CYBER 2016 : The First International Conference on Cyber-Technologies and Cyber-Systems

Exchanging Database Writes with Modern Crypto

Andreas Happe, Thomas Loruenser
Department Safety & Security
AIT Austrian Institute of Technology GmbH
Vienna, Austria
email: {andreas.happel|thomas.loruenser}@ait.ac.at

Abstract—Modern cryptography provides for new ways of
solving old problems. This paper details how Keyed-Hash Mes-
sage Authentication Codes (HMACSs) or Authenticated Encryp-
tion with Associated Data (AEAD) can be employed as an
alternative to a traditional server-side temporal session store.
This cryptography-based approach reduces the server-side need
for state. When applied to database-based user-management
systems it removes all database alteration statements needed for
confirmed user sign-up and greatly removes database alteration
statements for typical “forgot password” use-cases. As there is
no temporary data stored within the server database system,
there is no possibility of creating orphaned or abandoned data
records. However, this new approach is not generic and can only
be applied if implemented use-cases fulfill requirements. This
requirements and implications are also detailed within this paper.

Index Terms—Internet, Network security, Web services

I. INTRODUCTION AND PROBLEM STATEMENT

A common web-application user-interaction pattern is
Request-Verification-Execution. An example can be seen in
Fig. 1: the user requests an server-side operation and transmits
needed data to the server. The server validates the information
and stores the user-submitted data temporally on the server.
To verify the user request a challenge is transmitted through
a separate communication channel. After the user fulfills the
challenge the operation is executed and finalized on the server.
An example of this pattern is a user registration (we are
basing all examples upon Ruby on Rails’ Devise framework):
after a potential new user entered her data on a website,
she is presented with an confirmation email and the user
account is only activated after the user has confirmed her
identity through a confirmation link within this email. Similar
examples are typical “user registration”, “password reset” or
“delete account” functions.

Problems arise if the user fails to perform the verification
step or automated tools request the initial operation thousands
or millions of times without ever performing the corresponding
confirmation step. During the initial request temporary data
is stored within the server: this data is “dead” and must be
eventually removed from the database. Furthermore, additional
server-side data is needed for the implementation of the verifi-
cation process. For example, commonly used implementations
(depicted in Fig. 2) generate and store a random token within
a server-side database. This token is included within the
confirmation email and later matched against the database
record.

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-512-8

Web-Application

Request Operation

User

Validate Data

Send Verification Challenge

Wait for Confirmation

Fulfill Challenge

Execute Operation

Fig. 1. Generic “Request-Verification-Execution” Work-Flow

Server-side temporary data is commonly stored within
databases and therefore leads to I/O overhead. In this paper,
we propose an cryptographic alternative utilizing HMACs
[1] or AEAD that inherently prevents stale database entries
and removes the need for both data alteration operations and
additional database fields.

The tow approaches are detailed in Section II and Sec-
tion III. This work is compared with existing solutions in
section IV. Section V showcases advantages and disadvantages
of this approach while section VI concludes this paper.

II. DATABASE-CENTRIC APPROACH

The database-centric approach stores all temporary data
within the server-side database as can be seen through the
multiple database calls in Fig. 2.

The web-application must track confirmed and unconfirmed
operations. For example, during user registration the appli-
cation must separate confirmed from unconfirmed users as
the latter must not be able to login. To differentiate between
those either an explicit or implicit state is used. The former
can be implemented through an additional state field. The
latter can be implemented through additional metadata, e.g.,
a confirmed_at field. Those fields must be added to each user
record but are unused most of the time.

Typically, an additional database field created_at is used to
store the timestamp of the original request. This allows de-
tection of orphaned operation that never have been confirmed.
Subsequently, the user might be sent an reminder-email, but

50

CYBER 2016 : The First International Conference on Cyber-Technologies and Cyber-Systems

Application

[|Enter Registration Data
>

Create Token

Write (inactive) User Data

Send Verification Email

Click on Confirm Link

User created

(a) User Registration

7Request Reset Operation

Create Token

L-I:
add Token to User Record

A I

Send Verification Email

Click on Reset Link

Search User by Token

=

Display User Data

Enter new Password

Search User by Token
| UserRecord ||
Update Password, Remove Token

Password altered

(b) Resend Password Functionality

Fig. 2. Sequence Diagrams for database-centric work flows.

eventually the stale user record has to be removed if the user
does not interact.

The “user registration” use-case shows three distinct
database interactions. 1) During user registration all mandatory
user data is captured and stored within the database. Additional
fields (e.g., confirmation_token and confirmed_at) are needed
to perform the registration and are thus added to the database.
If the new user never confirms his registration, the whole data
set is “dead” data. 2) when the user clicks on the confirmation
link contained in the mail, the user record has to be retrieved
from the database and 3) after confirmation the user record’s
state is set and meta-information is cleaned up.

The “password reset” use-case does not depend upon record
creation but alters the existing user record multiple times. To
perform the action two new fields are added to the user record:
reset_password_sent_at and reset_password_token. Typically,
four phases of database access can be seen: 1) a new reset
token is generated and stored within the user record, 2) when
the user clicks on the verification link, the database is queried
for it’s validity and then a password entry formula is shown
3) when the user submits a new password the token is again
verified and 4) the password is finally updated within the
database and meta-information is cleaned up. Even if the data
is retrieved directly from a in-memory data store, the session
verification commonly entails database access.

III. ALTERNATIVE: USAGE OF HMAC/AEAD

Our proposed alternative approach does not depend upon
server-side storage of temporary state but uses cryptography to
authenticate data presented by the user during the verification

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-512-8

step. Cryptography is used to ensure that neither users nor
third-parties are able to tamper data passed on by the server.

HMACs[1] offer a solution to this problem. A MAC com-
bines the plain-text data with a secret-key and produces a tag
that verifies the plain-text data’s integrity and authenticity. In
our case, the server creates the tag and transmits the plain-
text data and the tag within the verification challenge. When
the user fulfills the challenge, the tag verifies that the data
has not been tampered with. The secret-key never leaves the
server. The transmitted data has to be careful chosen to prevent
replay attacks as will be detailed later on.

HMACs provide authentication and integrity but not data
confidentiality as all input data is transmitted in plain sight.
AEAD in contrast provides confidentiality, integrity and au-
thenticity. An AEAD algorithm uses the plain-text and a secret
key as input, and produces a cipher text and authentication tag
as output. The overall protocol is similar to the HMAC-based
protocol but replaces the plain-text data with the cipher text
to additionally provide data confidentiality. Also similar to the
HMAC-based algorithm, the encoded data must be sufficient
to prevent replay attacks.

Fig. 3 details two possible AEAD-based workflows. Instead
of storing temporary state within the server-side database, the
state is encrypted and attached to the verification challenge,
e.g., encoded in the verification link contained in the sent
verification email. The usage of HMACs/AEAD prevents
users or third-parties from maliciously altering the transmitted
data. During verification, the server verifies and decrypts the
received encrypted data and uses it as intermediate state that
finally is committed to the database. Note that only a single

51

CYBER 2016 : The First International Conference on Cyber-Technologies and Cyber-Systems

Database

Application

[|Enter Registration Data
>

P

Validate Data

Perform AEAD

Send Verification Email

Finish Validation

Write Data to DB

>
P

User Created

(a) User Registration. The encrypted data includes an
operation identifier, expiry as well as all data needed for
the user registration.

7Request Reset Operation

Perform AEAD

L-o:
Send Reset-Email

Click on Reset Link

Display Data from Token

p—

Display User Data

Click pn Reset Link, Enter Password

Validate Data

p—

Update Password, Remove Token

Password Altered

(b) Resend Password Functionality. The encrypted data
includes an operation identifier, user, expiry, hash of the
stored password hash.

Fig. 3. Sequence Diagrams for cryptographic-based work flows. Note the reduced amount of database operations.

database transaction is performed. This also removes metadata
fields, as well as “verification”-states from user records.

A. Data-Field Selection

Proper selection of fields used as input for the
HMAC/AEAD-function prevents replay attacks. This selection
should be sufficient to uniquely identify the executed operation
and its context.

An unique operation identifier is mandatory. Otherwise
given operation; and operationo, the encoded data from
operation; could be used during verification of operations.

A stable user identified is needed to associate the encoded
data with an user account.

Once the server has authenticated a data block, it is valid
until the server’s private key is changed. A real-world imple-
mentation would include a creation or expiry date to limit the
lifetime of the verification token.

An anchor element is needed to differentiate between
subsequent states. For example, a “reset password’-function
should include a hash of the current password. The hash will
be compared to the currently stored hash during operation
execution and thus limit’s the operation’s validity to changing
the “current” password. Otherwise, the same verification token
could be maliciously used to repeatedly change the user’s
password.

All user-supplied data that would otherwise be stored
as temporary data within the server-side database must be
included within the data block.

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-512-8

In our “user registration” case, we could select the following
parameters: [operation-id: “registration”, expiry: “2016-1-
307, user-id: “andreas.happe@ait.ac.at”, user-data: “...”]
as input for the AEAD/HMAC function. For a potential “pass-
word reset” function, we would chose [operation-id: “reset”,
expiry: “2016-1-30”, user-id: “andreas.happe@ait.ac.at”,
old-password-hash: “hash of my currently stored password” |
as verification token.

IV. RELATED WORK

To the best of our knowledge, the first and only study—and
thus inspiration for this paper— of using HMACs for Request-
Verification-Execution workflows was published within a blog
post by Mahmoud Al-Qudsi[2]. In contrast, our paper details
potential replay attack vectors and introduces data confiden-
tiality through usage of AEAD schemes.

A comparable mechanism lies at the heart of HTTP session
management: here, the session is managed on either server- or
client-side. With client-side management the session’s data is
signed on the server with a secret key, transmitted and stored
at the client. On subsequent requests the cookie is transmitted
to the server and validated with the server’s secret key. When
using a server-side scheme all session-data is stored at the
server and only a session identifier is stored at the client. The
overall scheme is similar to our proposed approach but it’s
applicability differs: HTTP cookies are limited to the client’s
browser and thus allow for identification of a browser-based
session. We see usage for our scheme within persisted mails.
As mails can be stored and forwarded between clients our
approach is more akin to token passing.

52

CYBER 2016 : The First International Conference on Cyber-Technologies and Cyber-Systems

As an concrete example, the Ruby on Rails’ CookieStore
stores session information within a client-side cookie and
verifies the validity of the cookie through a server-side com-
puted HMAC utilizing a secret server-side key. An alternative
session-store is database-backed. The Ruby on Rails Security
Guide[3] describes implications of the different session stores
that are similar to the those of using AEAD/HMAC-based
temporary state storage.

In August 2008, AEAD schemes were made mandatory
for TLSv1.2[4], [5]. The ambiguity of encrypted HTTPS
communication lead hardware vendors to the inclusion of dedi-
cated encryption co-processors and/or inclusion of encryption-
specific instructions within their microcode thus making
hardware-supported high-performance AEAD functions com-
monly available on server-grade hardware. The situation will
further improve in the future as the current TLSv1.3 draft
mandates the usage of AEAD ciphers.

V. IMPLICATIONS AND LIMITATIONS

Usage of the cryptography-centric approach has several
implications:

No server-side state. As no temporal data is stored, the
server has no opportunity to detect operations waiting for
user confirmation. This functionality is sometimes used to
implement an “reminder” email to improve user response rate.

A stable ID and anchor element are needed to prevent play-
back attacks. For example, if user-changeable email addresses
are used as stable identifiers, an attacker can create a new
“user deletion token”, change his email account, wait until a
victim creates an account using the same email address, and
then delete this account until the token expires. To solve this,
an additional anchor element has to be included, in this case
the initial creation time could be used. For another example of
an anchor element, consider the mentioned “reset password”-
function: request should include a hash of the current pass-
word. This anchors the update to the current database state and
prevents the replay attack. Without an unique anchor element,
race conditions can occur. For example, if two users sign-
up with the same email address the first user that confirms
(through his link) will be created. A similar race condition is
present at the traditional scheme, but in this case the critical
section is the initial data entry form.

The wrong HTTP Verb is used. Confirmation will com-
monly happen through a HTTP GET link. Data alteration
operations should be performed through a HTTP PUT, POST
or DELETE operation. The same discrepancy is true for
traditional schemes.

The Privacy of the secret key is paramount. If an attacker
retrieves the secret key (used for encryption or HMAC-
operation) from the server he can forge any operation request.
We think this attack vector to be non-critical, as an attacker
with this capability can already access the database directly.

Size limit for transmitted messages. While the HTTP/1.1
protocol initially did not limit the transmission size for GET

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-512-8

request[6], a later revision did place a limit of 8000 octets[7].
Real-world web browsers and servers enforce different limits,
especially older Internet Explorer Versions (2048 bytes). Cur-
rent browsers and servers should be able to cope with 8192
bytes of data while 2048 bytes should be reasonable safe.

Aesthetic Considerations. With AEAD all information is
encoded within the passed parameter. This parameter can get
large and leads to an unaesthetic URL — this can be a problem
for usage within text-based emails while it is acceptable within
HTML-based emails.

Usage before confirmation is not possible. Sometimes web-
applications offer limited functionality between user-sign-up
and user-verification. This is not possible with our alternative
scheme as the server-side user-account is only created upon
user-verification.

Also please note that the integrity and confidentiality of
the transport layer needs to be provided by additional means.
With a captured token the attacker has all needed means for
an Man-in-the-Middle attack. This implies mandatory usage
of TLS.

VI. CONCLUSION

This paper initially introduced common problems that arise
with server-side state management. Cryptographic means al-
low alternative schemes that do not share those issues, but in
turn, their applicability highly depends upon the surrounding
use-case. We have shown how two common use-cases, “user
registration” and “password reset” can be implemented using
our new scheme.

As shown with those examples, we believe that our alterna-
tive solution has real-world merits and can improve existing
software solutions. In addition, we hope, that this paper shines
more light upon the generic technique and increases it’s
visibility among software engineers.

VII. ACKNOWLEDGEMENTS

The authors would like to thank Mahmoud Al-Qudsi for his
detailed comments.

REFERENCES
[1] H. Krawczyk, M. Bellare, and R. Canetti, “Rfc 2104:
Hmac: Keyed-hashing for message authentication,” URL

http:/fwww.rfc.net/html/rfc2104, 1997.
[2] M. Al-Qudsi. (2015) Life in a post-database world: using crypto to avoid

db writes. [Online]. Available: https://neosmart.net/blog/2015/using-
hmac-signatures-to-avoid-database-writes/
[3] Ruby on rails security. [Online]. Available:

http://guides.rubyonrails.org/security.html#session-storage

[4] T. Dierks and E. Rescorla, “Rfc 5246: The transport layer security (tls)
protocol version 1.2,” URL http://www.rfc.net/html/rfc5246, 2008.

[5] J. Salowey, A. Choudhury, and D. McGrew, “Rfc 5288: Aes galois mode
(gem) cipher suites for tls,” URL http://www.rfc.net/html/rfc5288, 2008.

[6] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee, “Rfc 2616: Hypertext transfer protocol-http/1.1, 1999,”
URL http://www.rfc.net/rfc2616.html, 2009.

[7]1 R. Fielding and J. Reschke, “Rfc 7230: Hypertext transfer
protocol (http/1.1): Message syntax and routing,” URL
http://www.rfc.net/rfc7230.html, 2014.

53

