
Towards Open Data for Personal Web Tasking

Anna Ruokonen

Department of Electronic Engineering
City University of Hong Kong

Kowloon Tong, Hong Kong
Email: aruokone@cityu.edu.hk

Otto Hylli and Samuel Lahtinen

Pervasive Computing
Tampere University of Technology

Tampere, Finland
Email: firstname.lastname@tut.fi

Abstract—Open data is targeted for public use and usually re-
leased by the public sector, e.g., by the government. Its utilization,
however, is currently restricted to programmers with knowledge
on programming and processing of different data formats. The
actual targeted end-users are simply lacking sufficient knowledge
and technical skills. End-user tools for data visualization and
browsing are available, but customization of the presented data
and interaction patterns are limited. The users are unlikely to
be able to exploit their creativity and meet their personal needs.
In this paper, an on-going work on enabling open data sets for
personal Web tasking is presented. Personal Web Tasking aims
at automation of user-centric Web interactions. Work presented
in this paper concentrates on automation of open data queries
defined by the end-users.

Keywords–Personal Web Tasking; Open Data Queries; End-User
Development.

I. Introduction
The Web is becoming increasingly data-centric, consisting

of interconnected data-oriented resources, large data sets and
semantic linked data. Unlike HyperText Markup Language
(HTML), which is designed to format and present text, EXten-
sible Markup Language (XML) is designed to structure data.
With XML, individual data elements can be put in context of a
larger taxonomy in order to turn plain text into data. While the
main consumers of HTML documents are humans, the main
data consumers are computers.

More and more open data sets are made available for the
public, especially Public Sector Information (PSI) provided by
the governments. Open means anyone can freely access, use,
modify, and share for any purpose [1]. Also, by the definition,
open data needs to be available in a machine-readable format,
like Comma-Separated Values (CSV), XML, or Application
Programming Interfaces (API). However, there is no generic
mechanism for citizens to explore and consume the data sets
[2] [3]. Thus, they depend on software developers to build
proper tool-support for data consumption. These applications,
however, are often specific to certain predefined data sets and
provide limited possibilities for interaction.

End-user development aims at empowering non-
programmer end-users to create their own applications.
When building systems for end-user computation, the
essential thing is to provide an environment, which supports
the end-users’ concepts and mental models [3]. Especially
when consuming data, abstraction and visualization are an
essential step to enable end-user interaction [4] [5].

In our previous work, we have studied description of Web
resources such that they support end-user driven development

[6]. It means that in addition to technical details, the service
descriptions should include also end-user targeted metadata,
including descriptions of parameters and a type of operations
in a way that the concepts are familiar to the end-users.

Personal Web Tasking (PWT) aims at automation of user-
centric repetitive web interactions by assisting users in achiev-
ing their personal goals on using internet systems [7]. A
simple example of a personal Web task utilizing open data
is monitoring of Air Quality Health Index (AQHI). It extracts
the recent AQHI value and sends the end user a notification, if
the value evaluates unhealthy. The PWT system executes the
data query repeatedly on behalf of the user, e.g., every hour.

In this paper, an on-going work on end-user approach for
creating personal Web tasks involving structured open data
sets, provided as XML format or as an API, is presented.
Data tasks are based on indicators, which are data elements
selected by the end-user for monitoring. The task engine will
automatically execute queries on the indicator values. At the
current stage, a simple visualization of the data set is provided
to enable the end-user identify certain indicators in the data
set.

The rest of the paper is organized as follows. Related work
is presented in Section II. In Section III, our approach for
personal Web tasking with structured open data is presented.
Challenges on building such end-user tasking system are
discussed in Section IV. Finally, our plans for future work
and conclusions are presented Section V.

II. Related work
There are existing approaches that focus on personal Web

tasking, data visualization, or creation of personalized data
feeds [5] [8]–[10]. Our approach aims at combining these as-
pects. Especially, existing approaches of personal Web tasking
do not consider utilization of open data.

A self-adaptive application aims at predicting users prefer-
ences within a dynamic environment. It involves monitoring
the user behavior and changes in the context and system
infrastructures. It can be used to enable PWT systems that
adapt on changing context and users personal goals to provide
pleasant user experiences. In [8], Castaneda et al. present
a self-adaptive approach where task personalization is done
based on context information, such as user’s personal context,
and historical interactions and social network. Whereas these
works emphasizes the user experience, we believe that the
power of service-oriented systems and open data can be fully
exploited when users are able to develop their own personal
Web task consisting of service interactions.

14Copyright (c) IARIA, 2015. ISBN: 978-1-61208-392-6

CONTENT 2015 : The Seventh International Conference on Creative Content Technologies

In [9], Ng J. presents an approach to extend REST for
smarter interactions to support personal Web tasking, called
REpresentational Action State Transfer (REAST). A key fea-
ture related to personal Web tasking is a meta-model, which
can be used to build user interface (UI) widgets to compose
tasks without programming. REAST interactions are based
on transitions from one action state of a resource to another
action state of another resource. REAST actions are Create,
Read, Update, Notify, and Share. Notify and Share can be
used to enable social networking among users. In addition,
event-based and time-based constraints can be attached to
customize action execution by the end-users. It is assumed
that information technology (IT) personnel first develop a
configurable REAST application with supported UI widgets.
The end-users can compose their personal tasks using the
predefined UI widgets and resources. Our goal is that the user
can select the resources and the system automatically generates
the UI widget. Furthermore, the approach presented in [9] does
not consider interaction with open data.

Castellani et al. present a web application framework for
Internet of things (WebIoT) [10]. The framework is imple-
mented based on Google Web Toolkit. It utilizes thing-centric
design and communication is done using REpresentational
State Transfer (REST) paradigm. It aims at integration of
services, devices, sensors and other smart things into the
Web 2.0 by allowing users to develop and exploit their own
applications. Thus, sharing the same vision of user-centered
development as emphasized in our work.

Generic mechanisms for data visualization, a tool not
specific to any particular data set, for the end-users has
been studied in [5]. The work presented by Mazumdar et
al. aims at identifying the end-users’ needs and preferences.
Especially, they provide dashboard alternative visualizations,
e.g., different kind diagrams, of data content is provided. The
users are allowed to use filters to reason on the data. Filters are
implemented as SPARQL Protocol and RDF Query Language
(SPARQL) [11] queries. In our approach, a simpler approach
for data interaction is taken, the user is only assumed to select
indicators for future monitoring.

In our earlier work [6], we have presented an approach
of adding metadata on the service descriptions. A similar
approach, adding annotations on the open data sets, can be
applied to provide useful information for the end-users and
help them to develop their personal Web tasks. There is also
existing work on providing guidelines for visual overviews of
open government data [2].

III. PersonalWeb tasking with open data
As a part of our earlier work, we have presented tool-

support for composing service interactions into personal Web
tasks [12]. It is now extended to provide the end-users a
simple mechanism to query and interact with open data sets.
Sequences of end-user defined Web interactions, like Rep-
resentational State Transfer (REST) service invocation, data
queries are supported as personal Web tasks. Execution of the
tasks is handled automatically by a task engine. An overview
of the approach is shown in Figure 1.

A. Data abstraction and visualization
To enable end-user interaction, an abstraction and visu-

alization of the data set must be provided. At the current

Figure 1. Personal Web tasking system

stage of our prototype implementation, a simple approach
is implemented. The abstraction of the data set is provided
by reducing the document structure. It is implemented as
a simple algorithm that parses the XML feed. It finds the
elements with the higest occurency and visualizes them to
the user. For example, Figure 2 presents an air quality report
AQHI24HrReport provided by the Hong Kong government as
an XML feed. It contains 360 item elements presenting the
resent measurement entries and some other XML elements
presenting some document level information. After abstraction,
only the structure of the item element and the latest values
are presented to the end-user. Visualization the data content is
shown in Figure 3.

<AQHI24HrReport>
<title>Environmental Protection Department - AQHI</title>
<link>http://www.aqhi.gov.hk</link>
<description>Environmental Protection Department -
Past 24-hr AQHI</description>

<language>en-us</language>
<copyright>Environmental Protection Department</copyright>
<webMaster>enquiry@epd.gov.hk</webMaster>
<lastBuildDate>Fri, 26 Sep 2014 18:30:00 +0800</lastBuildDate>

<item>
<type>Roadside Stations</type>
<StationName>Mong Kok</StationName>
<DateTime>Fri, 26 Sep 2014 18:00:00 +0800</DateTime>
<aqhi>5</aqhi>

</item>

..
</AQHI24HrReport>

Figure 2. AQHI24HrReport

The example in Figure 3 shows the creation of a data
task. First, the user selects a data set by defining the URL
or selecting one of the data sets stored in the PWT system.
The system extracts the data sets and presents an abstraction of
its’ contents to the user as a table. The users can select which
parts of the data they want to monitor. Selected elements are
included in the data task as data indicators. In the presented
scenario, the user wants to connect to her Twitter account and
send an automated tweet, if the air quality is unhealthy. Thus,
she defines an interaction sequence, connecting the result of
the data query, if control node, and Twitter service.

Figure 3 shows the creation of a simple control structure

15Copyright (c) IARIA, 2015. ISBN: 978-1-61208-392-6

CONTENT 2015 : The Seventh International Conference on Creative Content Technologies

with a condition. The user can select the desired operator
from the operator list and specify the operand value. For
numeric values <, >, and equals operators can be used. For
strings, equals, contains substring, prefix, and postfix operators
can be used. On the first column the user can select which
indicators she wants to be included in the constraint. The
first column presents the name of the data element. The third
column shows supported operators, which can be used to create
constraints on the indicator value. ANY means no constraint
is used. The desired constraint value can be specified on the
fourth column. The default values are the latest data values.
In the given example, the user wants to monitor air quality of
the Central/Western district of Hong Kong. If the air quality
reaches unhealthy (aqhi > 6), the user wants to send a tweet.

Before completing the task and sending it to the task
engine, the user specifies the task execution frequency. For
example, if execution frequency is specified to be one hour,
the data query is automatically executed every hour by the task
engine.

Figure 3. Designing a data task

B. Task creation with a data set
In the proposed Web Tasking system, tasks are composed

of a sequence of activities. Basic activities are the CRUD
operations to be used to interact with RESTful services:
POST, GET, PUT, and DELETE. In addition, there are two
activies getDATA and NOTIFY activity. getDATA activity can
be attached to a data feed to simply get the latest value of
a certain indicator or data feed. A NOTIFY activity is used
to create a custom user notification. User defined constraints
are implemented as variables and if statements in our task
descriptions. Each activity takes a set of input parameters,
which are required for its execution. For example, getDATA
activity has two input parameters, the data URL and an
indicator identifier. The values are extracted from the end-user
input.

For example, as a result of scenario presented in Figure 3,
an instance of getDATA activity is created. The parameters
are the data url http://www.aqhi.gov.hk/epd/ddata/html/out/
24aqhi Eng.xml, and indicator identifiers StationName and
aqhi. The output of the getDATA activity is connected to a if
control node with the created condition (StationName equals
CentralWestern and aqhi > 6). If the condition evaluates true,

the task execution proceeds to invoking Twitter API to send
a status update with a warning message. This is done with
Twitter’s POST method. status parameter defines the warning
message. When a new task is created, the user specifies global
parameter related to task execution, related to timing and
repetition.

IV. Requirements for personalWeb tasking system
The most important components of the PWT system are

the task editor and the task engine. The overall architecture
including the core components is shown in Figure 4. The
task editor is a client side application, which provides a
graphical interface for task creation. It can be used with a
standard Web browser and it is targeted for the end-users.
When the user has finished, the task editor generates an
exportable task description given in XML-based language. The
task description is stored and executed by the task engine.
The task engine also provides a registry for services and data
sets. The metadata editor, shown in Figure 4, is designed for
augmenting service descriptions.

Figure 4. High level architecture

The overall personal Web tasking system must support
the following activities: (1) task design, (2) Web interaction
sequencing, and (3) task execution.

A. Task design
The main requirement for our end-user driven approach is

to enable the user interaction with the data sets and RESTful
APIs. Support for data interaction is provided thought data
abstraction and data visualization as presented in the example
in Section III. In the presented approach, only structured XML
documents are considered as the data format. To provide a
simple mechanism to interact with the data, our approach is
based on monitoring single values, so called indicators. The
selected indicators can be attached with simple constraints. For
evaluating the indicator values, basic XML processing tools are
used.

In our previous work, we have presented an approach for
adding meta-data in RESTful service descriptions to support
end-user driven service configurations. It assumes no mod-
ification on the existing services, but it requires, however,
pre-registration of available service descriptions given in Web
Application Description Language (WADL) [13]. A similar
approach by annotating XML-based data sets can be used.
However, this study presents a generic approach with no

16Copyright (c) IARIA, 2015. ISBN: 978-1-61208-392-6

CONTENT 2015 : The Seventh International Conference on Creative Content Technologies

advance registration of the annotated data sets. Thus, the use
of metadata is limited to the XML tag names and the XML
document structure.

B. Web interaction sequencing
Sequencing of Web interaction, such as data queries and

RESTful service invocation, is supported by an XML-based
task description language. An example of sequencing with the
task description language is shown in Figure 5. It describes the
interaction sequence of the air quality monitor task, containing
two activities, the data query (getDATA activity) and posting
a tweet on Twitter (POST activity).

<sequence>
<getDATA url="http://www.aqhi.gov.hk/epd/
ddata/html/out/24aqhi_Eng.xml" indicator=
"/AQHI24HrReport/item[StationName=’CentralWestern’]
[last()]/aqhi/text()">
aqhi</getDATA>

<if variable="aqhi" operator="bigger_than" value="6">
<POST>
<request>status</request>
<response/>
<resource_id>twitter</resource_id>

</POST>
</if>

</sequence>

Figure 5. Task description

Variable aqhi is used to store the air quality index extracted
from the data set and status contains the message that will
be posted on Twitter. getDATA element defines the data set
URL and how to get the indicator value. The if element
takes a variable (the air quality), an operator (bigger than)
and a value (6) and evaluates the expression (aqhi >6). If the
condition evaluates true the POST activity is executed and and
the message is posted to Twitter.

V. Conclusions and future work
More and more open data is made available for the public,

especially in the public sector (e.g., European Union and PSI
Directive). However, there is no generic mechanism for citizens
to explore and consume the data. The users should be provided
a simple mechanism to query and interact with the data sets.
Our aim is to develop a personal Web tasking system, which
supports the use of open XML data composed of a sequence
of Web interactions. We present a generic approach, which
automatically generates data abstraction and visualization of
the data content enabling the end users to interact with the
data set. The idea of personal Web tasking is to automatize
repetitive Web interactions. For example, do a data query on
the data source every hour to get the latest value of a certain
indicator the user is interested in. To customize the data task,
the user can define simple control structures with constraints.
The end-user can, e.g., choose to receive notifications based
on the latest data values.

The presented approach will be integrated with our previ-
ous work, which provides a platform for personal Web tasking
with RESTful services. Interaction with the RESTful services
is implemented via augmented WADL descriptions. RESTful
service invocations and data queries along with simple control
structures can be used as constituents of personal Web tasks,
which are executed by the task engine. The ultimate goal
of the presented approach is to empower end-users to create

their own small Web applications and to benefit from the
Internet of resources available. Especially, we want to enable
non-programmers to explore and benefit from available public
sector data.

References
[1] The Open Definition, Open Knowledge Source Code,

http://opendefinition.org/od/ [accessed: 2015-01-02].
[2] A. Graves and J. Bustos-Jimnez, “Towards visual overviews for open

government data,” in DataWiz2014: Data Visualisation Workshop, ACM
Hypertext 2014 conference, September 2014, pp. 1–6.

[3] J. Rode, M. Rosson, and M. P. Quiñones, “End user development of
web applications,” in End User Development, ser. Human-Computer
Interaction Series, H. Lieberman, F. Patern, and V. Wulf, Eds. Springer
Netherlands, 2006, vol. 9, pp. 161–182.

[4] A. Dadzie and M. Rowe, “Approaches to visualising linked data: A
survey,” Semantic Web, vol. 2, no. 2, Apr. 2011, pp. 89–124.

[5] S. Mazumdar, D. Petrelli, and F. Ciravegna, “Exploring user and system
requirements of linked data visualization through a visual dashboard
approach,” Semantic Web, vol. 5, no. 3, 2012, pp. 203–220.

[6] O. Hylli, S. Lahtinen, A. Ruokonen, , and K. Systä, “Resource descrip-
tion for end-user driven service compositions,” in IEEE Services 2014,
2nd International Workshop on Personalized Web Tasking (PWT 2014),
July 2014, pp. 11–17.

[7] L. Castaneda, H. Muller, and N. Villegas, “Towards personalized web-
tasking: Task simplification challenges,” in 2013 IEEE Ninth World
Congress on Services (SERVICES), June 2013, pp. 147–153.

[8] L. Castañeda, N. M. Villegas, and H. A. Müller, “Self-adaptive
applications: On the development of personalized web-tasking
systems,” in Proceedings of the 9th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems,
ser. SEAMS 2014. New York, NY, USA: ACM, 2014, pp. 49–
54. [Online]. Available: http://doi.acm.org/10.1145/2593929.2593942/
[accessed:2015-01-02]

[9] J. W. Ng, “Adapting rest to reast building smarter interactions for per-
sonal web tasking,” in IEEE Services 2014, 2nd International Workshop
on Personalized Web Tasking (PWT 2014), July 2014, pp. 38–46.

[10] A. Castellani, M. Dissegna, N. Bui, and M. Zorzi, “Webiot: A web
application framework for the internet of things,” in Wireless Com-
munications and Networking Conference Workshops (WCNCW), 2012
IEEE, April 2012, pp. 202–207.

[11] SPARQL Query Language for RDF, W3C, http://www.w3.org/TR/rdf-
sparql-query/ [accessed: 2015-01-02].

[12] O. Hylli, S. Lahtinen, A. Ruokonen, and K. Systä, “Service composition
for end-users,” Acta Cybernetica, vol. 21, August 2014, pp. 383–399.

[13] Web Application Description Language (WADL), W3C,
http://www.w3.org/Submission/wadl/ [accessed: 2015-01-02], 2009.

17Copyright (c) IARIA, 2015. ISBN: 978-1-61208-392-6

CONTENT 2015 : The Seventh International Conference on Creative Content Technologies

