

An Overview Over Content Management System Integration Approaches
An Architecture Perspective on Current Practice

Hans-Werner Sehring
Namics

Hamburg, Germany
e-mail: hans-werner.sehring@namics.com

Abstract—In practice, content management systems are in
widespread use for the management of web sites, for intranet
solutions, and for the publication of a range of documents
created from diverse content. An emerging class of multimedia
databases is digital asset management systems that specialize in
the management of unstructured content. Despite the market
for content management products aiming at integrated
solutions that cover most content management aspects, there is
a trend to augment content management systems with systems
that offer dedicated functionality for specific content
management tasks. In practice, there is particular interest in
systems incorporating both a content management system and
a digital asset management system. All integration forms
exhibit individual strengths and weaknesses, achieved with
differing implementation effort. The choice of the adequate
integration architecture, therefore, depends on many factors
and considerations that are discussed in this paper.

Keywords-content management; digital asset management;
software architecture; solution architecture; systems integration.

I. INTRODUCTION
Content Management Systems (CMSs) are in widespread

use today for the maintenance of web sites by content
producers and editors. Typical CMSs aim to manage both
structured content (often in the form of hierarchies or graphs
of content objects) and unstructured content, namely binary
data that is shipped as some media file of a certain standard
format (like, e.g., images and videos in different formats).

In practice, CMSs host elaborate processes that deal with
structured content while offering only very basic
functionality for unstructured content. CMS customers have
an increasing demand for additional functionality for the
treatment of binary multimedia content [1].

Consequently, there is a current trend to augment CMS
installations with a multimedia database of the newly
emerged class of Digital Asset Management systems (DAMs).

Both CMSs and DAMs provide a complete feature set for
the management and distribution of content, the major
difference being the form of content they specialize in. Since
both CMSs and DAMs are designed to manage content and
publish it on the web, their integration therefore is not
obvious. In fact, depending on the particular requirements of
a web site, different integration forms are suitable, each
providing its own advantages and drawbacks.

In this paper, we discuss integration approaches for
systems consisting of a CMS and a DAM. All approaches

considered are derived from actual scenarios found in
commercial projects. They all assume the CMS to deliver
web pages and the DAM to contribute embedded multimedia
documents [2]. The integration approaches differ in the point
within the content lifecycle at which the DAM contributes.

The remainder of this paper is organized as follows: In
Section II, we discuss the characteristics and functionality of
CMSs and DAMs. In Section III, we review the lifecycle of
content and digital assets, respectively, in typical CMS and
DAM implementations. Section IV constitutes the main part
of this paper. It presents the integration forms that
correspond to certain lifecycle states. Each integration form
requires some adaptations to the CMS or the DAM. These
additions are discussed in Section V. Section VI presents a
slight variation of the integration scenarios in the way that
instead of plain assets a produced document is handed over
to the CMS. The paper concludes with a summary and
outlook in Section VII.

II. CONTRIBUTING SYSTEMS AND THEIR FUNCTIONALITY
With CMSs and DAMs there are two classes of systems

that deal with the editing of content and shipping of content.
Both contain editing facilities including workflows and

quality assurance processes. Both offer rendering and
playout functionality, usually targeted at specific usage
scenarios. These scenarios differ between software products
(performance, editing of unique documents vs. management
of uniform mass content, etc.).

As the names indicate, the systems differ in the kind of
entities they deal with. CMSs focus on the management of
structured content and on publication of documents that are
created from compositions of pieces of content. DAMs deal
with unstructured content that is managed, transformed, and
published on a binary level.

Consequently, CMSs and DAMs address similar use
cases, but they put a different focus on the functionalities as
discussed in the subsequent subsections.

A. Content Management Systems
CMSs provide their service as follows (see also [3]).

1) Content creation: CMSs offer tools for manual
creation of content by editors and for the import of content
from external sources, be it from files, from feeds, or by
means of content syndication.

2) Content editing: Part of a CMS is an editor tool that
is used to manipulate content, to control its life cycle (see

30Copyright (c) IARIA, 2016. ISBN: 978-1-61208-464-0

CONTENT 2016 : The Eighth International Conference on Creative Content Technologies

Section III), and to preview renderings of content. Content
manipulations include adding value to content, the
maintenance of description data, and the addition of layout
hints and other channel-specific settings, e.g., URLs for the
publication of content in the form of world wide web
resources. Editing tools can be form-based with a separate
preview or in-document, in which case the editor
manipulates documents, and manipulations are mapped to
the corresponding content. Often there are workflows to
control the editing processes.

3) Quality assurance: Quality assurance for content
consists of approval and publication, although in some CMS
products these two activities are one. Approval marks
content as being suitable for publication. Publication finally
makes it available to the target audience – in the form of
rendered documents. Quality assurance should be embedded
in the CMSs workflows.

4) Rendering: Rendering is the process of creating
documents from content. Structured content typically is
rendered by mapping content structures to document
layouts. The ability to manipulate binary content is limited
compared to that of a DAM with matching capabilities.
CMSs offer general functionality on media content suited
for a particular publication channel, e.g., for the web. This
particular case includes rendering of images for adaptive
design, e.g., to resize them for specific channels or to apply
device-specific format conversions.

5) Playout: The shipping of rendered documents, called
delivery or playout, is not necessarily a core functionality of
a CMS. But since playout usually is tightly coupled with
rendering, CMS products include a playout component.
Some CMSs target high performance output, sometimes
being integrated with Content Delivery Networks (CDNs).

B. Digital Asset Management Systems
A DAM’s functionality includes the following [4].

1) Asset Creation: Assets are created in a DAM as
content is in a CMS, manually or in automated processes.
Manual creation is typically accomplished by means of an
external authoring tool. Its output is uploaded to the DAM.

2) Asset Editing: Editing is typically restricted to the
maintenance of structured information (descriptive data,
e.g., defining time code information in moving image, legal
information, provenance information, etc. [5]). Binary
manipulations are performed by authoring tools. Editing
may take place in workflows [6].

3) Quality assurance: DAMs have an approval process
like the one of CMSs. Workflows for quality assurance can
typically be customized.

4) Rendering: The rendering of digital assets consists of
format conversions, media manipulations, and generating
multimedia documents from multiple assets. Transcoding
particular video formats for different browsers or mobile
platforms is a typical manipulation task. Manipulations

include image manipulation, e.g., scaling of images for
adaptive design, inserting logos in photos, watermarking of
documents, etc. An example for on-the-fly document
generation is assembling a video from moving image and
sound for multilanguage videos. Whole hypermedia
documents can theoretically be created this way. Another
example is the addition of descriptive data to multimedia
assets as meta data, e.g., Exif data.

5) Playout: DAMs typically can deliver assets, at least
by shipping online to the web or offline by creating files,
e.g., for print. Some DAMs offer more sophisticated playout
functionality, e.g., reliable delivery, at-most-once delivery,
exactly-once-delivery, or digital rights management. DAMs
specialized in video management offer a playout based on
QoS parameters. In particular, they measure network latency
during video transmission to be able to sacrifice image
quality in favor of synchronicity if needed [7].

III. CONTENT AND DIGITAL ASSET LIFECYCLES
Both content objects managed by a CMS and assets

managed by a DAM have a lifecycle. In most products, these
lifecycles are explicitly represented by states of the objects.
Figure 1 illustrates the states and possible state changes as
described below.

Created	

Edited	 Approved	

Deleted	 WIthdrawn	 Published	

Figure 1. Lifecycle states of content objects.

The content object lifecycle starts with content objects

being created. This can happen manually or by importing
external content, e.g., from files or news feeds.

Subsequent editing adds value to content. Changes affect
the actual content or descriptive information that is also
stored in content objects. In particular, editing may include
linking content objects to each other in order to create
multimedia documents from the resulting object graphs.

Quality assurance for content is reflected in a dedicated
approval step that marks content as being suitable for
publication. Such content is, depending on the CMS product,
either directly available for rendering and shipping or it
constitutes a candidate for a final publication step. In the
course of this paper we draw no distinction between
publication and approval.

An approved object that is edited becomes unapproved.
Typically CMSs support versioning of content and this way
allow the approved version to be online and a newer version
to be edited.

In many states, a content object can be deleted.
Assets, being a different form of content, have a similar

lifecycle. They are initially created inside a DAM, be it by
import from external sources or by original authoring and

31Copyright (c) IARIA, 2016. ISBN: 978-1-61208-464-0

CONTENT 2016 : The Eighth International Conference on Creative Content Technologies

CMS

DAM

Created Content
Object

(ex.: text)
Rendered Document

Content Created
from Asset
(ex.: image)

Approved Content
Object (ex.: text)

Content Object
Referencing Asset

(ex.: text)

Lorem ipsum
…

Approved Asset
(ex.: image)

Created Asset
(ex.: image)

Referenced Asset
(ex.: image)

Referenced
Content/Asset
(ex.: image)

Approved Content/
Asset

(ex.: image)

Figure 2. Example content and asset lifecycle and relationships.

storing the results inside the DAM. Editing assets is not a
primary use case of a DAM [8], so we omit asset
modifications here. DAMs support quality assurance by an
approval process, though, similar to that found in CMSs.

IV. TIME OF ASSET INTEGRATION
Even if the management of structured and that of

unstructured content are separated utilizing a CMS and a
DAM, respectively, content and assets need to be combined
in published documents.

There are various integration scenarios to achieve this
kind of separation of concerns. For a concrete system the
integration approach should be chosen based on the
requirements that the system needs to fulfill and the
implementation effort. On that basis, the most beneficial
approach can be chosen.

Each integration form has its specific advantages and
disadvantages and addresses a different set of requirements.
The subsections of this section discuss one approach each.

The subsequent Section V discusses the implementation
effort of each integrated solution.

For the integration scenarios we only consider the case of
a CMS being used to prepare content and to define how to
render documents. This is the particular strength of a CMS
that cannot be substituted by a DAM. Therefore, the CMS
will always be in lead when considering the overall
document publication process.

The approaches thus differ in the point in time at which
an asset is integrated into the CMS. Figure 2 illustrates the
scenarios covered in this paper by different content flows.

A. Integrating Assets at Playout Time
The integration at playout time makes full use of the

DAM’s functionality with respect to rendering and playout.
Documents are created from both content and assets at the

latest point in time possible. This way, it is the loosest
integration form that happens at the point of document
assembly. The equivalent in an information system is the
presentation layer.

Though this frontend integration makes this approach the
most volatile one, it is often preferred in practice due to its
comparably low implementation costs and due to the fact
that all of the DAM’s functionality is being used.

A CMS’s editor tool allows content objects to be related
to each other. Such relationships are required either to be
able to link documents or to define content structures that
lead to documents composed of various content objects.
Figure 2 uses the example of an image related to text. This
integration scenario – as well as all the other ones discussed
in the course of this paper except for the integration at
creation time – requires an extension of the CMS’s editor
tool with a search in the accompanying DAM. At the same
time the search functionality of the DAM is required to be
exposed to the CMS.

For integration at playout time the CMS stores proxy
content (as asset references) only at editing time. Such proxy
content represents an asset from the DAM. It is created when
an asset reference is defined using the editor tool.

The external references from proxy content to the asset it
represents require the DAM to provide stable external asset
IDs or addresses.

The CMS renders proxy content objects as references to
the according assets residing inside the DAM that delivers
them directly into the documents.

After creation of proxy content the CMS needs to receive
events concerning the asset’s lifecycle. A referenced asset
might become unavailable for publication later on due to
disapproval or deletion from the DAM.

There is no general way to prevent possible runtime
errors due to assets that have been deleted or ones that have

32Copyright (c) IARIA, 2016. ISBN: 978-1-61208-464-0

CONTENT 2016 : The Eighth International Conference on Creative Content Technologies

otherwise become inaccessible. Depending on publication
strategies all content referencing such an asset may become
inaccessible, as well as (transitively) all content referring to
such content. In other cases, it might be possible to remove
such references but leave the rest of the content intact.

In the case of web content management this scenario
requires the DAM to be exposed to the Internet in order to be
able to deliver the assets for inclusion into documents.

B. Integrating Assets at Render Time
Like most of the integration scenarios this one requires

(see previous subsection): an extension of the CMS’s editor
with a search in the accompanying DAM, capabilities to
manage asset references in order to relate assets to content,
and means to deal with the fact that asset and content life
cycles cannot be synchronized in a generic way.

During rendering, references are resolved. Assets are
transferred to the CMS and stored at least in the public stage.
The benefit of this step is increased independence from the
asset lifecycle from this point on: asset deletion no longer
leads to inconsistent publications out of the CMS.
Nevertheless, disapproval of an asset does not automatically
lead to withdrawal of corresponding and referring content.

The problem with unavailable assets exists as in the
preceding case. Yet it does not occur at playout time, but
instead at rendering time. This makes no difference in most
contemporary CMSs. In offline CMSs that render documents
in advance, this can be beneficial, though.

C. Integration Assets at Approval / Publication Time
This integration scenario is much like the preceding ones,

only that it integrates assets even earlier in the asset/content
lifecycle, namely during approval or publishing.

Typically, content is published in a transitive way. E.g.,
when an article is published, all related images need to be
published in the same step as well, or otherwise the
publication of the article will fail.

This integration scenario is based on an extension of the
CMS’s approval process in a way that assets are retrieved
from the DAM and stored as content in the CMS during the
process (based on proxies created at editing time), at least in
the public stage. This scenario is based on the assumption
that it is insufficient to apply quality assurance to the proxies
alone because of asynchronous asset modifications in the
DAM. Instead, the assets’ approval state is checked as part of
the approval process of the CMS.

In contrast to the preceding scenarios, the CMS is
leveraged from having to consider unavailable assets at
playout time. Still, the decoupled life cycles of asset and
corresponding content need to be dealt with. To this end,
there either needs to be a synchronization of asset and
content state based on notifications as discussed before, or
the CMS neglects the approval state in the DAM and
maintains the state on the basis of content objects only.

In this integration scenario, as opposed to the preceding
ones, the CMS’s publication, rendering, and playout
capabilities are used for digital assets. Section V.B discusses
the resulting implications. The DAM’s playout functionality
(see Section II.B) will not be utilized.

D. Integration Assets at Editing Time
Assets can be added to the CMS at editing time, e.g.,

when a reference to an asset is added to some content. This
requires an extension of the CMS’s editor with (a) search in
the accompanying DAM like in the cases above and (b) on-
the-fly content creation from selected assets.

If assets are integrated in the CMS before approval they
need to be monitored for subsequent changes. To this end,
there needs to be synchronization once content has been
created from an asset. This synchronization may be eager (on
every asset change) or lazy (on demand, e.g., at playout
time).

With integration at approval time and before, rendering
and playout are performed by the CMS (s.a.).

E. Integrating Assets at Asset Creation Time
The earliest possible integration of assets is at the time of

their creation: assets are added to the CMS as soon as they
are created in the DAM.

This scenario only makes sense if the DAM is also used
in processes other than document production through a CMS.
Otherwise there would be no need for a DAM at all. When
assets still have an independent lifecycle inside the DAM
then the integration requires continuous synchronization.
This synchronization is performed eagerly in order to
provide assets as content for selection within a CMS. There
is no need for an extended editor that allows searching the
DAM since assets can directly be found in the content base.

In this scenario, nearly all DAM functionality is
neglected in favor of the corresponding CMS functions. As
in the above scenarios quality assurance is controlled by the
CMS, and rendering and playout are carried out solely by it.

V. REQUIRED SYSTEM ADAPTATIONS
In order to implement the integration of a CMS with a

DAM in one of the forms presented in the preceding section,
some extensions or adaptations to the software products are
required. Table I gives an overview of required adaptations
and attributes them to the integration scenarios.

A. Added Functionality
The scenarios that rely on a continuous synchronization

of assets and corresponding content objects are typically
implemented through notifications by events, e.g., the event
of an asset having been modified. In these scenarios the
DAM needs to be an event source and the CMS an event
subscriber. The DAM will produce events and transmit them
to subscribers. The CMS registers for such events and to
interpret them. When this functionality is not found in the
CMS (which usually is the case), there needs to be an
external software component that listens to such events and
then triggers some actions inside the CMS. To this end the
CMS needs to provide an externally usable API.

In order to relate events to content created from assets,
the DAM has to provide stable IDs or addresses (like, e.g.,
URLs) of assets. This is particularly important due to the fact
that assets are long-lived.

Most events are related to specific revisions of assets. For
those events subscribers need IDs that reference asset

33Copyright (c) IARIA, 2016. ISBN: 978-1-61208-464-0

CONTENT 2016 : The Eighth International Conference on Creative Content Technologies

TABLE I. CHANGES TO SOFTWARE PRODUCTS DEPENDING ON ASSET INTEGRATION TIME
Aspects Form of Integration

Creation time Editing time Approval time Render time Never
Changes to CMS • subscribe to and

listen to events
(from DAM) or
expose public API;
create content on
asset creation or
modification

• media selection
dialog changed to
query DAM

• on-the-fly content
creation upon asset
utilization (linking)

• subscribe to and
listen to events
(from DAM) or
expose public API;
modify content on
asset modification

• media selection
dialog changed to
query DAM

• surrogate objects for
assets

• on-the-fly content
creation on public
stage upon asset
(proxy) approval

• check of asset’s
approval state upon
asset proxy approval

• media selection
dialog changed to
query DAM

• surrogate objects for
assets

• on-the-fly content
creation on public
stage upon asset
(proxy) rendering

• media selection
dialog changed to
query DAM

• surrogate objects for
assets

Changes to DAM • event source for
CMS

• stable external IDs
(to relate assets in
events)

• query interface for
CMS

• event source for
CMS

• stable external IDs
(to relate assets in
events)

• stable IDs/addresses
• query interface for

CMS
• interface to query

approval state from
CMS

• stable IDs/addresses
• query interface for

CMS
• event source for

CMS

• stable IDs/addresses
• query interface for

CMS

Unused CMS
functionality • quality assurance

• quality assurance
• rendering (assets)

• quality assurance
• rendering (assets)
• playout (assets)

Unused DAM
functionality • rendering

• playout
• rendering
• playout

• rendering
• playout

• playout
revisions, not assets in general. For an example of IDs
fulfilling this requirement see the CMIS object IDs [9].

As described in the preceding section, some integration
scenarios rely on an asset selection dialog integrated into the
CMS’s editing tool. Usually, such a dialog exists, but is used
to select multimedia content from the CMS itself. This
dialog has to be extended in a way that allows picking assets
from the DAM that have not previously been imported into
the CMS. Such a dialog must furthermore be backed by
functionality to create content from the chosen asset, either
with a copy of the content or with a link to the asset. In order
for the asset selection to work the DAM has to offer search
functionality to the CMS (editor). The search result contains,
depending on the scenario, the asset data or the asset ID or
address.

B. Unused Functionality of the Software Products
There exists functionality that is provided both by a CMS

and a DAM. In an integrated system the corresponding
functions of one the systems may not be used. From an
architectural point of view, this makes no change. But certain
strengths and weaknesses of the products might not be
considered in an optimal way in particular integration
scenarios.

In those integration scenarios where the CMS handles
references to assets in the DAM only, the quality assurance
measures, usually some approval process, of the CMS are
not in effect for assets. Approving a content object just
makes a statement about a version of the corresponding asset
at approval time, but assets may change without the handles
inside the CMS being altered.

The aforementioned event-based synchronization can be
used to monitor the approval state of assets and to adjust the
approval state of the corresponding content objects. But

considering the whole asset lifecycle there are situations that
cannot be handled. The most drastic example is a valid asset
that is (rightfully) referenced by published content. If now
the asset is deleted then the CMS notices the state change.
But it cannot decide whether to keep the image reference
(thus rendering documents with missing images), whether to
remove the images reference from all content objects (thus
automatically altering the content; an operation that is
usually unwanted in CMSs), or whether to disapprove all
content objects containing the image reference (an operation
that has to be applied recursively and can thus have
unexpected effects).

If integration of a CMS and a DAM takes place in a way
that assets are copied to the CMS before playout time, the
rendering and possibly playout functionality of the DAM
will not be utilized. This is a major drawback of those
integration scenarios since these are about the most powerful
contributions of a DAM. A CMS typically offers very
limited rendering functionality for multimedia content, if any
(see Section II.A). In the subsequent Section VI, we discuss
an integration approach that allows to use more of a DAM’s
rendering functionality. Playout with QoS parameters is
usually not provided by a CMS, but by some DAMs.

If integration of a CMS and a DAM takes place at a point
in the asset lifecycle later than content editing, the rendering
and possibly playout functionality of the CMS is not used for
content originating from assets. As pointed out above, the
corresponding functions of a DAM are typically more
powerful that those of the CMS (see Section II.B). But there
are some things to consider in specific scenarios.

The rendering of assets often is influenced by context-
specific parameters of the publication channel at hand. For
adaptive web design, for example, images are scaled to the
actual screen size of the device posing a request, videos are

34Copyright (c) IARIA, 2016. ISBN: 978-1-61208-464-0

CONTENT 2016 : The Eighth International Conference on Creative Content Technologies

transcoded to suitable formats, etc. In addition, some CMS
installations allow editors to define the image formats used
in particular situations, e.g., renderings in certain contexts.
This cannot be achieved as easily when the DAM has the
duty of rendering assets.

With respect to playout a CMS does not provide the
media-specific functionality found in a DAM, in particular
there is no quality-controlled adaptive playout. On the other
hand, the CMS uses a playout infrastructure consisting of
sophisticated caching, inclusion of content delivery
networks, etc. This infrastructure has partly to be made
available to them DAM.

VI. ADVANCED SCENARIO: ASSET SHIPPING TO CMS
From an editing viewpoint the integration at the time of

asset creation or editing time is the most beneficial. To allow
more of a DAM’s rendering functionality to come into play
in such an integration scenario, a variation of the
corresponding integration approach can be taken.

In the preceding section we assumed the systems to pass
“raw” content to the other, limiting the DAM to a
multimedia database. Alternatively the synchronization of
asset content can be considered a logical playout step from
the DAM with the CMS being the receiver of rendered
documents.

Though this variant does not help for playout (QoS
parameters, etc.), it allows the integrated system participating
in the DAM’s functionality to render multimedia content
(see Section II.B).

Particular attention has to be put on the interplay of the
DAM’s and the CMS’s media manipulation functionality.
E.g., a graphic would be stored in raw format inside the
DAM. It provides a rendered version to the CMS, e.g., in a
predefined format and resolution. During the shipping of the
content from within the CMS this will in turn prepare the
graphics data by scaling it for the usage at hand (full screen
version, smaller embedded version, high resolution print
version). The concatenation of the manipulation functions
may lead to quality losses compared with a one-step
rendering through the DAM’s rendering functions.

In cases where there is no interference between the
DAM’s and the CMS’s rendering of assets, the concatenation
allows combining the quality of renditions provided by a
DAM and the control over renditions by a CMS editor.

VII. SUMMARY AND OUTLOOK
The paper closes with a summary and an outlook.

A. Summary
This paper presents various forms of integration of a

CMS and a DAM. If the CMS is in lead regarding the overall
content management process then the main difference
between the integration forms is the point in the asset
lifecycle at which an asset is introduced in the CMS.

All integration forms exhibit individual strengths and
weaknesses, achieved with differing implementation effort.
The choice of a suitable integration form, therefore, depends
on many factors and considerations discussed in this paper.

B. Outlook
For integrated solutions – like a CMS combined with a

DAM in this case – we would like to see a repository of
typical requirement/solution patterns.

The discussion in this paper shows that many decisions
rely on the particular properties of the software products
used. The solution scenarios should therefore be refined to
consider actual software products with their individual
capabilities to be of increased value in practical applications.

Furthermore, some decisions have to be made on the
basis of more concrete requirements: the integration
approach in general, but also implementation details like,
e.g., the way how to handle concurrent asset modifications in
the DAM and in the CMS. A comprehensive catalog
containing more refined use cases and blueprints for typical
solutions is required in practice.

Future work will try to extend the considerations to more
general integration scenarios in the field. A quite prominent
example is product information management fulfilled by,
e.g., a CMS in cooperation with catalog management or a
CMS combined with a shop solution.

ACKNOWLEDGMENT
The author thanks his employer, Namics, for the

opportunity to follow his scientific ambitions by publishing
some of his thoughts. In particular since these relate to and
extend commercial activities.

Fruitful discussions with numerous colleagues (current
and former), business partners, and customers led to the
insights presented in this paper. My thanks go to all of them.

My thanks also go to the anonymous reviewers for the
constructive hints that helped to improve this paper.

REFERENCES
[1] Ovum, Making the case for digital asset management in retail:

Using technology to manage digital assets effectively.
Whitepaper, August 2015.

[2] A. Saarkar, Digital Asset Management. Whitepaper,
Cognizant Technology Solutions, 2001.

[3] S. King, “Web content management”, in Computer
Technology Review. Los Angeles, vol. 22, issue 11, p. 9,
2002.

[4] D. Austerberry, Digital Asset Management: How to Realise
the Value of Video and Image Libraries. Amsterdam, Boston:
Focal Press, an imprint of Elsevier Ltd., 2004.

[5] Y.-M. Kim et al., “Enterprise Digital Asset Management
System Pilot: Lessons Learned”, in Information Technology
and Libraries, John Webb, Ed. vol. 26, no. 4, 2007.

[6] T. Blanke, “Digital Asset Ecosystems: Rethinking crowds and
cloud”, Chandos Publishing, 2014.

[7] H. Thimm and W. Klas, “Playout Management in Multimedia
Database Systems”, in Multimedia Database Systems, K. C.
Nwosu, B. Thuraisingham, and P. B. Berra, Eds. Springer US,
pp. 318-376, 1996.

[8] C. D. Humphrey, T. T. Tollefson, and J. D. Kriet, “Digital
Asset Management”, in Facial Plastic Surgery Clinics of
North America, vol. 18, no. 2, pp. 335-340, 2010.

[9] Content Management Interoperability Services (CMIS)
Version 1.1. 23 May 2013. OASIS Standard. [online].
Available from: http://docs.oasis-
open.org/cmis/CMIS/v1.1/os/CMIS-v1.1-os.html

35Copyright (c) IARIA, 2016. ISBN: 978-1-61208-464-0

CONTENT 2016 : The Eighth International Conference on Creative Content Technologies

