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Abstract—We present a realistic, robust, and computationally 

fast method of solving highly non-linear inverse kinematic 

problems with angular limits using the Gauss-Seidel iterative 

method.  Our method is ideally suited towards character based 

interactive applications such as games.  To achieve interactive 

simulation speeds, numerous acceleration techniques are 

employed, including spatial coherent starting approximations 

and projected angular clamping.  The method has been tested 

on a continuous range of poses for animated articulated 

characters and successfully performed in all cases and 

produced good visual outcomes. 
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I. INTRODUCTION 

Character Inverse Kinematics (IK) is an important and 
challenging topic in the graphics and robotics community, 
and in employment by numerous applications in the film, 
animation, virtual reality, and game industry [1–6]. 

However, character-based models can be highly 
complex; even the most simplified models of 20-30 joints 
can generate a vast number of poses [5][6].  Whereby 
producing a simple pose to achieve a solitary task can 
produce ambiguous solutions that make the problem highly 
nonlinear and computationally expensive to solve.  For 
example, even a straightforward task of reaching to pickup 
an object can be accomplished by means of any number of 
motions.  

This paper focuses on how the Gauss-Seidel algorithm 
[7] can be employed to solve character IK problems; such as 
the biped shown in Figure 1.  The Gauss-Seidel algorithm is 
an iterative, efficient, low memory method of solving linear 
systems of equations of the form Ax=b.  Hence, we integrate 
the Gauss-Seidel iterative algorithm with a character IK 
problem to produce a flexible whole system IK solution for 
time critical systems such as games.  This method is used as 
it offers a flexible, robust solution with the ability to trade 
accuracy for speed and give good visual outcomes.  

Furthermore, to make the Gauss-Seidel method a 
practical IK solution for characters, it needs to enforce joint 
limits.  We incorporate joint limits by modifying the update 
scheme to include an iterative projection technique.  
Additionally, to ensure real-time speeds we take advantage 
of spatial coherency between frames as a warm starting 
approximation for the solver.  Another important advantage 

of the proposed method is the simplicity of the algorithm 
and how it can be easily configured for custom IK problems.  

The main contribution of the paper is the practical 
demonstration and discussion of using the Gauss-Seidel 
method for real-time character IK problem.  Including 
constraint conditions, speed up approaches and robustness 
factors. 

The rest of the paper is organized as follows.  First, 
Section II gives a brief survey of related work.  In Section 
III, we present the biped character model used for our 
simulations.  Then, Section IV explains how the Jacobian 
matrix is calculated.  Sections V to VIII primarily discusses 
the Gauss-Seidel algorithm and implementation details.  
Section IX presents the results.  Finally, Section X draws 
conclusions and future work. 

II. RELATED WORK 

IK is a vital component that can be implemented using a 
wide range of solutions.  We give a brief overview of 
existing, current, and cutting-edge approaches to help 
emphasis the different ways of approaching the problem; 
enabling the reader to see where our method sits.  

In general, however, for very simple problems with just 
a few links, analytical methods are employed to solve the IK 
problem.  Alternatively, for larger configurations, iterative 
numerical methods must be employed due to the complexity 
of the problem. 

The character IK problem of finding solutions to poses 
that satisfies positional and orientation constraints has been 
well studied, e.g., [1], [6], [8], [9].  The problem is highly 
nonlinear, meaning there can be numerous solutions; hence, 
multiple poses fulfilling the constraint conditions.  In 
practical situations, there can even be cases where no 
solution exists due to the poor placement of end-effectors.  
IK systems typically use cut down models, e.g., merely 
performing IK on individual limbs (as in body, arms, legs) 
[5], [10], [11].  This makes the problem computationally 
simpler and less ambiguous. 

Numerous solutions from various fields of research have 
been implemented to solving the IK problem.  The most 
popular method and the method upon which we base our 
iterative solution is the Jacobian matrix [6][12][13].  The 
Jacobian matrix method aims to find a linear approximation 
to the problem by modelling the end-effectors movements 
relative to the instantaneous systems changes of the links 
translations and orientations.  Numerous different methods 
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have been presented for calculating the Jacobian inverse, 
such as, Jacobian Transpose, Damped Least Squares (DLS), 
Damped Least Squares with Singular Value Decomposition 
(SVD-DLS), Selectively Damped Least Square (SDLS) [3], 
[4], [14–17]. 

An alternative method uses the Newton method; 
whereby the problem is formulated as a minimization 
problem from which configuration poses are sought.  The 
method has the disadvantage of being complex, difficult to 
implement and computationally expensive to computer-per-
iteration [13]. 

The Cyclic Coordinate Descent (CCD) is a popular real-
time IK method used in the computer games industry [18].  
Originally introduced by Wang et al. [19] and then later 
extended to include constraints by Welman et al. [1].  The 
CCD method was designed to handle serial chains and is 
thus difficult to extend to complex hierarchies.  It has the 
advantage of not needing to formulate any matrices and has 
a lower computational cost for each joint per iteration.  Its 
downside is that the character poses even with constraints 
can produce sporadic and unrealistic poses.  However, 
further work has been done to extend CCD to work better 
with human based character hierarchies [2][5][20]. 

A novel method recently proposed was to use a 
Sequential Monte Carlo approach but was found to be 
computationally expensive and only applicable for offline 
processing [21][22].  

Data driven IK systems have been presented; Grochow 
et al. [23] method searched a library of poses to determine 
an initial best guess solution to achieve real-time results.  
An offline mesh-based for human and non-human 
animations was achieved by learning the deformation space; 
generating new shapes while respecting the models 
constrains [24], [25]. 

A method known as ‘Follow-The-Leader’ (FTL) was 
presented by Brown et al. [26] and offered real-time results 
using a non-iterative technique.  However, this approach 
was later built upon by Aristidou et al. [27] and presented an 
iterative version of the solver known as FABRIK. 

The Triangular IK method [28][29], uses trigonometric 
properties of the cosine rule to calculate joint angles, 
beginning at the root and moving outwards towards the end-
effectors.  While the algorithm can be computationally fast, 
due to it being able to propagate the full hierarchy in a 
single iteration, it cannot handle multiple end-effectors well 
and is primarily based around singly linked systems. 

The advantages of an iterative character IK  system were 
also presented by a well written paper by Tang et al. [30] 
who explored IK techniques for animation using a method 
based on the SHAKE algorithm.  The SHAKE algorithm is 
an iterative numerical integration scheme considered similar 
to the Verlet method [31], which can exploit substantial 
step-sizes to improve speed yet remain stable when solving 
large constrained systems.  The algorithm is also proven to 
have the same local convergence criterion as the Gauss-
Seidel method we present here as long as the displacement 
size is kept sufficiently small. 

III. ARTICULATED CHARACTER MODEL 

We model the mechanical functioning of the biped as a 
series of multiple rigid segments (or links) connected by 
joints.  This interconnected series is also called a kinematic 
chain.   

As shown in Figure 1, we represent the biped character 
as a collection of 14 rigid body segments connected using 8 
primary joints.  The character gives us 30 degrees of 
freedom (DOF). 

Joints such as the shoulder have three DOF 
corresponding to abduction/adduction, flexion/extension and 
internal/external rotation (i.e., rotation around the x, y and z 
axis). 

Furthermore, it is convenient to note that a joint with n 
DOF is equivalent to n joints of 1 DOF connected by n-1 
links of length zero.  Thus, the shoulder joint can be 
described as a sequence of 3 separate joints of 1 DOF, 
where 2 of the joints connecting links have zero lengths. 

 

 

Figure 1.  The joint configuration with the right foot set as the IK base. 

 As shown in Figure 1, the single DOF connected joints 
were colored in accordance with their axis type; the x, y and 
z representing the colors red, green and blue.  The foot was 
set as the base for the IK with five end-effectors (i.e., head, 
pelvis, right-hand, left-hand and left-foot).  We developed 
an application for an artist to interrogate and experiment 
with the biped IK system; setting end-effectors locations 
and viewing the generated poses. 

Each end-effector has a 6 DOF constraint applied to it; 
representing the target position and orientation.  The ideal 
end-effectors are drawn in red, and the current end-effectors 
are drawn in green.  This can be seen clearly in Figure 5, 
where the target end-effectors are located at unreachable 
goals. 

IV. JACOBIAN MATRIX 

The Jacobian J is a matrix that represents the change in 
joint angles   to the displacement of end-effectors e . 

Each frame we calculate the Jacobian matrix from the 
current angles and end-effectors.  We assume a right-handed 
coordinate system. 

To illustrate how we calculate the Jacobian for an 
articulated system, we consider the simple example shown 
in Figure 2.  For a more detailed description see [3], [4], 
[14–17].  The example demonstrates how we decompose the 

Joint             DOF

Total             

Head
Shoulder
Elbow
Hand
Pelvis
Hip
Knee
Foot

3
3
1
2
3
3
1
2

30

64Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-220-2

CONTENT 2012 : The Fourth International Conference on Creative Content Technologies



 

problem and represent it as a matrix for a sole linked chain 
with a single three DOF end-effector.  We then extend this 
method to multiple linked-chains with multiple end-
effectors (each with six DOF) to represent the character 
hierarchy. 

 

 

Figure 2.  Relationship between multiple joint angles and end-effectors. 

The angles for each joint and the error for each end-
effector are represented by matrices. 
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where 
i  

is the rotation of joint i relative to joint i-1, and 

e for the end-effectors global position. 
From these matrices, we can determine that the end-

effectors, and the joint angles are related.  This leads to the 
forward kinematics definition, defined as: 

 
( )fe θ  (3) 

We can differentiate the kinematic equation for the 
relationship between end-effectors and angles.  This 
relationship between change in angles and change in end-
effectors location is represented by the Jacobian matrix.   

 
e Jθ  (4) 

The Jacobian J is the partial derivatives for the change 
in end-effectors locations by change in joint angles. 

 





e
J

θ
 (5) 

If we can re-arrange the kinematic problem:  

 1( )f θ e  (6) 

We can conclude a similar relationship for the Jacobian: 
 

1θ J e  (7) 

For small changes, we can approximate the differentials 
by their equivalent deltas: 

 
argt et current  e e e  (8) 

For these small changes, we can then use the Jacobian to 
represent an approximate relationship between the changes 
of the end-effectors with the changes of the joint angles.  

 
1  θ J e  (9) 

We can substitute the result back in: 
 
 

current previous θ θ θ  (10) 

 
The practical method of calculating J in code is used: 
 

( )j target j

j


  



e
r e p

θ
 (11) 

where jr  is the axis of rotation for link j, targete  is the 

end-effectors target position, jp  is end position of link j. 

 

 

Figure 3.  Iteratively calculating the Jacobian on a frame by frame basis. 

For example, calculating the Jacobian for Figure 3 gives: 
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(12) 

and 
 

current target e e e  (13) 
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The Jacobian matrix is calculated for the system so that 

we can calculate the inverse and hence the solution.   
Alternatively, a good explanation of the Jacobian and its 

applications is also presented by Buss [12], who gives an 
introduction to IK methods using the Transpose, 
Pseudoinverse, and Damped Least Square (DLS) method. 

V. FORMULATING THE GAUSS-SEIDEL 

PROBLEM 

We set up the IK problem into a particular arrangement, 
so that we can solve for the unknowns using the Gauss-
Seidel method.  Whereby, we construct the IK formulation 
using the Jacobian matrix with the linear equation format of 
the form: 

 Ax b  (14) 

 
The IK problem is then composed as:  
 
 T T  J J J e  (15) 

 
Equating equivalent variables: 
 
 T

T

unknown



 



A J J

b J e

x

 (16) 

 
With the Gauss-Seidel iterative method, we solve for the 

unknown x value.  To prevent singularities and make the 
final method more stable and robust we incorporated a 
damping value: 

 ( )T  A J J I  (17) 

 
where  , is a small damping constant, typically 0.001, 

and I  is an identify matrix. 

VI. ITERATIVE GAUSS-SEIDEL IK SOLUTION 

The Gauss-Seidel iterative algorithm is a technique 
developed for solving a set of linear equations of the form 
Ax=b.  The method has gained a great deal of acclaim in the 
physics-based community for providing a computationally 
fast robust method for solving multiple constraint rigid body 
problems [32–34]. 

The iterative algorithm is based on matrix splitting [35], 
and its computational cost per iteration is O(n), where n is 
the number of constraints.  Furthermore, the number of 
constraints and the number of iterations is what dominates 
the performance of the algorithm. 

Algorithm 1 is the basic Gauss-Seidel method for a 
generic linear system of equations of the form Ax=b; for the 

unknowns, an initial guess
0x  is needed.  Naively this value 

could be zero and result in the system having a cold start.  
Then the algorithm would proceed, while at each iteration, 
the corresponding elements from A, b and x (current) act as 
a feedback term to move x (next) closer to the solution. 

 

The conditions for the algorithm terminating are: 

 If a maximum number of iterations has been 
reached. 

 If the error ||Ax-b|| drops below a minimum 
threshold. 

 If || ||ix  falls below a tolerance. 

 If || ||ix remains the same as the previous frame 

(within some tolerance). 
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Algorithm 1.  Gauss-Seidel iterative algorithm to solve Ax=b given x0. 

It is essential that the coefficients along the diagonal part 
of the matrix be dominant for the Gauss-Seidel method to 
converge on a solution. 

VII. APPLYING JOINT LIMITS 

Any IK solution needs to enforce angular joint limits 
before it can be a viable solution for a character system.  We 
can modify the basic iterative algorithm to enforce joint 
limits by clamping the angles for each iteration update. 

 
 1

1

1

:

:

:

lower if J e lower

upper if J e upper

J e otherwise
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 









   


   


 

 

(18) 

This extension of the basic Gauss-Seidel algorithm to 
handle constraint limits for the unknowns is called the 
Projected Gauss-Seidel (PGS) algorithm.  The angular limits 
form bounds that are in form of upper and lower joint angles 
that are easily enforced through clamping. 

Furthermore, the PGS algorithm has O(n) running time 
and convergence is guaranteed as long as the matrix is 
positive definite [7].  In practice, we have found the 
algorithm to provide excellent visual and numerical results. 

VIII. SPATIAL AND TEMPORAL COHERENCY 

To give the iterative solver an initial kick-start we take 
advantage of spatial and temporal coherency of the problem.  
Since the PGS solver is iterative by design the convergence 
rate can be slow; depending on the eigenvalues of the 
matrix.  However, by caching the result from the previous 
solution, we can considerably reduce the number of 
iterations, especially if there are only minute changes. 
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IX. RESULTS 

A. Walking 

Setting the foot as the base of the IK solution and 
alternating it to the other foot between steps.  At each foot 
changeover, a target trajectory was calculated for the 
swinging foot.  The swinging foot end-effectors were 
interpolated to animate the walking motion.  This produced 
the lower-body walking-motion.  In addition, the upper-
body end-effectors had similar trajectories calculated to 
induce upper-body motion to co-inside with the feet.  As the 
trajectory interpolation between the start and end-effectors 
was performed, the IK solution was iteratively updated to 
generate a natural smooth blending animation with natural 
looking poses. 

 

 

Figure 4.  The step cycle for the IK; swapping the IK root between the left 
and right foot - with the standing foot holding the weight chosen as the 
root. 

B. Random Poses 

We experimented with a diverse range of poses of 
generally unpredictable and chaotic stature to explore the 
stability and flexibility of our approach.  For example, we 
did random on the spot poses of the character kneeling, 
standing on one single leg, waving, and so on (as shown in 
Figure 6). 

 

Figure 5.  The Gauss-Seidel method remains stable even when we impose 
impossible constraint conditions on the end-effectors – the solver 
converges on achieving a best attempt stretching solution. 

C. Robustness 

One important criteria was that the IK solver remained 
stable – this included placing end-effectors out of reach so 
that no solution could be found.   

In practice, when no result was obtainable, a best reach 
condition was always presented, stretching to obtain the 

end-effectors but remaining stable (i.e., not oscillating or 
jittering). 

Furthermore, when end-effectors were started at 
radically different locations, the resulting solution would 
radically jerk – however, the result always converged on 
acceptable poses. 

D. Performance 

On average, the small spatial coherent transitions 
between frame updates resulted in the Gauss-Seidel method 
requiring only two or three iterations for the end-effectors to 
reach acceptable answers.  This resulted in the IK solver 
being able to easily maintain a low-computational overhead 
and run at real-time frame-rates.  Our Gauss-Seidel 
implementation was straightforward and single threaded; 
however, numerous methods have been demonstrated by 
Courtecuisse et al. [36] to exploit even greater performance 
improvements by taking advantage of multi-core 
architectures. 

 

 

Table 1.  Performance of our Gauss-Seidel character implementation.  
Where little or no movement results in 1-2 iterations while sporadic 
changes in posture resulted in ~10 or more iterations. 

Furthermore, our Gauss-Seidel method would only 
require a few mill-seconds to compute the solution.  The 
cost of calculating the full IK biped solution for different 
iteration is shown in Table 1.  Our implementation 
performed at real-time rates and maintained a consistent 
frame-rate well above a 100Hz. 

Simulations were performed on a machine with the 
following specifications: Windows7 64-bit, 16Gb Memory, 
Intel i7-2600 3.4Ghz CPU.  Compiled and tested with 
Visual Studio. 

 

 

Figure 6.  Examples of general disorderedly and chaotic investigation 
poses. 

X. CONCLUSION AND FURTHER WORK 

We presented the Gauss-Seidel technique as a method 
for solving real-time character IK problems.  We used 
temporal caching to reduce the computational cost and gain 
real-time performance speeds.  The results of the IK system 
performed well enough to be used in time critical systems 
(such as games.)  With the angular limits, the method can 

Desired End-Effector 
Positions and Orientations

Current End-Effector 
Positions and Orientations

Iterations 
1                      5                   20 

Avg. 

Time 
0.01ms 0.042ms 0.11ms 

67Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-220-2

CONTENT 2012 : The Fourth International Conference on Creative Content Technologies



 

suffer from singularity problems if the end-effectors jump; 
however, due to the end-effectors following small spatial 
transitions singularities are mostly avoided.   

The algorithm is simple to implement, computationally 
fast, little memory overhead, and is fairly robust.  The IK 
solution can work with multiple end-effectors to produce 
poses with smooth movement with and without constraints. 

While we demonstrated the practical aspect of using the 
Gauss-Seidel method as a valid real-time method for a 
character IK system, further work still needs to be done for a 
more detailed statistical comparison between the 
aforementioned IK solutions; comparing memory, 
complexity and computational costs. 

In additional, a further area of study would be the 
general practical applicability of generating primary and 
secondary IK goals using weighted biasing of conflicting 
constraints (e.g., secondary goal of keeping body within 
balancing stance while always achieving the primary target 
of arms and feet reaching their goals.) 
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