝑣𝑣𝑣𝑖𝑖,𝑓𝑓� ; 

      end 
 end 
         end 
Until stopping criterion is not met; 

 
Figure 3. Algorithm Stochastic Gradient Descent 

 
Figure 3 provides a Stochastic Gradient Descent (SGD) 

algorithm. SGD algorithm tries to find the right weights 
(𝑤𝑤0 , w) by iteratively updating the values of 𝑤𝑤0 and w by 
utilizing the value of gradient V. The value of the gradient 
V depends upon the inputs (S), the current values of the 
model parameter (𝜆𝜆, 𝜂𝜂, 𝜎𝜎) and the cost function f. 𝜂𝜂 is the 
learning rate which determines the size of the steps to reach 
a minimum, 𝜆𝜆 is the regularization parameter to reduces 
overfitting, and 𝜎𝜎 is standard deviation of sigma. Loss 
function 𝑙𝑙 (𝑦𝑦�(𝑥𝑥|Θ, 𝑦𝑦) that measures the cost of prediction 𝑦𝑦� 
when the actual answer is 𝑦𝑦. The model target is to get the 
best fit line to predict the value of 𝑦𝑦 based upon the input 
value 𝑥𝑥, where 𝑥𝑥 and 𝑦𝑦 is training data sample. 

V. EXPERIMENT AND RESULT 
In order to testify the effectiveness of the algorithms in 

this paper, the fast training algorithm, SVR-SMO and 
SGDRegressor, was applied to the peatland forest fire 
dataset. Further, the performance of SVR-SMO and 
SGDRegressor (accuracy and the CPU times) will be 
compared. All reported results are implemented by Python 
code. Dataset description and experiment results are shown 
on Section V-A and B respectively. 

A. Data Description 
The peatland forest fire dataset was obtained from the 

UCI Machine Learning Repository website [20] and was 
created by Paulo Cortez and Anibal Morais, University of 
Minho, Portugal. The meteorological dataset was collected 
from January 2000 to December 2003. This dataset contains 
517 fire observations found in the Montesinho Natural Park 
in Portugal, 12 attributes of input features, and one output 
feature representing the total burnt area. This peatland forest 
fire dataset has multivariate time series features and for 
regression tasks. The attribute descriptions are given in 
Table I: 

TABLE I. ATTRIBUTE DESCRIPTION 

No Attribute Description 
1 X x-axis coordinate 

2 Y y-axis coordinate 

3 Month Month of the year (a.k.a. month) 

4 Day Day of the week (a.k.a. day) 

5 FFMC 
Fine Fuel Moisture Code (FFMC) denotes 
the moisture content surface litter and 
influences ignition and fire spread 

6 DMC 
Duff Moisture Code (DMC) represent the 
moisture content of shallow and deep 
organic layers, which affect fire intensity 

7 DC Drought Code (DC) for fire intensity 

8 ISI Initial Spread Index (ISI) is a score that 
correlates with fire velocity spread 

9 Temp Temperature (in Celsius) 

10 RH Relative Humidity (RH) (in %) 

11 Wind Wind Speed (a.k.a. wind) (in km/h) 

12 Rain Rain (in mm/mm2) 

13 area Total burned area (a.k.a. area) (in ha) 
 

The first four rows denote the spatial and temporal 
attributes. FFMC, DMC, DC, ISI are the indexes for the Fire 
Weather Index (FWI) of the Canadian system for rating the 
fire danger. Temperature, RH, Wind, and Rain constitute 
meteorological information. Only two geographic features 
were included, the X and Y axis values, where the fire 
occurred [21]. Variables of the Total burned area has many 
0 values (see the density plot in Figure 4). Consequently, 
Paulo Cortez and Anibal Morais transformed the variable 
utilizing the log transformation (log(x+1), where 1 will first 
be added to the area (to account for the 0 values)).  

 
Figure 4. Area burned density 
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B. Experimental Results 
SVR-SMO and SGDRegressor were implemented on a 

Jupyter Notebook utilizing the Python 3 kernel and run atop 
a machine with Intel(R) Pentium(R) Dual CPU T3400 
@2.17 GHz and 2 GB of RAM. 70% and 30% of the 
employed dataset (517 instances) were selected as the 
training set and testing set, respectively. Then, both training 
and test sets were standardized with the StandardScaler 
function (mean = 0 and standard deviation = 1). 

The SVR based upon SMO utilized grid search to 
optimize the parameters (C and epsilon) and carried out 
fivefold cross validation for selecting the C value from 
{0.01, 0.1, 1, 10} and the epsilon value from {10, 1, 0.1, 
0.01, 0.001, 0.0001}. As the kernel function, we utilized the 
Radial Basis Function (RBF) kernel for the SVR kernel 
defined by K(xi, x)= exp (-||x-y||2/ (2σ2)). Best parameters 
obtained by Grid Search are C = 0.01, epsilon = 1, and 
kernel = RBF. 

Parameters of the SGDRegressor include alpha set 
defaults to 0.0001 to compute the learning rate. The L1 ratio 
is 0.1,  iteration maximum is 1000,  epsilon in the epsilon-
insensitive loss function is 0.0001, the learning rate 
schedule is eta 0 = 0.01, the exponent for inverse scaling 
learning rate is power_t = 0.25, the validation fraction set 
defaults to 0.1, and the number of iterations with no 
improvement defaults to 5.  

In this study, Root Mean Squared Error (RMSE) are 
implemented for evaluating prediction performance. RMSE 
is the square root of the ratio of the quadratic sum of 
deviations between predicted values and actual values to the 
times 𝑎𝑎 of prediction. Moreover, the information refers to 
simulation result comparisons between SVR-SMO and 
SGDRegressor, as shown in Table 2. 
 

TABLE III. PERFORMANCE COMPARISON OF SVR-SMO AND 
SGDREGRESSOR 

Parameter 
Method 

SVR-SMO SGDRegressor 

𝜀𝜀 1 0.001 

Max Iteration 1000 1000 

CPU Times (s) 0.01639 0.02161 
Accurasy 
(RMSE) 0.66698 3.80567 

 
In Table 2, the results indicate that SVR-SMO exhibits 

better prediction ability for the UCI forest fire dataset when 
compared to the SGDRegressor method, while the training 
speeds for SVR-SMO and SGDRegressor were almost the 
same.  
 

 
Figure 5. SVR with 𝜖𝜖-tube 

 

 
Figure 6. SVR with 𝜖𝜖-tube 

 
Figure 5 show the scatter plot between actual and predicted 
value of the burn area part of forest fire dataset utilizing 
SVR-SMO algorithm. Predicted Y is the estimated outcome 
or prediction made by the trained model for the given input 
data and the residual error is describe by e (epsilon). As can 
be seen in Figure 5, the resulting points form a line that 
represents the learned relationship between actual and 
predicted value. In other words, SVR-SMO algorithm reach 
the goal of regression analysis to fit a line to set of data 
points. Figure 6 presents scatter plot between actual and 
predicted value of the burn area part of forest fire dataset 
utilizing SGDRegressor algorithm. The graph shown that 
the data points is not linear because the plot of the residual 
possesses a random distribution. In this case, a line drawn 
through the data points is horizontal with slop equal to zero. 

VI. CONCLUSION AND FUTURE WORK 
In this paper, SVR based upon the SMO algorithm is 

utilized to predict the Total burned area as pertains to a 
forest fire and compared with the SGDRegressor algorithm. 
The comparatively small RMSE obtained from the 
experimental results shows that SVR based upon SMO 
algorithm has better performance than SGDRegressor, 
while the training speed for SVR-SMO and SGDRegressor 
were comparable. Future work will involve studying global 
convergence of more general decomposition algorithms for 
multi-objective optimization problems. 

 
 

73Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-743-6

CYBER 2019 : The Fourth International Conference on Cyber-Technologies and Cyber-Systems



  

ACKNOWLEDGMENT  
This research is supported by the Center for Research on IoT, 
Data Science, and Resiliency (CRIDR), an initiative of 
Decision Engineering Analysis Laboratory (DEAL) and The 
International Center for Theoretical Physics (ICTP), a 
United Nations Educational, Scientific, and Cultural 
Organization (UNESCO) Category 1 Institution. Sources of 
data for this research includes the Department of Information 
Systems, University of Minho, Portugal. 

REFERENCES 
[1] C. Cortes and V. Vapnik, “Support-Vector Networks,” Machine 

Learning Journal, vol. 20, Issue 3, pp. 273–297, 1995. 
[2] X. Jian-Hua, Z. Xue-gong, and L. Yan-da, “Advance in Support 

Vector Machine,” Chinese Control and Decision, vol. 19, no. 5, pp. 
481-484, 2004. 

[3] R. A. Hernandez, M. Strum, W. J. Chau, and J. A. Q. Gonzalez, “The 
Multiple Pairs SMO: A Modified SMO Algorithm for the 
Acceleration of the SVM Training,” Proc. of International Joint 
Conference on Neural Networks, USA, pp. 1221-1228, 2009. 

[4] J. Platt, “Fast training of Support Vector Machines using Sequential 
Minimal Optimization,” in Advances in Kernel Method-Support 
Vector Learning, pp. 185-208, 1999. 

[5] B. Schdlkopi, C. I. C Burges and A. J. Smala, Editors, MIT Press, 
Cambridge, MA, pp. 185-208, 1999. 

[6] J. Lin, M. Song, and J. Hu, “A SMO approach to Fast SVM for 
Classification of Large-Scale Data,” 2014 International Conference 
on IT Convergence and Security (ICITCS), Beijing, pp. 1-4, 2014.  

[7] L. Feng, Z. Li, Y. Wang, C. Zheng, and Y. Guan, “VLSI Design of 
Modified Sequential Minimal Optimization Algorithm for Fast 
SVM Training,” IEEE 2016 13th IEEE International Conference on 
Solid-State and Integrated Circuit Technology (ICSICT), Hangzhou, 
pp. 627-629, 2016. 

[8] X. Qihua and G. Shuai, “A Fast SVM Classification Learning 
Algorithm Used to Large Training Set,” 2012 Second International 
Conference on Intelligent System Design and Engineering 
Application, Sanya, Hainan, pp. 15-19, 2012. 

[9] R. G. J. Wijnhoven and P. H. N. With, “Fast Training of Object 
Detection using Stochastic Gradient Descent,” International 
Conference on Pattern Recognition, Istanbul, pp. 424-427, 2010. 

[10] Y. Cao, J. Wang, Y. Yu, and R. Xie, “Failure Prognosis for Electro-
Mechanical Actuators Based on Improved SMO-SVR Method,” 
IEEE Chinese Guidance, Navigation and Control Conference 
(CGNCC), Nanjing, pp. 1180-1185, 2016.  

[11] D. Priyadarshini, M. Acharya, and A. P. Mishra, “Link Load 
Prediction Using Support Vector Regression and Optimization,” 
International Journal of Computer Applications, vol. 24, pp. 22-24, 
2011. 

[12] Jayadeva, R. Kemchandani, and S. Chandra, “Twin Support Vector 
Machines: Model, Extensions and Applications,” Studies in 
Computational Intelligence, Springer International Publishing, vol. 
659, pp. 1-211, 2017. 

[13] B. Wang and V. Pavlu, “Support Vector Machine,” Based on Notes 
by Andrew Ng, 2015. 

[14] J. Unpingco, “Python for Probability, Statistic, and Machine 
Learning,” 2nd edition, Springer International Publishing, pp. 1-384, 
2016. 

[15] J. Wu, Class Lecture, Topic: “Support Vector Machines,” LAMDA 
Group, National Key Lab for Novel Software Technology, Nanjing 
University, China, 2019. 

[16] B. T. Smith, Class Lecture, Topic: “Lagrange Multipliers Tutorial 
in the Context of Support Vector Machine,” Memorial University of 
Newfoundland, Canada, 2004. 

[17] R. F. d. Mello and M. A. Ponti, “Machine Learning: A Practical 
Approach on the Statistical Learning Theory,” Springer 
International Publishing, pp. 1-362, 2018. 

[18] A. I. Smola and B. Scholkopf, “A Tutorial on Support Vector 
Regression,” Statistics and Computing, vol. 14, pp. 199-222, 2004. 

[19] A. G. Carlon, R. H. Lopez, L. F. R. Espath, L. F. F. Miguel, and A. 
T. Beck, “A Stochastic Gradient Approach for the Reliability 
Maximization of Passively Controlled Structures,” Elsevier, 
Engineering Structures, vol. 186, pp. 1-12, 2019. 

[20] A. Sharma, “Guided Stochastic Gradient Descent Algorithm for 
Inconsistent Datasets,” Elsevier, Applied Soft Computing Journal, 
vol. 73, pp. 1068-1080, 2018. 

[21] Paulo Cortez and Anibal Morais, “Forest Fire Dataset,” UCI 
Machine Learning Repository. February 2008. [Online]. Available 
from: https://archive.ics.uci.edu/ml/datasets/forest+fires/ 
2019.05.23. 

[22] Y. Wang, “What Influences Forest Fires Area?” 2016. [Online]. 
Available from: https://docplayer.net/63027297-What-influences-
forest-fires-area-lab-5.html/  2019.05.23. 
 

 
 

74Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-743-6

CYBER 2019 : The Fourth International Conference on Cyber-Technologies and Cyber-Systems

https://archive.ics.uci.edu/ml/datasets/forest+fires/
https://docplayer.net/63027297-What-influences-forest-fires-area-lab-5.html/
https://docplayer.net/63027297-What-influences-forest-fires-area-lab-5.html/

