
Hardware Implementation of Lightweight Chaos-Based Stream Cipher

Guillaume Gautier∗, Maguy Le Glatin∗, Safwan El Assad†, Wassim Hamidouche∗,
Olivier Deforges∗, Sylvain Guilley‡, Adrien Facon‡

∗ Univ Rennes, INSA Rennes, CNRS, IETR - UMR 6164, F-35000 Rennes, France
Email: guillaume.gautier@insa-rennes.fr, maguy.le-glatin@insa-rennes.fr,

wassim.hamidouche@insa-rennes.fr, olivier.deforges@insa-rennes.fr
†Polytech Nantes, CNRS, IETR - UMR 6164, F-44000 Nantes, France

Email: safwan.elassad@univ-nantes.fr
‡ Secure-IC SAS, F-35510 Cesson-Sévigné, France

Email: sylvain.guilley@secure-ic.com, adrien.facon@secure-ic.com

Abstract—Due to the proliferation of connected devices, the
development of secured and low-resource cryptographic systems
has become a real challenge. In fact, ciphering algorithms have
not been thought to be implemented on embedded platforms with
limited computing, memory and energy resources. This paper
addresses a hardware implementation of a chaos-based stream
cipher is initially optimized for software. First, the structure of
the cipher is investigated. Then, its hardware implementation on
a Zynq7000 platform is proposed considering both throughput
performance and logic resources usage. The proposed design
is compared to hardware implementations of existing stream
ciphers including chaos-based ones, Advanced Encryption Stan-
dard (AES), Rabbit, Salsa20 and Trivium.

Keywords–Chaos-based stream ciphers; Hardware implementa-
tion; Lightweight stream cipher; Computational performance.

I. INTRODUCTION

The need of encryption methods has nearly always existed
to protect sensitive information. The number of connected
devices is constantly and rapidly increasing. Those devices are
communicating between each other through multiple channels
exchanging information, such as confidential messages. In
this context, the protection of sensitive data exchanged over
networks is necessary. This can be done thanks to cryptog-
raphy. It consists in making the information unintelligible
for a person from outside the application by coding it with
a secret key. Therefore, it becomes necessary to develop
new lightweight cryptographic systems that can be embedded
on these connected devices with low energy and computing
resources.

In the literature, multiple ciphers are defined and imple-
mented on hardware devices. We especially studied the stream
ciphers in which the output is obtained by performing an
eXclusive OR (XOR) between the input of the cipher and the
output of a random generator. For example, Advanced Encryp-
tion Standard (AES), the state of the art encryption standard, is
available in multiple versions [1], [2], each optimizing a trade-
off between surface and speed. Moreover, some ciphers, like
Trivium [3], are designed to be hardware friendly and minimize
logic resources. Some ciphers, based on chaos theory, have
also hardware implementations [4], [5]. Those ciphers usually
require a high logic resources to digitize chaotic systems.

Based on works in [6], a LightWeight Chaos-Based
Stream Cipher (LWCB SC) is proposed in this paper. This
design is implemented on Field-Programmable Gate Ar-
ray (FPGA) hardware platform. The system includes some

counter-measures against Side Channel Attacks (SCA) [7],
such as Correlation Power Analysis (CPA) and Differential
Power Analysis (DPA). The proposed hardware implemen-
tation achieves a throughput of 565 Mbps at an operating
frequency of 18.5 MHz .

The rest of this paper is organised as follows. The existing
stream ciphers are first presented in Section II. Section III
investigates the design and details of the hardware implemen-
tation of the chaos-based stream cipher. The performance of
the proposed system is assessed in Section IV in terms of
both throughput and used logic resources. Section IV accesses
the performance of the proposed implementation in terms
of throughput and used logic resources. Finally, Section V
concludes this paper.

II. RELATED WORK

A. Existing stream ciphers

There are several hardware implementation of the state of
the art stream ciphers. This section gives a brief review of the
existing implementations.

1) AES: AES [8] developed in 2001 is the most widely
used system. It is considered as a stream cipher only in its
CounTeR (CTR) mode. It takes 128 bits as input and can use
a key of 128, 192 or 256 bits. Its round function consists of
three layers including key addition layer, byte substitution layer
called S-Box and diffusion layer.

2) Rabbit: The Rabbit stream cipher [9] is one of the most
effective algorithms of the eSTREAM project. This project was
launched in 2004 to create new stream ciphers for dedicated
designs. The cipher is not based on S-Boxes but on 8-32 bits
state variables and counters.

3) Salsa20: Salsa20 [10] is based on a hash function. This
latter is implemented with simple operations as additions, XOR
and rotation. This cipher is very fast but presents some secu-
rity weaknesses. Indeed, several attacks have been concluded
against it.

4) Trivium: Trivium [3] is also a cipher from the eS-
TREAM Project. It is particularly well suited for applications
requiring a flexible hardware implementation. The 288-bit
internal state is stored in three shift registers which are the
heart of the cipher and can be viewed as a circular register.

37Copyright (c) IARIA, 2019. ISBN: 978-1-61208-743-6

CYBER 2019 : The Fourth International Conference on Cyber-Technologies and Cyber-Systems

B. Existing chaotic systems

Several chaotic systems have been developed and used for
designing chaotic hardware key generation for secure cryp-
tography systems. Lorenz’s [4] and Lü’s [5] systems are the
famous ones. A chaotic system can be considered as discrete
or continuous. The previously cited systems are continuous
and defined by a differential equations.

In [4], a cipher to encrypt images is developed and imple-
mented on an FPGA platform. It uses a key generator based
on the Lorenz’s chaotic system. Another example of such
system is presented in [5] where a Lü’s-system-based-chaotic
key generator is used.

III. PROPOSED HARDWARE CHAOS-BASED STREAM
CIPHER

The proposed solution is based on the generator previously
presented in [6]. This generator consists of two cells that use
different chaotic maps called Skew Tent map and PieceWise
Linear Chaotic (PWLC) map. These maps are encapsulated
into an Infinite Impulse Response (IIR) filter to form the
two cells. Finally, the outputs of the two cells are XORed
to generate the key stream [6].

The solution described in this paper aims to improve
the security of the chaos-based system introduced in [6] by
increasing its resilience against SCA. Figure 1 illustrates the
block diagram of the enhanced chaos-based generator where
the new blocks are highlighted in red. The Skew Tent map is
replaced by 4D map defined by a discrete Chebyshev polyno-
mial T4 of degree 4. A second Linear Feedback Shift Register
(LFSR) block is added to overcome some inconsistencies of
the 4D map. The outputs of the two cells are weakly coupled
before being fed back to the recursive cells illustrated in green
in Figure 1.

The cipher text C is created with a simple XOR operation
between the plain text P and a key stream XG generated by
the proposed system

C = P ⊕XG.

A. Hardware-friendly architecture of the generator

The block diagram of the proposed generator is depicted in
Figure 1. We have defined a hardware high level module that
instantiates the two cells of the generator, the weak coupling
and the key stream’s output. The generator module takes as
input a secret key and an Initial Vector (IV).

The output key stream XG corresponds to the sum of the
outputs of the two chaotic maps X4D and XP after a number
of iteration tr, defined in the secret key

XG(n) =

{
X4D(n) +XP (n) if n > tr,
0 otherwise,

with n is the iteration number, X4D(n) and XP (n) are the
outputs of the 4D and PWLC cells at iteration n, respectively.

To introduce more resilience against algebraic attacks and
SCA, we define a weak coupling block [B][

XC4D(n)
XCP (n)

]
=

[
2N −B11 B12

B21 2N −B22

] [
X4D(n− 1)
XP (n− 1)

]
,

with N is bit depth of the system, Bij are coefficients defined
in the secret key, XC4D(n) and XCP (n) are the outputs of
weak coupling block at iteration n.

The block diagrams of the two cells are delimited in orange
in Figure 1. Both cells are composed of a recursive cell illus-
trated in green, a map and LFSRs. The next two paragraphs
present the hardware implementations of the chaotic maps: 4D
and PWLC.

1) 4D map: The 4D map is defined by a discrete version
of the Chebyshev polynomial of degree 4

4DMAP (X) = (X−22N−1)4−22N−2× (X−22N−1)2, (1)

where X corresponds to Xin4D in Figure 1.

To implement the new 4D map, (1) is expressed to mini-
mize the logic resources of the hardware implementation

4DMAP (X) = (X − 22N−1)4 − 22N−2 × (X − 22N−1)2

= Y 2 − 22N−2 × Y

= [Y × Y − Y << (N − 2)] >> (3N − 6),

with Y = (X − 2N−1)2 = X ×X + 2N−2 −X << 2N−1.
(2)

Implementation of (2) requires only two multipliers of 32 and
64 bits inputs, respectively.

2) PWLC map: The PWLC map is defined by (3)

PLWCmap(X,PP) =
C1 ×X if 0 < X < PP ,
C2 × (X − PP) if PP < X < 2N−1,
C2 × (2N − PP −X) if 2N−1 < X < 2N − PP ,
C1 × (2N −X) if 2N − PP < X < 2N ,
2N − 1 otherwise,

(3)

where X is the input of the PWLC map XinP and PP is the
parameter of the PWLC map defined in the secret key, C1 and
C2 are two constants derived from PP .

In the proposed solution, the ratios C1 and C2 are pre-
computed by the key generator to avoid the implementation a
resource-intensive divider. Then, to use the minimum number
of multipliers, without reducing the throughput of the genera-
tor, the inputs of the multiplier are selected by multiplexers.

B. A counter-measure against SCA

To protect the generator against CPA and DPA attacks [7],
masking operations are added to the recursive cells. The aim
of masking operations is to randomize intermediate results for
the same couple (secret key, IV). The masking is performed
by adding a random value to the outputs of the weak coupling
XC4D and XCP

XM4D(n) = XC4D(n) +mask4D(n),

where XM4D is the output of the 4D-cell mask operation
at iteration n, mask4D(n) is a random value, generated by
XOR Shift Random Number Generator of integer values in
the interval [0, 2N −1]. The same calculation is performed for
the output of the PWLC-cell mask XMP (n) with XCP (n)
and maskP (n).

38Copyright (c) IARIA, 2019. ISBN: 978-1-61208-743-6

CYBER 2019 : The Fourth International Conference on Cyber-Technologies and Cyber-Systems

[B]
4D MAP

PWLC MAP(PP)

LFSR
(P32,1)

LFSR
(P4D,Δ4D)

LFSR(PP,ΔP)

z-1

z-1

z-1

×

×

×

+

+

z-1

z-1

z-1

×

×

×

+

+

KP(1)

KP(2)

KP(3)

K4D(1)

K4D(2)

K4D(3)

+
n>trn>tr

XG(n)

Mask-1

Mask-1

Xin4D

XinP

Mask

Mask

XC4D

XCP

XM4D

XMPXP(n-1)

X4D(n-1)

Cell PWLC

Cell 4DRecursive
cell 4D

Recursive
cell PWLC

Figure 1. Improved PCNG diagram. In red are shown the differences with [6].
In green are highlighted the recursive cell. Orange dotted line delimits the two cells.

To obtain the same key stream XG for the same couple
(key, IV), the mask operations are reverted before the chaotic
maps. The inverse mask operation is performed after the
recursive cells by subtracting the transform of the mask value
from the output value of the recursive cell.

Xin4D(n) =

D∑
i=1

XM4D(n− i)×K4D(i)

−
D∑
i=1

mask4D(n− i)×K4D(i),

where K4D(i) is the ith coefficient of the recursive cells given
in the secret key and D is the number of delays in the recursive
cells. Identically, Xin4D(n) is a function of XM4D(n − i),
K4D(i) and mask4D(n− i).

IV. RESULTS AND DISCUSSION

In this section, an internal module of the cipher is imple-
mented and tested. Some comparisons with the state-of-the-art
are also provided. To evaluate the performance in terms the
resources usage and speed, Xilinx Vivado set of tools is used.
In these experiments, the bit depth N is set to 32 bits and the
number of delay D inside the recursive cells is set to 3.

A. Implementation of the LWCB SC

Table I gives the hardware resources used for the PCNG.
It uses in total 2,363 Look-Up Tables (LUTs) and 96 DSP
blocks. Most of the resources are used by the recursive cells
with 1,087 LUTs and 42 DSP blocks for the PWLC cell and
1,001 LUTs and 44 DSP blocks for the 4D one.

TABLE I. HARDWARE RESOURCES USAGE OF THE PROPOSED
IMPLEMENTATION

Component LUTs DSP Blocks

Output Adder 102 0
PWLC Cell 1,087 42
4D Cell 1,001 44
4D Mask 24 0
PWLC Mask 39 0
Coupling Matrix [B] 110 10

Total 2,363 96

The proposed implementation produces one sample of the
PCNG at each clock cycle and can operate at 18.5 MHz with
a throughput of 565 Mbps.

B. Comparison with other existing stream ciphers

Table III and II present a comparison with existing imple-
mentations of the ciphers presented in Section II.

TABLE II. SPEED PERFORMANCE COMPARISON OF SEVERAL SYSTEMS

Cipher Max Freq (MHz) Throughput (Mbps)

LWCB SC 18.5 565
Lorenz’s chaotic system [4] 15 124

Lü’s chaotic system [5] 23 183
AES [1] 644 84,449

886 11,776
AES [2] 290 232

Rabbit [11] NC 9,380
Trivium [12] 240 254
Trivium [13] 201 201

Salsa20 [14] (Spartan 3) 19 911
Salsa20 [14] (Spartan 6) 48 2,519

39Copyright (c) IARIA, 2019. ISBN: 978-1-61208-743-6

CYBER 2019 : The Fourth International Conference on Cyber-Technologies and Cyber-Systems

TABLE III. HARDWARE RESOURCES USAGE COMPARISON OF SEVERAL
SYSTEMS

Cipher Device Area (nb of LUTs) DSP Blocks

LWCB SC Zynq7000 2,363 (4.44%) 96 (43.64%)
Lorenz’s chaotic sys-
tem [4] Virtex II 2,718 40

Lü’s chaotic
system [5] Virtex II 1,926 40

AES [1] Virtex VI 9,276 NC
Spartan 6 9,375 NC

AES [2] Spartan 2 444 NC
Rabbit [11] Virtex V 2,272 24
Trivium [12] Spartan 3 100 NC
Trivium [13] Spartan 3 376 NC
Salsa20 [14] Spartan 3 3,374 NC

Spartan 6 2955 NC

It can be noted that the fastest cipher is AES [1]. The
AES implementations presented in [1], [2] operate at 644 MHz
and 886 MHz and the throughput is equal to 84,448 Mbps
and 11,776 Mbps, respectively. Rabbit [11] implementation
reaches AES performance with a throughput of 9,380 Mbps.
Even though, Trivium [12], [13] reaches a high frequency the
throughput is not better than other slow frequency ciphers. For
example, Salsa20 [14] implementations present a throughput
of 911 Mbps and 2,519 Mbps with an operating frequency
of 19 MHz and 48 MHz, respectively. These frequencies
are the same as those achieved by the implementations of
ciphers based on chaotic key generators [4], [5]. However,
these ciphers are still, in term of throughput less efficient than
all the others implementations, as they have at 124 Mbps and
183 Mbps throughput.

A correlation between the speed performance and the
hardware resources usage can be noted. In fact, the imple-
mentation of AES [1] which is the fastest is also the one
using the most resources. This is also the case with the
implementations of Rabbit [11] and Salsa20 [14], which use
approximately 3,000 LUTs for a quite important throughput.
Moreover, the implementations using the less resources are
the Trivium’s [12], [13] with only 100 and 376 used LUTs.
The compact implementation of AES [2] has nearly the same
results with 444 LUTs for the same speed performance.

For the implementations of the ciphers based on a chaotic
generator [4], [5], this relation is not satisfied. Indeed, they
use 2,718 and 1,926 LUTs, it achieves the same than Rabbit
and Salsa20 implementations which have better speed perfor-
mance.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a hardware implementation
of a new version of the LWCB SC on a FPGA platform. The
new design can operate at a maximum frequency of 18.5MHz
with a throughput of 565 Mbps. In addition it uses a reduced
area of the platform of 2,363 LUTs.

The comparison with the state-of-the-start shows that the
speed performance reached by the LWCB SC is below those
of AES and the existing ciphers from the eSTREAM project.
However, it is the same frequency and a better throughput than
the ciphers based on a chaotic generator. The results in terms
of resources usage reveal that the LWCB SC uses the same
area as the state-of-the-art.

In future work, we will investigate some enhancements in
order to improve the performance of the LWCB SC in terms
of resources usage and speed performance. The synchronous
pipeline of the system and a new design of the cell could
be considered to improve its performance. Furthermore, tests
against attacks such as CPA and DPA will be carried-out to
validate the security of this implementation.

ACKNOWLEDGMENT

This work was funded by the Research Pole of the ”Pôle
d’Excellence Cyber” with the support of the French Ministry
of the Armed Forces and the Brittany Region.

REFERENCES

[1] U. Farooq and M. F. Aslam, “Comparative analysis of different AES
implementation techniques for efficient resource usage and better per-
formance of an FPGA,” Journal of King Saud University - Computer
and Information Sciences, vol. 29, no. 3, Jul. 2017, pp. 295–302.

[2] P. Chodowiec and K. Gaj, “Very Compact FPGA Implementation of the
AES Algorithm,” in Cryptographic Hardware and Embedded Systems
- CHES 2003. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003,
vol. 2779, pp. 319–333.

[3] C. De Canniere and B. Preneel, Trivium. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 244–266.

[4] C. Tanougast, “Hardware Implementation of Chaos Based Cipher:
Design of Embedded Systems for Security Applications,” in Chaos-
Based Cryptography. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, vol. 354, pp. 297–330. [Online]. Available: http://link.springer.
com/10.1007/978-3-642-20542-2 9

[5] S. Sadoudi, C. Tanougast, M. S. Azzaz, A. Dandache, and A. Bouri-
dane, “Real-time FPGA implementation of Lorenz’s chaotic generator
for cipher embedded systems,” in 2009 International Symposium on
Signals, Circuits and Systems. Iasi, Romania: IEEE, Jul. 2009, pp.
1–4.

[6] G. Gautier et al., “Enhanced Software Implementation of a Chaos-Based
Stream Cipher,” SECURWARE 2018.

[7] J. Fan et al., “State-of-the-art of secure ECC implementations: a survey
on known side-channel attacks and countermeasures,” in 2010 IEEE
International Symposium on Hardware-Oriented Security and Trust
(HOST). Anaheim, CA, USA: IEEE, Jun. 2010, pp. 76–87.

[8] C. Paar and J. Pelzl, Understanding cryptography: a textbook for
students and practitioners. Heidelberg ; New York: Springer, 2010.

[9] M. Boesgaard, M. Vesterager, and E. Zenner, “The Rabbit Stream
Cipher,” in New Stream Cipher Designs. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, vol. 4986, pp. 69–83.

[10] D. J. Bernstein, “The Salsa20 Family of Stream Ciphers,” in
New Stream Cipher Designs. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, vol. 4986, pp. 84–97. [Online]. Available:
http://link.springer.com/10.1007/978-3-540-68351-3 8

[11] D. Stefan, “Hardware Framework for the Rabbit Stream Cipher,” in
Information Security and Cryptology. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, vol. 6151, pp. 230–247.

[12] D. Hwang, M. Chaney, S. Karanam, N. Ton, and K. Gaj, “Comparison
of FPGA-Targeted Hardware Implementations of eSTREAM Stream
Cipher Candidates,” p. 12.

[13] K. Gaj, G. Southern, R. Bachimanchi, and E. Department, “Comparison
of hardware performance of selected Phase II eSTREAM candidates,”
p. 11.

[14] J. Sugier, “Implementing Salsa20 vs. AES and Serpent Ciphers in
Popular-Grade FPGA Devices,” in New Results in Dependability and
Computer Systems. Heidelberg: Springer International Publishing,
2013, vol. 224, pp. 431–438.

40Copyright (c) IARIA, 2019. ISBN: 978-1-61208-743-6

CYBER 2019 : The Fourth International Conference on Cyber-Technologies and Cyber-Systems

