
An Architecture for Detection of Anomalies in
Deterministic Time within Real-Time

Communication Networks
Christian Maier, Jia Lei Du, Stefan Fahrthofer, Peter Dorfinger

Intelligent Connectivity
Salzburg Research Forschungsgesellschaft mbH

Salzburg, Austria
email: {christian.maier, jia.du, stefan.fahrthofer, peter.dorfinger}@salzburgresearch.at

Abstract—Anomaly detection is a classical and important topic
within the domain of communication networks. For critical
applications, the time it takes to detect an anomaly and to respond
to it is an important metric of an anomaly detection system.
To address this, we propose an end-to-end real-time anomaly
detection architecture. In this architecture, the collection and
transmission of the required data, the analysis of this data in
a machine learning model and the subsequent reaction when
an anomaly is detected, are carried out in deterministic time.
We study two different use cases where this architecture may
be applied in the future and we investigate a demo implemen-
tation of one of these use cases as a proof of concept for the
proposed architecture. This contributes to the future application
of machine learning for anomaly detection in deterministic time
in time critical application areas.

Keywords—machine learning; real-time Ethernet; anomaly de-
tection.

I. INTRODUCTION

Real-time communication networks and the application of
Machine Learning (ML) methods to such networks is a current
research area in the networking domain. Anomaly detection
is one example where ML methods have been successfully
applied to detect abnormal behaviour in (non-real-time) net-
works. With the increasing relevance of real-time communi-
cation networks in cyber-physical systems in critical domains,
such as manufacturing and smart energy grids, solutions for
applying ML approaches to real-time networks will become
highly important in the future. In such a setting, particularly
the timely detection of anomalies will play a significant role.

ML approaches can be roughly subdivided into the areas
of supervised, unsupervised and reinforcement learning. One
of the main advantages of unsupervised learning is that it is
not required to manually label data sets in advance, making
it particularly suitable for anomaly detection tasks. The ML
models most commonly used for anomaly detection are Au-
toencoder Neural Networks (ANNs), which are a special type
of an artificial neural network.

In this paper, we aim to combine these ingredients (real-time
communication networks and ML) to provide an architecture
for detection of anomalies in deterministic time through un-
supervised ML in real-time Ethernet networks.

In
pu

ts
x
i

Input layer

Hidden layers

Output layer

O
ut

pu
ts
y i

Fig. 1. Schematic overview of an ANN.

The remainder of this paper is organised as follows: Sec-
tion II presents work related to this paper. The concept of an
ANN is recalled in Section III. Section IV then introduces
the proposed architecture and considers two use cases where
this architecture can be applied. A demo implementation of
one of these use cases is described in Section V. Section VI
concludes the paper and gives hints to future work.

II. RELATED WORK

Zhao et al. [6] propose a network anomaly detection system
based on ML. This system operates in real-time. Unlike our
work, however, they do not consider a scenario in which the
network itself operates in real-time. A similar approach can
also be found in [4].

Work related to this paper comes from real-time networks
on the one hand and from anomaly detection via ML on the
other hand. The demo implementation presented in this paper
is based on the scenario considered by Farthofer et al. [5],
which studies redundant disjoint paths in real-time Ethernet
networks.

There is a growing amount of literature which investigates
the application of ML techniques to problems in the domain
of communication networks, and in particular to anomaly
detection. Boutaba et al. [1] hints to classical approaches for
anomaly detection systems and surveys on ML approaches for

15Copyright (c) IARIA, 2021. ISBN: 978-1-61208-926-3

CORETA 2021 : Advances on Core Technologies and Applications

anomaly detection. Casas [3] compares different ML models
via their performance in the analysis of network measurements
for detection of network attacks and anomaly detection. The
survey in [2] investigates ML for cyber-security analytics.

III. AUTOENCODER NEURAL NETWORKS

An ANN is a special type of a Multi-Layer Perceptron
(MLP), consisting of an input layer, an output layer and several
hidden layers h1, . . . , hk connecting them. Each hidden layer
hi consists of a certain number of neurons. In contrast to the
usual structure of a MLP, in which most neurons are located in
the centre of the network, an ANN becomes narrower towards
the middle. Moreover, the number of outputs is equal to the
number of inputs (Figure 1).

The goal of ANNs is to learn low dimensional representa-
tions of the input data x1, . . . , xn. This is achieved by having
at least one hidden layer, which has fewer neurons than the
input layer. The error function is defined as

E =

n∑
i=1

(xi − yi)2,

where y1, . . . , yn are the outputs of the ANN. Hence, the error
function is a Mean Squared Error (MSE). The neural network
thus learns to reproduce the inputs on the outputs. If this is
achieved, the information on the thinnest hidden layer is the
low dimensional representation of the input data. As we can
observe, the learning process is of an unsupervised manner,
which means that no labeling of the input data is required. This
is an advantage, since a labeling process is usually elaborate.

An ANN can be interpreted as a composition g ◦ f of
an encoding function f followed by a decoding function g.
Here f : Rn → Rm is a function which computes the code
(z1, . . . , zm) ∈ Rm of the inputs (x1, . . . , xn). The function
g : Rm → Rn restores the original vector (x1, . . . , xn) from
this code.

The main issue with ANNs is that it is not clear a priori
how many neurons are necessary in the thinnest hidden layer.
On the one hand, one strives for a representation of the input
data that is as low-dimensional as possible. On the other
hand, the number of degrees of freedom in the input data
is not known. For example, if there are indices i 6= j such
that xi and xj are uncorrelated, at least 2 neurons in the
thinnest layer are necessary. This implies that one needs to
figure out the number of correlations between the input data
values x1, . . . , xn. This can either be done from theoretical
information of the input data (e.g., from physics, queueing
theory, . . . , depending on the type of data respectively use
case) or in a purely experimental way. The latter can be done
by performing training runs with different numbers of neurons
and finally using the neural network with the lowest number
of neurons that still has sufficient performance.

IV. ARCHITECTURE

In this section, we propose an architecture for real-time de-
tection of anomalies for security (intrusion detection) or safety
(component failure prediction). We consider a scenario where

an edge node sniffs traffic from the network. This traffic could
either contain data about the network state itself (like delay
values, jitter, packet loss, flow size, etc.) or data representing
the state of machines/controllers connected to them. The traffic
information is represented by an n-dimensional vector

x = (x1, . . . , xn) ∈ Rn.

We assume that the real numbers xi are normalised either to
the unit interval or to have mean 0 and standard deviation
1. The vector x changes over time. Our aim is to examine
these values for anomalies in the network or for hints to
machines not working properly. To this end, we use an ANN
at the edge node to learn low dimensional representations of
the values x1, . . . , xn. In other words, we use these values
as inputs for the ANN and train it to reflect these values at
the outputs. This training is done online. This means that we
do not collect the data over an interval of time and train the
network thereafter with the generated data set. Instead, we use
the data immediately when it arrives at the edge node to update
the weights and bias values of the neural network.

As outlined before, the ANN learns two functions: An
encoder function f : Rn → Rm and a decoder function
g : Rm → Rn. The m-dimensional vector f(x1, . . . , xn) is
the code of the input vector x = (x1, . . . , xn). The training
stops if

E =

n∑
i=1

(xi − yi)2 < ε

for some chosen threshold value ε, i.e., if the MSE is suffi-
ciently small. Here, y1, . . . , yn are again the output values of
the ANN. After that, the system enters a monitoring mode. In
this monitoring mode, the neural network continues to be fed
with the values x1, . . . , xn. If

E =

n∑
i=1

(xi − yi)2 ≥ δ

for some second fixed threshold δ (with δ > ε, e.g., δ = (r+
1)ε for some positive integer r), it is assumed that an anomaly
has been detected. Then, for example, a reconfiguration of the
network can be initiated to protect the network and the devices.

The critical point is now that if all the connections in
the network are real-time connections, then the detection
of anomalies will be real-time as well. This is due to the
fact that the computation of the output values of neural
networks consists exclusively of a fixed number of additions,
multiplications and applications of activation functions. Hence
this can be done in deterministic time as well. Moreover, in
suitable systems, also the reaction to an anomaly may be done
in deterministic time. This then provides a closed deterministic
anomaly detection end-to-end loop. In the following, we
provide two use cases for this architecture:

A. Use Case 1

An edge-node collects information from various devices in
a communication network based on real-time Ethernet (see
Figure 2). We assume that all nodes in this network operate

16Copyright (c) IARIA, 2021. ISBN: 978-1-61208-926-3

CORETA 2021 : Advances on Core Technologies and Applications

Fig. 2. Use Case 1: Anomaly detection of network data and real-time reconfiguration of the real-time Ethernet network

Fig. 3. Use Case 2: Anomaly detection of machine data and real-time reconfiguration of the industrial machines (network switches not explicitly shown in
this figure)

in real-time as well. The network data may consist of delay
values, jitter, traffic load and number or configurations of
flows. The information is represented by an n-dimensional
vector x = (x1, . . . , xn) ∈ Rn, which changes over time.
An anomaly detection system based on an ANN at the edge-
node is fed with the vector x. As soon as an anomaly is
detected, the edge-node could trigger building blocks based
on Software Defined Networking (SDN) to reconfigure the
network configuration. As an example, a flow, which uses a
certain path p1, could be reconfigured to use a path p2 after
an anomaly has been detected to circumnavigate an issue or
attacker.

B. Use Case 2

In this use case, sensor values x1, . . . , xn of machines are
sent over a real-time network to the edge node (see Figure 3).
At the edge node, an ANN is trained online to reproduce
the sensor values. A detected anomaly may for example
indicate a machine error. And a quick detection and analysis
in deterministic time could prevent damages to the involved
machines or products within a previously specified reaction
time.

V. PROOF OF CONCEPT IMPLEMENTATION

A proof of concept implementation of the proposed ar-
chitecture was realised in our laboratory (see Figure 4).

17Copyright (c) IARIA, 2021. ISBN: 978-1-61208-926-3

CORETA 2021 : Advances on Core Technologies and Applications

Fig. 4. Schematic overview of the realized proof of concept setup

Two real-time communication capable devices (representing
controllers or machines) are connected through a real-time
Ethernet network. To be able to demonstrate various scenarios,
including for example fast failover, the devices are connected
via two disjoint paths. In a separate network, an edge node
running the ML algorithms (in our case the ANN) is connected
to the network switches and devices to trigger network or
controller/machine reconfigurations. Finally, the edge node
is also directly connected to the real-time Ethernet network
so it can mirror and listen into any communication between
the two devices. For a demonstration, we simulated machine
sensor/network information values by generating random real
numbers a1, . . . , am uniformly distributed in the interval [0, 1]
and by generating input values x1, . . . , xn of the form

(x1, . . . , xn)
t = A · (a21, . . . , a2m)t +B · (a1, . . . , am)t + c

Here A,B ∈ Rn×m are randomly generated (but fixed)
matrices and c ∈ Rn is a fixed random column vector.
This simulates the number of correlations between the values
x1, . . . , xn. Note that we thereby know the number of degrees
of freedom, which is exactly equal to m. This number corre-
sponds to the number of neurons needed in the thinnest layer
of the neural network.

The neural network was implemented in Python, using the
TensorFlow framework. We used a scenario with 16 network
status information values x1, . . . , x16. The number of degrees
of freedom was set to 8. They were all normalised to have
mean values 0 and standard deviation 1. The ANN consisted
of 3 hidden layers, with 12 neurons in the first hidden layer, 8
neurons in the middle hidden layer and 12 neurons in the third
hidden layer. The ANN achieved a performance of an MSE
of 0.01 after an online training with ≈ 104 generated samples
x1, . . . , x16. This MSE multiplied with 3 was then used for
the monitoring mode as the offset value for the detection of
an anomaly.

After an anomaly is detected by our ANN, a reconfigura-
tion of network flows (e.g., shutting down a network path,
switching to another network path) or a reconfiguration of
the machines (e.g., new parameter settings) are triggered. This

thus closes our deterministic anomaly detection loop, since all
components operate in deterministic time.

VI. CONCLUSION AND FUTURE WORK

We proposed an architecture for an end-to-end determin-
istic anomaly detection system in real-time networks. This is
achieved via an online training of an ANN at an edge node. We
provided two use cases where this architecture may be applied.
We implemented the architecture in one of these use cases as a
demo implementation, and thus delivered a proof-of-concept.
In the future, measurements will be performed to evaluate the
proposed architecture in terms of the actual reaction time from
anomaly detection to network or machine reconfiguration. The
results will then be compared to measurements in existing
anomaly detection systems.

ACKNOWLEDGMENT

This research was partially funded by the Austrian Federal
Ministry of Climate Action, Environment, Energy, Mobility,
Innovation and Technology (BMK) under the program “ICT
of the Future” (https://iktderzukunft.at/en/) and by the WISS
2025 (Science and Innovation Strategy Salzburg 2025) project
“IDALab” (20102-F1901166-KZP).

REFERENCES

[1] R. Boutaba et al., “A Comprehensive Survey on Machine Learning
for Networking: Evolution, Applications and Research Opportunities,”
Journal of Internet Services and Applications, 9(1), pp. 1—99, 2018.

[2] A. L. Buczak and E. Guven, “A Survey of Data Mining and Machine
Learning Methods for Cyber Security Intrusion Detection,” IEEE Com-
munications Surveys & Tutorials, 18(2), pp. 1153—1176, 2016.

[3] P. Casas, “On the Analysis of Network Measurements Through Machine
Learning: The Power of the Crowd,” Network Traffic Measurement and
Analysis Conference (TMA), pp. 1—8, IEEE, 2018.

[4] Y. Du, J. Liu, F. Liu, and L. Chen, “A Real-time Anomalies Detection
System based on Streaming Technology,” Sixth International Conference
on Intelligent Human-Machine Systems and Cybernetics, vol. 2, pp.
275—279, IEEE, 2014.

[5] S. Farthofer, D. T. B. Lima, and J. L. Du, “Application Layer Benefits of
Redundant Disjoint Paths in a Real-Time Ethernet,” International Con-
ference on Information and Communication Technology Convergence
(ICTC), pp. 161—165, IEEE, 2020.

[6] S. Zhao, M. Chandrashekar, Y. Lee, and D. Medhi, “Real-time Network
Anomaly Detection System using Machine Learning,” 11th Interna-
tional Conference on the Design of Reliable Communication Networks
(DRCN), pp. 267—270, IEEE, 2015.

18Copyright (c) IARIA, 2021. ISBN: 978-1-61208-926-3

CORETA 2021 : Advances on Core Technologies and Applications

