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Abstract—Modern storage systems employ erasure coding redun-
dancy and recovering schemes to ensure high data reliability
at high storage efficiency. The widely used replication scheme
belongs to this broad class of erasure coding schemes. The
effectiveness of these schemes has been evaluated based on the
Mean Time to Data Loss (MTTDL) and the Expected Annual
Fraction of Data Loss (EAFDL) metrics. To improve the reliability
of data storage systems, certain data placement and rebuild
schemes reduce the rebuild times by recovering data in parallel
from the storage devices. It is often assumed though that there
is sufficient network bandwidth to transfer the data required
by the rebuild process at full speed. In large-scale data storage
systems, however, the network bandwidth is constrained. This
article obtains the MTTDL and EAFDL of erasure coded systems
analytically for the symmetric, clustered, and declustered data
placement schemes under network rebuild bandwidth constraints.
The resulting reliability degradation is assessed and the results
obtained establish that the declustered placement scheme offers
superior reliability in terms of both metrics. Efficient codeword
configurations that achieve high reliability in the presence of
network rebuild bandwidth constraints are identified.

Keywords–Storage; Reliability; Data placement; MTTDL;
EAFDL; RAID; MDS codes; Information Dispersal Algorithm; Pri-
oritized rebuild; Repair bandwidth; Network bandwidth constraint.

I. INTRODUCTION

In today’s large-scale data storage systems, data redun-
dancy is introduced to ensure that data lost owing to device and
component failures can be recovered. Appropriate redundancy
schemes are deployed to prevent permanent loss of data and,
consequently, enhance the reliability of storage systems. The
effectiveness of these schemes has been evaluated based on the
Mean Time to Data Loss (MTTDL) [1-20] and, more recently,
the Fraction of Data Loss Per Year (FDLPY) [21] and the
equivalent Expected Annual Fraction of Data Loss (EAFDL)
reliability metrics [22-24]. Analytical reliability expressions
for the MTTDL were obtained predominately using Markovian
models, which assume that component failure and rebuild
times are independent and exponentially distributed. In practice
though, these distributions are not exponential. To cope with
this issue, system reliability was assessed in [16][18][23][24]
using an alternative methodology that does not involve any
Markovian analysis and considers the practical case of non-
exponential failure and rebuild time distributions. Moreover,
the misconception reported in [25] that MTTDL derivations
based on Markovian models provide unrealistic results was
dispelled in [26] by invoking improved MTTDL derivations
that yield satisfactory results, and also by drawing on prior
work that analytically obtains MTTDL without involving any
Markovian analysis.

Earlier works have predominately considered the MTTDL
metric, whereas recent works have also considered the EAFDL
metric [22][23][24]. The introduction of the latter metric was
motivated by the fact that Amazon S3 considers the durability
of data over a given year [27], and, similarly, Facebook [28],
LinkedIn [29] and Yahoo! [30] consider the amount of data
lost in given periods.

To protect data from being lost and improve the reliability
of data storage systems, replication-based storage systems
spread replicas corresponding to data stored on each storage
device across several other storage devices. To improve the
low storage efficiency associated with the replication schemes,
erasure coding schemes that provide a high data reliability as
well as a high storage efficiency are deployed. Special cases
of such codes are the Redundant Arrays of Inexpensive Disks
(RAID) schemes, such as RAID-5 and RAID-6, that have been
extensively deployed in the past thirty years [1][2].

State-of-the-art data storage systems [31-34] employ more
general erasure codes that affect the reliability, performance,
and the storage and reconstruction overhead of the system.
In this article, we focus on the reliability assessment of
erasure coded systems in terms of the MTTDL and EAFDL
metrics. These metrics were analytically derived in [23] for the
symmetric, clustered, and declustered data placement schemes
under the assumption that there is sufficient network bandwidth
to transfer the data required by the rebuild process at full speed.
For instance, in the case of a declustered placement, redundant
data associated with the data stored on a given device is placed
across all remaining devices in the system. In this way, the
rebuild process can be parallelized, which in turn results in
short rebuild times. The restoration time can be minimized
provided there is sufficient network rebuild bandwidth avail-
able. In large-scale data storage systems though, the network
bandwidth is constrained.

The effect of network rebuild bandwidth constraints on
the reliability of replication-based storage systems was stud-
ied in [8][15]. It was found that spreading replicas over
a higher number of devices than what the network rebuild
bandwidth can support at full speed during a parallel rebuild
process, led to system reliability being significantly reduced.
The reliability of erasure coded systems in the absence of
bandwidth constraints was assessed in [23]. The MTTDL and
EAFDL metrics were obtained analytically for the symmetric,
clustered, and declustered data placement schemes based on
a general framework and methodology. In this article, we
recognize that this methodology also holds in the case of
network rebuild bandwidth constraints and apply it to derive
enhanced closed-form reliability expressions for the MTTDL
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and EAFDL metrics for these placement schemes in the
presence of such rebuild bandwidth constraints. Subsequently,
we provide insight into the effect of the placement schemes and
the impact of the available network rebuild bandwidth on sys-
tem reliability. The validity of this methodology for accurately
assessing the reliability of storage systems was confirmed by
means of simulation in several contexts [14-16, 18, 22]. It was
demonstrated that the theoretical predictions for the reliability
of systems comprised of highly reliable storage devices match
well with the simulation results obtained. Consequently, the
emphasis of the present work is on the theoretical assessment
of the effect of network rebuild bandwidth constraints on the
reliability of erasure coded systems. Also, this work extends
the reliability results obtained in [15] for the special case of
replication-based storage systems to the more general case of
erasure coded systems.

The remainder of the article is organized as follows. Sec-
tion II describes the storage system model and the correspond-
ing parameters considered. Section III presents the adaptation
of a general framework and methodology for deriving the
MTTDL and EAFDL metrics analytically for the case of
erasure coded systems under network rebuild bandwidth con-
straints. Closed-form expressions for the symmetric, clustered,
and declustered placement schemes are derived. Section IV
presents numerical results demonstrating the effectiveness of
the erasure coding redundancy schemes for improving the
system reliability. It also assesses the sensitivity to the network
rebuild bandwidth constraints under various codeword config-
urations. Section V provides a discussion on the applicability
of the results obtained. Finally, we conclude in Section VI.

II. STORAGE SYSTEM MODEL

Modern data storage systems use erasure coded schemes
to protect data from device failures. When devices fail, the
redundancy of the data affected is reduced and eventually lost.
To avoid irrecoverable data loss, the system performs rebuild
operations that use the data stored in the surviving devices
to reconstruct the temporarily lost data, thus maintaining the
initial data redundancy. We proceed by briefly reviewing the
basic concepts of erasure coding and data recovery procedures
of such storage systems. To assess their reliability, we consider
the model used in [23], and adopt and extend the notation.
More precisely, the storage system considered comprises n
storage devices (nodes or disks), with each device storing an
amount c of data, such that the total storage capacity of the
system is n c.

A. Redundancy

User data is divided into blocks (or symbols) of a fixed size
(e.g., sector size of 512 bytes) and complemented with parity
symbols to form codewords. We consider (m, l) maximum
distance separable (MDS) erasure codes, which are a mapping
from l user data symbols to a set of m (> l) symbols, called
a codeword, having the property that any subset containing
l of the m symbols of the codeword can be used to decode
(reconstruct, recover) the codeword. The corresponding storage
efficiency, seff, is given by

seff =
l

m
. (1)

TABLE I. NOTATION OF SYSTEM PARAMETERS

Parameter Definition

n number of storage devices
c amount of data stored on each device
l number of user-data symbols per codeword (l ≥ 1)
m total number of symbols per codeword (m > l)
(m, l) MDS-code structure
k spread factor of the data placement scheme, or

group size (number of devices in a group)
b reserved rebuild bandwidth per device
Bmax maximum network rebuild bandwidth
Fλ(.) cumulative distribution function of device lifetimes

seff storage efficiency of redundancy scheme (seff = l/m)
U amount of user data stored in the system (U = seff n c)
r̃ minimum number of codeword symbols lost that lead to an irrecov-

erable data loss (r̃ = m − l + 1 and 2 ≤ r̃ ≤ m)
Nb maximum number of devices from which rebuild can occur at full

speed in parallel (Nb = Bmax/b)
Beff effective network rebuild bandwidth
1/µ time to read (or write) an amount c of data at a rate b from (or to)

a device (1/µ = c/b)
1/λ mean time to failure of a storage device

(1/λ =
R

∞

0
[1 − Fλ(t)]dt)

Consequently, the amount of user data, U , stored in the system
is given by

U = seff n c =
l n c

m
. (2)

The notation used is summarized in Table I. The parameters are
divided according to whether they are independent or derived,
and are listed in the upper and the lower part of the table,
respectively.

The m symbols of each codeword are stored on m distinct
devices, such that the system can tolerate any r̃ − 1 device
failures, but r̃ device failures may lead to data loss, with

r̃ = m − l + 1 . (3)

From the preceding, it follows that

1 ≤ l < m and 2 ≤ r̃ ≤ m . (4)

Examples of MDS erasure codes are the following:

Replication: A replication-based system with a replication
factor r can tolerate any loss of up to r − 1 copies of some
data, such that l = 1, m = r and r̃ = r. Also, its storage

efficiency is equal to s
(replication)
eff = 1/r.

RAID-5: A RAID-5 array comprised of N devices uses an
(N,N − 1) MDS code, such that l = N − 1, m = N and
r̃ = 2. It can therefore tolerate the loss of up to one device,

and its storage efficiency is equal to s
(RAID-5)
eff = (N − 1)/N .

RAID-6: A RAID-6 array comprised of N devices uses an
(N,N − 2) MDS code, such that l = N − 2, m = N and
r̃ = 3. It can therefore tolerate a loss of up to two devices,

and its storage efficiency is equal to s
(RAID-6)
eff = (N − 2)/N .

Reed–Solomon: It is based on (m, l) MDS erasure codes.

B. Symmetric Codeword Placement

According to a symmetric codeword placement, each code-
word is stored on m distinct devices with one symbol per
device. In a large storage system, the number of devices, n, is
usually much larger than the codeword length, m. Therefore,
there are many ways in which a codeword of m symbols can
be stored across a subset of the n devices. For each device
in the system, the redundancy spread factor k denotes the
number of devices over which the codewords stored on that
device are spread [18]. The system effectively comprises n/k

2Copyright (c) IARIA, 2018.     ISBN:  978-1-61208-629-3

CTRQ 2018 : The Eleventh International Conference on Communication Theory, Reliability, and Quality of Service



Figure 1. Clustered and declustered placement of codewords of length m = 3

on n = 6 devices. X1, X2, X3 represent a codeword (X = A, B, C, . . . , L).

disjoint groups of k devices. Each group contains an amount
U/k of user data, with the corresponding codewords placed
on the corresponding k devices in a distributed manner. Each
codeword is placed entirely in one of the n/k groups. Within

each group, all
(

k
m

)

possible ways of placing m symbols across
k devices are equally used to store all the codewords in that
group.

In such a symmetric placement scheme, within each of the
n/k groups, the m−1 codeword symbols corresponding to the
data on each device are equally spread across the remaining
k − 1 devices, the m− 2 codeword symbols corresponding to
the codewords shared by any two devices are equally spread
across the remaining k − 2 devices, and so on. Note also that
the n/k groups are logical and therefore need not be physically
located in the same node/rack/datacenter.

We proceed by considering the clustered and declustered
placement schemes, which are special cases of symmetric
placement schemes for which k is equal to m and n, respec-
tively. This results in n/m groups for clustered and one group
for declustered placement schemes.

1) Clustered Placement: The n devices are divided into
disjoint sets of m devices, referred to as clusters. According
to the clustered placement, each codeword is stored across
the devices of a particular cluster, as shown in Figure 1. In
such a placement scheme, it can be seen that no cluster stores
the redundancies that correspond to data stored on another
cluster. The entire storage system can essentially be modeled
as consisting of n/m independent clusters. In each cluster,
data loss occurs when r̃ devices fail successively before rebuild
operations complete successfully.

2) Declustered Placement: In this placement scheme, all
(

n
m

)

possible ways of placing m symbols across n devices are
equally used to store all the codewords in the system, as shown
in Figure 1.

The clustered and declustered placement schemes represent
the two extremes in which the symbols of the codewords
associated with the data stored on a failing device are spread
across the remaining devices and hence the extremes of the
degree of parallelism that can be exploited when rebuilding
this data. For declustered placement, the symbols are spread
equally across all remaining devices, whereas for clustered
placement, the symbols are spread across the smallest possible
number of devices.

C. Codeword Reconstruction

When storage devices fail, codewords lose some of their
symbols, and this leads to a reduction in data redundancy. The

Figure 2. Rebuild under declustered placement.

system attempts to maintain its redundancy by reconstructing
the lost codeword symbols using the surviving symbols of the
affected codewords.

When a declustered placement scheme is used, as shown in
Figure 2, spare space is reserved on each device for temporarily
storing the reconstructed codeword symbols before they are
transferred to a new replacement device. The rebuild process
used to restore the data lost by failed devices is assumed to be
both prioritized and distributed. As discussed in [23], a prior-
itized (or intelligent) rebuild process always attempts to first
rebuild the most-exposed codewords, namely, the codewords
that have lost the largest number of symbols. The prioritized
rebuild process recovers one of the symbols that each of the
most-exposed codewords has lost by reading m − r̃ + 1 of
the remaining symbols. In a distributed rebuild process, the
codeword symbols lost by failed devices are reconstructed by

reading surviving symbols from a number, say k̃, of surviving
devices, and storing the recovered symbols in the reserved

spare space of the k̃ surviving devices, as shown in Figure
2.

A certain proportion of the device bandwidth is reserved for
data recovery during the rebuild process, with b denoting the
actual reserved rebuild bandwidth per device. This bandwidth
is usually only a fraction of the total bandwidth available at
each device, with the remaining bandwidth being used to serve
user requests. Thus, the lost symbols are rebuilt in parallel
using the rebuild bandwidth b available on each surviving
device. During this process, it is desirable to reconstruct the
lost codeword symbols on devices in which another symbol
of the same codeword is not already present. Assuming that
the system is at exposure level u (as described in Section II-D
below) bu (≤ b) denotes the rate at which the amount of data
that needs to be rebuilt (repair traffic) is written to selected
device(s). In particular, 1/µ denotes the time required to read
(or write) an amount c of data from (or to) a device, given by

1

µ
=

c

b
. (5)

In a distributed rebuild process involving k̃ devices, the
total network bandwidth required to perform rebuild at full

speed is k̃ b. Let Bmax (≥ b) denote the maximum available
network bandwidth for rebuilds. Then, the effective network
rebuild bandwidth used by rebuilds, Beff(k̃), cannot exceed
Bmax and is therefore given by

Beff(k̃) = min(k̃ b, Bmax) = min(k̃, Nb) b , (6)
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Figure 3. Rebuild under clustered placement.

where Nb specifies the effective maximum number of devices
from which rebuild can occur in parallel at full speed, and is
given by

Nb ,
Bmax

b
. (7)

Note that Nb may not be an integer; it only represents the
effective maximum number of devices from which distributed
rebuild can occur at full speed. Substituting b = cµ into (6),
we get

Beff = min(k̃, Nb) cµ . (8)

A similar reconstruction process is used for other symmet-
ric placement schemes within each group of k devices, except
for the clustered placement. When clustered placement is used,
the codeword symbols are spread across all k = m devices in
each group (cluster). Therefore, reconstructing the lost symbols
on the surviving devices of a group will result in more than
one symbol of the same codeword on the same device. To
avoid this, the lost symbols are reconstructed directly in spare
devices as shown in Figure 3. In these reconstruction processes,
decoding and re-encoding of data are assumed to be done
on the fly and so the time taken for reconstruction is equal
to the time taken to read and write the required data to the
devices. Note also that alternative erasure coding schemes have
been proposed to reduce the amount of data transferred over
the storage network during reconstruction (see [35][36] and
references therein).

D. Exposure Levels and Amount of Data to Rebuild

At time t, Dj(t) denotes the number of codewords that
have lost j symbols, with 0 ≤ j ≤ r̃. The system is at exposure
level u (0 ≤ u ≤ r̃), where

u = max
Dj(t)>0

j. (9)

The system is at exposure level u if there are codewords with
m − u symbols left, but there are no codewords with fewer
than m − u symbols left in the system, that is, Du(t) > 0,
and Dj(t) = 0, for all j > u. These codewords are referred
to as the most-exposed codewords. At t = 0, Dj(0) = 0, for
all j > 0, and D0(0) is the total number of codewords stored
in the system. Device failures and rebuild processes cause the
values of D1(t), · · · ,Dr̃(t) to change over time, and when a
data loss occurs, Dr̃(t) > 0. Device failures cause transitions
to higher exposure levels, whereas rebuilds cause transitions to
lower ones. Let tu denote the time of the first transition from

exposure level u − 1 to exposure level u, and t+u the instant
immediately after tu. Then, the number, Cu, of most exposed
codewords when entering exposure level u, u = 1, . . . , r̃, is
given by Cu = Du(t+u ).

Analytic expressions for the reliability metrics of interest
were derived in [23], using the direct path approximation,
which considers only transitions from lower to higher exposure
levels [14][16][18]. This implies that each exposure level is
entered only once.

E. Failure and Rebuild Time Distributions

We adopt the model and notation considered in [24]. The
lifetimes of the n devices are assumed to be independent and
identically distributed, with a cumulative distribution function
Fλ(.) and a mean of 1/λ. Real-world distributions, such as
Weibull and gamma, as well as exponential distributions that
belong to the large class defined in [16] are considered. The
storage devices are characterized to be highly reliable in that
the ratio of the mean time 1/µ to read all contents of a device
(which typically is on the order of tens of hours), to the mean
time to failure of a device 1/λ (which is typically at least on
the order of thousands of hours) is small, that is,

λ

µ
=

λ c

b
≪ 1 . (10)

We consider storage devices whose the cumulative distri-
bution function Fλ satisfies the condition

µ

∫ 1/µ

0

Fλ(t) dt ≪ 1, with
λ

µ
≪ 1 , (11)

such that the MTTDL and EAFDL reliability metrics of erasure
coded storage systems tend to be insensitive to the device
failure distribution, that is, they depend only on its mean 1/λ,
but not on its density Fλ(.)[23].

III. DERIVATION OF MTTDL AND EAFDL

The MTTDL metric assesses the expected amount of time
until some data can no longer be recovered and therefore is
irrecoverably lost, whereas the EAFDL metric assesses the
fraction of stored data that is expected to be lost by the system
annually. The MTTDL(Bmax) and EAFDL(Bmax) metrics are
derived as a function of Bmax based on the framework and
methodology presented in [23]. More specifically, this method-
ology uses the direct path approximation and does not involve
any Markovian analysis. It holds for general failure time
distributions, which can be exponential or non-exponential,
such as the Weibull and gamma distributions that satisfy
condition (11). Note that this framework is general in that it
also applies in the case where the network rebuild bandwidth
is constrained. The only parameters that are affected by the
network rebuild bandwidth constraint are the rebuild rates and,
accordingly, those parameters that depend on them, such as
the rebuild times. Analytic expressions for the two metrics
of interest were derived in [23, Equations (44) and (45)] as
follows:

MTTDL(Bmax) ≈
1

nλ

(r̃ − 1)!

(λ c)r̃−1

r̃−1
∏

u=1

bu(Bmax)

ñu

1

V r̃−1−u
u

,

(12)
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and

EAFDL(Bmax) ≈ mλ (λ c)r̃−1 1

r̃ !

r̃−1
∏

u=1

ñu

bu(Bmax)
V r̃−u

u ,

(13)
where ñu represents the number of devices at exposure level
u whose failure before the rebuild of the most-exposed code-
words causes an exposure level transition to level u+1. Also,
Vu represents the fraction of the most-exposed codewords at
exposure level u that have symbols stored on a newly failed
device that causes the exposure level transition u → u+1. Note
that this fraction depends only on the codeword placement
scheme. As mentioned in the preceding, bu, the rate at which
the amount of data that needs to be rebuilt at exposure level u is
written to selected device(s), depends on Bmax, the maximum
network rebuild bandwidth.

Remark 1: From [23, Equation (43)], it follows that the
expected amount E(H) of data lost, given that a data loss has
occurred, does not depend on bu and therefore is not affected
by the maximum network rebuild bandwidth. Consequently,
this reliability metric is not considered in this article.

Remark 2: The analytic expressions for the MTTDL and
EAFDL reliability metrics were derived in [23] in the absence
of network rebuild bandwidth constraints. Consequently, they
correspond to the case of Bmax = ∞, with the two metrics
being denoted by MTTDL(∞) and EAFDL(∞), respectively.

From (12) and (13), it follows that

MTTDL(Bmax)

MTTDL(∞)
=

EAFDL(∞)

EAFDL(Bmax)
= θ , (14)

where θ represents the reliability reduction factor that assesses
the reliability degradation due to a network rebuild bandwidth
constraint, and is given by

θ ,

r̃−1
∏

u=1

bu(Bmax)

bu(∞)
. (15)

Remark 3: From (15), and given that bu(Bmax) decreases
as Bmax decreases, it follows that θ decreases as r̃ increases
and Bmax decreases.

A. Symmetric Placement

We consider the case where the redundancy spread factor
k is in the interval m < k ≤ n. As discussed in [23, Section
III-B], at each exposure level u, the prioritized rebuild process
recovers one of the u symbols that each of the most-exposed
codewords has lost by reading m − r̃ + 1 of the remaining
symbols from the ñu surviving devices in the affected group.
According to [23, Equation (46)], it holds that

ñsym
u = k − u . (16)

Furthermore, in the absence of a network rebuild bandwidth
constraint, the total write bandwidth, which is also the rebuild
rate bu, is given by [23, Equation (47)]

bsymu (∞) =
ñsym

u

m − r̃ + 2
b

(16)
=

(k − u) b

m − r̃ + 2
, u = 1, . . . , r̃−1 .

(17)
In the presence though of a network rebuild bandwidth con-

straint, Bmax, and according to (6), with k̃ = ñu = ñsym
u , the

rebuild rate bu is given as a function of Bmax by

bsymu (Bmax) =
Beff(ñu)

m − r̃ + 2
=

min(ñu b,Bmax)

m − r̃ + 2
=

min(ñu, Nb) b

m − r̃ + 2
(16)
=

min(k − u,Nb) b

m − r̃ + 2
, for u = 1, . . . , r̃ − 1 .

(18)

Substituting (17) and (18) into (15) yields

θ sym =

r̃−1
∏

u=1

min(k − u,Nb)

k − u
. (19)

Note that when Nb ≥ k − 1, the system reliability is not
affected because all rebuilds are performed at full speed, and
therefore the θ factor is equal to one. However, when Nb <
k − 1, it may not be possible for some of the rebuilds to be
performed at full speed, and therefore the factor θ will be less
than one, which affects the system reliability. Consequently,
the reliability reduction factor, θ, depends on the bandwidth
constraint factor, φ, given by

φ , min

(

Nb

k
, 1

)

(7)
= min

(

Bmax

k b
, 1

)

, with 0 ≤ φ ≤ 1 .

(20)
From (19) and (20), and recognizing that min(k − u,Nb) =
min(min(k − u, k), Nb) = min(k − u,min(k,Nb)) =
min(k min(1, Nb/k), k−u) = min(k φ, k−u), it follows that

θ sym =
r̃−1
∏

u=1

min

(

φ

1 − u
k

, 1

)

. (21)

Using (3) and (21), and the fact that MTTDL(∞) and
EAFDL(∞) are given by [23, Equations (49) and (50)],
respectively, (14) yields

MTTDL
sym

k (Bmax) ≈
1

nλ

[

b

(l + 1)λ c

]m−l

(m − l)!

m−l
∏

u=1

(

k − u

m − u

)m−l−u m−l
∏

u=1

min

(

φ

1 − u
k

, 1

)

,

(22)

and

EAFDL
sym

k (Bmax) ≈ λ

[

(l + 1)λ c

b

]m−l
m

(m − l + 1)!
m−l
∏

u=1

(

m − u

k − u

)m−l+1−u
/

m−l
∏

u=1

min

(

φ

1 − u
k

, 1

)

,

(23)

where Bmax is expressed via φ given by (20).

Note that for a replication-based system, for which m = r
and l = 1, and by virtue of (19) and (21), (22) is in agreement
with Equation (24) of [15], with c/b = 1/µ.

Remark 4: From (22) and (23), it follows that MTTDL
sym

k
depends on n, but EAFDLsym

k does not.

Remark 5: From (22) and (23), and for any value of φ, it
can be proved that for m−l ≥ 2, MTTDL

sym

k is increasing in k.
It can also be proved that for any m− l ≥ 1, EAFDLsym

k is not
increasing in k. Consequently, within the class of symmetric
placement schemes considered, that is, for l+1 < m < k ≤ n,
the MTTDL

sym

k is maximized and the EAFDL
sym

k is minimized
by the declustered placement scheme, that is, when k = n.
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B. Clustered Placement

In the clustered placement scheme, the n devices are
divided into disjoint sets of m devices, referred to as clusters.
According to the clustered placement, each codeword is stored
across the devices of a particular cluster. At each exposure
level u, the rebuild process recovers one of the u symbols that
each of the Cu most-exposed codewords has lost by reading
m− r̃ + 1 of the remaining symbols. Note that the remaining
symbols are stored on the m − u surviving devices in the
affected group. According to [23, Equation (53)], it holds that

ñclus
u = m − u . (24)

In the case of clustered placement, the rebuild process
recovers the lost symbols by reading l symbols from l of the
ñu surviving devices of the affected cluster. In the absence of
a network rebuild bandwidth constraint, the symbols are read
at a rate of b from each of the l devices, such that the effective
network rebuild bandwidth is equal to Beff = l b. Subsequently,
the lost symbols are computed on-the-fly and written to a spare
device at a rate of Beff/l = b. Consequently, it holds that

bclusu (∞) = b , u = 1, . . . , r̃ − 1 . (25)

In the presence though of a network rebuild bandwidth con-
straint, Bmax, the effective network rebuild bandwidth is equal
to Beff = min(l b, Bmax), which implies that the lost symbols
are written to a spare device at a rate of Beff/l. Thus, the
rebuild rate bu is given as a function of Bmax by

bclusu (Bmax) =
Beff(Bmax)

l
=

min(l b, Bmax)

l
=

min(l, Nb) b

l
,

for u = 1, . . . , r̃ − 1 . (26)

Substituting (25) and (26) into (15) yields

θ clus =

(

min(l, Nb)

l

)r̃−1

. (27)

As l < m, it holds that min(l, Nb) = min(min(l,m), Nb) =
min(min(Nb,m), l)=min(mmin(Nb/m, 1), l)=min(mφ, l),
where, analogously to (20), and with k = m,

φ , min

(

Nb

m
, 1

)

(7)
= min

(

Bmax

mb
, 1

)

, where 0 ≤ φ ≤ 1 .

(28)
Consequently, (27) yields

θ clus = min
(m

l
φ , 1

)r̃−1

. (29)

Remark 6: From (29), it follows that for mφ/l ≥ 1 or,
equivalently, for φ ≥ seff = l/m, θ clus is equal to one, which
implies that the bandwidth constraint does not affect the system
reliability.

Using (3) and (29), and the fact that MTTDL(∞) and
EAFDL(∞) are given by [23, Equations (56) and (57)],
respectively, (14) yields

MTTDLclus(Bmax) ≈
1

nλ

(

min(mφ, l) b

l λ c

)m−l
1

(

m−1
l−1

) ,

(30)

EAFDLclus(Bmax) ≈ λ

(

l λ c

min(mφ, l) b

)m−l (
m

l − 1

)

,

(31)

where Bmax is expressed via φ given by (28).

Remark 7: Note that as far as the data placement is con-
cerned, the clustered placement scheme is a special case of
a symmetric placement scheme for which k is equal to m.
However, its reliability assessment cannot be directly obtained
from the reliability results derived in Section III-A for the
symmetric placement scheme by simply setting k = m. The
reason for that is the difference in the rebuild processes. In
the case of a symmetric placement scheme, recovered symbols
are written to the spare space of existing devices, whereas in
the case of a clustered placement scheme, recovered symbols
are written to a spare device. This results in different rebuild
bandwidths, which are given by (17) and (25), respectively.

C. Declustered Placement

The declustered placement scheme is a special case of
a symmetric placement scheme in which k is equal to n.
Consequently, for k = n, (22) and (23) yield

MTTDLdeclus(Bmax) ≈
1

nλ

[

b

(l + 1)λ c

]m−l

(m − l)!

m−l
∏

u=1

(

n − u

m − u

)m−l−u m−l
∏

u=1

min

(

φ

1 − u
n

, 1

)

,

(32)

and

EAFDLdeclus(Bmax) ≈ λ

[

(l + 1)λ c

b

]m−l
m

(m − l + 1)!
m−l
∏

u=1

(

m − u

n − u

)m−l+1−u
/

m−l
∏

u=1

min

(

φ

1 − u
n

, 1

)

,

(33)

where Bmax is expressed via φ given by (20) with k = n.

IV. NUMERICAL RESULTS

First, we assess the reduction in reliability owing to
bandwidth constraints. The reliability reduction factor, θ, is
obtained by (21) and (29) for the symmetric and clustered
placements, respectively, and shown in Figures 4 and 5 as a
function of the bandwidth constraint factor. For a symmetric
placement scheme, Figure 4 demonstrates that as the group
size k increases, the reliability reduction factor θ decreases and
the magnitude of the reduction is more pronounced for larger
values of r̃. Clearly, if codewords are spread over a higher
number of devices than what the network rebuild bandwidth
can support at full speed during a parallel rebuild process,
the system reliability is affected and a drastic reliability
degradation occurs as the system size increases. In contrast,
according to Remark 6, the reliability of a clustered placement
scheme remains unaffected for φ ≥ l/m = (m − r̃ + 1)/m.
This is due to the fact that the effective rebuild bandwidth is
significantly smaller because the rebuilds are not distributed,
but performed directly on a spare device. However, as Figure
5 demonstrates, for φ < l/m, the reliability reduction factor
drops sharply, especially for large values of r̃.

Next, we consider a storage system of a given size and
assess its reliability for various codeword configurations, stor-
age efficiencies, and network rebuild bandwidth constraints.
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(b) k = 100
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Figure 4. Reliability reduction factor vs. bandwidth constraint factor for various values of r̃; symmetric placement.
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Figure 5. Reliability reduction factor vs. bandwidth constraint factor for various values of r̃; clustered placement.

In particular, we consider a system containing 120 devices
under a declustered placement scheme (k = n = 120), which
according to Remark 5 is the optimal one within the class
of symmetric schemes. The amount of user data stored, U , is
determined by the storage efficiency, seff, via (2). As discussed
in Section II-E, the analytical reliability results obtained are
accurate when the storage devices are highly reliable, that
is, when the ratio λ/µ of the mean rebuild time 1/µ to
the mean time to failure of a device 1/λ is very small.
We proceed by considering systems for which it holds that
λ/µ = λ c/b = 0.001.

The combined effect of the network rebuild bandwidth con-
straint and the system efficiency on the normalized λMTTDL
measure is obtained by (32) and shown in Figure 6 as a func-
tion of the codeword length. In particular, when the codeword
length is equal to the system size (m = k = n), the placement
becomes clustered and the normalized λMTTDL measure is
obtained by (30). Three cases for the network rebuild band-
width constraint were considered: φ = 1 corresponds to the
case where there is no network rebuild bandwidth constraint
given that Nb ≥ k = 120 or, equivalently, Bmax ≥ k b = 120 b;
φ = 0.1 and φ = 0.01 correspond to the cases where
Nb = 0.1 k = 12 and Nb = 0.01k = 1.2 or, equivalently,
Bmax = 0.1 k b=12 b and Bmax = 0.01 k b=1.2 b, respectively.
The values for the storage efficiency are chosen to be fractions
of the form z/(z+1), z = 1, . . . , 7, such that the first point of
each of the corresponding curves is associated with the single-
parity (z, z +1)-erasure code, and the second point of each of
the corresponding curves is associated with the double-parity
(2z, 2z + 2)-erasure code.

For all values of φ considered, we observe that the MTTDL

increases as the storage efficiency seff decreases. This is
because, for a given m, decreasing seff implies decreasing l,
which in turn implies increasing the parity symbols m − l
and consequently improving the MTTDL. Furthermore, for a
given storage efficiency, seff, the MTTDL decreases by orders
of magnitude as the maximum network rebuild bandwidth
decreases. We now proceed to identify the optimal codeword
length, m∗, that maximizes the MTTDL for a given bandwidth
constraint and storage efficiency. The optimal codeword length
is dictated by two opposing effects on reliability. On the one
hand, larger values of m imply that codewords can tolerate
more device failures, but on the other hand, they result in a
higher exposure degree to failure as each of the codewords
is spread across a larger number of devices. In Figure 6,
the optimal values, m∗, are indicated by the circles, and the
corresponding codeword lengths are indicated by the vertical
dotted lines. By comparing Figures 6(a), (b), and (c), we
deduce that as φ decreases, so do the optimal codeword
lengths. For example, in the case of seff = 3/4 and φ = 1,
the maximum MTTDL value of 4×1078 is obtained when
m = m∗ = 92. However, in the case of φ = 0.1, the maximum
MTTDL value of 6×1057 is obtained for m∗ = 84. The reason
for the reduction of the optimal codeword length is due to
the fact that for a given value of seff and as m increases,
so does r̃, which, according to Remark 3, results in a smaller
reliability reduction factor. Thus, the reliability reduction factor
corresponding to m = 92 is smaller than the one corresponding
to m = 84, which in turn causes the MTTDL for m = 92 to
no longer be optimal as it becomes smaller than the one for
m = 84. Note that for m = 84 and seff = 3/4, from (1) and
(3), it follows that l = 63 and r̃−1 = 21. From (21), and given
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(a) φ = 1
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(b) φ = 0.1
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(c) φ = 0.01
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Figure 6. Normalized MTTDL vs. codeword length for seff = 1/2, 2/3, 3/4, 4/5, 5/6, 6/7, and 7/8; n = k = 120, λ/µ = 0.001.
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(a) φ = 1
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(b) φ = 0.1
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(c) φ = 0.01
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Figure 7. Normalized EAFDL vs. codeword length for seff = 1/2, 2/3, 3/4, 4/5, 5/6, 6/7, and 7/8; n = k = 120, λ/µ = 0.001.

that u ≤ r̃ − 1 = 21 ≪ k = 120, such that φ/(1 − u/k) ≈ φ,
it now follows that θ ≈ φr̃−1 = 0.121 = 10−21, which implies
that the reliability is reduced by 21 orders of magnitude. In
the cases of φ = 0.01 and φ = 0.001, the maximum MTTDL
values of 6×1037 and 8×1019 are obtained for m∗ = 76 and
m∗ = 68, respectively.

The combined effect of the network rebuild bandwidth
constraint and the system efficiency on the normalized
EAFDLdeclus/λ measure is obtained by (31) and (33), and
shown in Figure 7 as a function of the codeword length. We
observe that the EAFDL increases as the storage efficiency
seff decreases. Furthermore, for a given storage efficiency, seff,
the EAFDL increases by orders of magnitude as the maximum
network rebuild bandwidth decreases. Similarly to the case of
MTTDL, by comparing Figures 7(a), (b), and (c), we observe
that as φ decreases, so do the optimal codeword lengths. For
example, in the case of seff = 3/4 and φ = 1, the minimum
EAFDL value of 4×10−84 is obtained when m = m∗ = 88.
However, in the case of φ = 0.1, the minimum EAFDL value
of 9×10−64 is obtained for m∗ = 80, which implies that the
reliability is reduced by 20 orders of magnitude. In the cases
of φ = 0.01 and φ = 0.001, the minimum EAFDL values
of 2×10−44 and 6×10−27 are obtained for m∗ = 72 and
m∗ = 64, respectively. By comparing Figures 6 and 7, we
deduce that in general the optimal codeword lengths m∗

MTTDL

(for MTTDL) and m∗
EAFDL (for EAFDL) are similar.

Reducing Bmax or, equivalently, φ, affects the optimal
codeword length as follows.

Proposition 1: For any storage efficiency seff, and for both
reliability metrics, the optimal codeword length m∗ decreases
as φ decreases.

Proof: Consider two bandwidth constraint factors φ1 and
φ2 with φ1 > φ2. Let m

∗
1 and m∗

2 be the corresponding optimal
codeword lengths for the MTTDL metric. We shall now show
that m∗

1 ≥ m∗
2.

As m∗
1 is the optimal codeword length for φ1, it holds

that MTTDL(φ1,m) ≤ MTTDL(φ1,m
∗
1) for all m ≥

m∗
1. Also, from (1) and (3), it holds that r̃ = (1 −

seff)m + 1, which implies that as m increases, so does

r̃. From (15), it follows that θ(2)/θ(1) =
∏r̃−1

u=1
bu(φ2)
bu(φ1)

,

which, owing to the fact that bu(φ2) ≤ bu(φ1) ∀u,
decreases as r̃ or, equivalently, m increases. Conse-

quently, θ
(2)
m /θ

(1)
m ≤ θ

(2)
m∗

1

/θ
(1)
m∗

1

for all m ≥ m∗
1. Also,

from (14), it follows that MTTDL(φ2,m)/MTTDL(φ1,m)

= θ
(2)
m /θ

(1)
m for all values of m. From the preced-

ing, it follows that MTTDL(φ2,m)/MTTDL(φ1,m) =

θ
(2)
m /θ

(1)
m ≤ θ

(2)
m∗

1

/θ
(1)
m∗

1

= MTTDL(φ2,m
∗
1)/MTTDL(φ1,m

∗
1)≤

MTTDL(φ2,m
∗
1)/MTTDL(φ1,m) for all m ≥ m∗

1. Thus,
MTTDL(φ2,m) ≤ MTTDL(φ2,m

∗
1) for all m ≥ m∗

1, which in
turn implies that m∗

2 ≤ m∗
1. The proof for EAFDL is similar

to that for MTTDL and is therefore omitted.

From (22) and (23), it follows that the optimal codeword
length depends on k and φ, but not on the storage system size,
n. To investigate the behavior of the optimal codeword length,
m∗, as the group size, k, increases, we proceed by considering
the normalized optimal codeword length r∗, namely, the ratio
of m∗ to k:

r∗ ,
m∗

k
. (34)

The r∗ values for the MTTDL and EAFDL metrics are shown
in Figures 8 and 9, respectively, for various storage efficiencies.
According to Proposition 1, for any storage efficiency seff and
for any given group size k, the optimal codeword lengths and,
consequently, the r∗ values decrease as φ decreases. Also,
when the bandwidth constraint factor φ is small, the r∗ values
first decrease and then gradually increase as k increases. The
initial decrease is due to the fact that the optimal codeword
length m∗ remains fixed and equal to z + 1, which is the
minimum possible codeword length for the storage efficiency
fractions z/(z + 1), z = 1, . . . , 7. For example, in the case
of seff = 7/8 and φ = 0.001, m∗ = 8 for k < 115 in the
case of MTTDL, or for k < 90 in the case of EAFDL, as
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(a) φ = 1
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(b) φ = 0.1
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(c) φ = 0.01
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Figure 8. r∗ for MTTDL vs. group size for seff = 1/2, 2/3, 3/4, 4/5, 5/6, 6/7, and 7/8; λ/µ = 0.001.
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(a) φ = 1
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(b) φ = 0.1
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(c) φ = 0.01
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Figure 9. r∗ for EAFDL vs. group size for seff = 1/2, 2/3, 3/4, 4/5, 5/6, 6/7, and 7/8; λ/µ = 0.001.

shown in Figures 8(d) and 9(d), respectively. However, it can
be proved that as k increases further, the r∗ values for MTTDL
and EAFDL approach a common value that depends only on
the storage efficiency, seff, but not on the bandwidth constraint
factor, φ, and are in the interval [e−1/2 = 0.606, 0.648].

V. DISCUSSION

Although erasure coding schemes provide a high data
reliability at a high storage efficiency, the rebuild process
involves I/O operations and network transfers that increase
the consumption of device and network bandwidth. In par-
ticular, large MDS codes pose a challenge on the usage of
network resources given that a lost symbol is recovered via an
(m, l) erasure code through the transfer of a large number
of l symbols from l surviving devices over the network.
Consequently, recovering large amounts of data results in
additional traffic over increased time periods, which has an
impact on the latency of the foreground workload and therefore
affects system performance. This issue, also known as the
repair bandwidth problem, has prompted the development of
alternative erasure coding schemes that aim at reducing the
amount of data transferred over the storage network during
reconstruction (see [35][36] and references therein). They can,
however, result in higher amounts of data being read from the
surviving devices and therefore in longer rebuild times. The
effect of these methods on system reliability is beyond the
scope of this paper and is a subject of further investigation.

The analytical findings of this work are relevant for the
case of large data centers employing erasure coding where the
excessive rebuild traffic competes with the huge amount of
traffic generated by the frequent access of a large number of
storage devices. To ensure a desired performance level, the
network bandwidth devoted to the repair traffic needs to be
contained. For small values of φ and k, a small codeword
length should be selected, as discussed in Section IV. For large
values of k, the codeword length should still be kept relatively

small for performance reasons. This is in agreement with
the practical values given in [36] for the various parameters
considered. In particular, to keep the storage overhead low,
the storage efficiency should be chosen in the range of 0.66 to
0.75.

VI. CONCLUSIONS

Data storage systems use erasure coding schemes to recover
lost data and enhance system reliability. Network rebuild band-
width constraints, however, may degrade reliability. A general
methodology was applied for deriving the Mean Time to Data
Loss (MTTDL) and the Expected Annual Fraction of Data
Loss (EAFDL) reliability metrics analytically. Closed-form
expressions capturing the effect of a network rebuild band-
width constraint were obtained for the symmetric, clustered
and declustered data placement schemes. We established that
the reliability of storage systems is adversely affected by the
network rebuild bandwidth constraints. The declustered place-
ment scheme was found to offer superior reliability in terms
of both metrics. An investigation of the reliability achieved
by this scheme under various codeword configurations was
subsequently conducted. The results obtained demonstrated
that both metrics are optimized by similar codeword lengths.
For large storage systems that use a declustered placement
scheme, the optimized codeword lengths are about 60% of
the storage system size, independently of the network rebuild
bandwidth constraints. The analytical reliability expressions
derived can be used to identify redundancy and recovery
schemes, as well as data placement configurations that can
achieve high reliability. The results obtained can also be
used to adapt the data placement schemes when the available
network rebuild bandwidth or the number of devices in the
system changes so that the system maintains a high level of
reliability.

Extending the methodology developed to derive the reli-
ability of erasure coded systems under bandwidth constraints
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for arbitrary rebuild time distributions and in the presence of
unrecoverable latent errors is a subject of further investigation.
Also, owing to the parallelism of the rebuild process, the model
considered yields very small rebuild times for large system
sizes. Taking into account the fact that the rebuild times cannot
be smaller than the actual failure detection times requires a
more sophisticated modeling effort, which is also part of future
work.
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