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Abstract—We are currently witnessing a rapid growth of image 
data, triggered by the popularity of the Internet and the huge 
amount of user-generated content from Web 2.0 applications. 
To address the demanding search needs caused by large-scale 
image collections, two major approaches for high-dimensional 
data in cluster systems have been proposed: Speeding up the 
search by using distributed index structures, and speeding up 
the search by scanning a Vector Approximation-file (VA-file) 
in parallel. We propose to combine both techniques to search 
for large k-nearest neighbors (k-NN) in a high-dimensional 
space. We develop a distributed index structure, called a 
Distributed Vector Approximation-tree (DVA-tree), with a 
two-level structure: the first level is a hybrid spill-tree 
consisting of minimum bounding spheres, the second level is 
VA-files.  We also introduce a new approximate k-NN search 
algorithm on this structure and derive cost formulae for 
predicting the response time of the k-NN search. We then 
provide a detailed evaluation on large, high dimensional 
datasets. In an experimental evaluation, we show that our 
indexing scheme can handle approximate k-NN queries more 
efficiently for high-dimensional datasets. 

Keywords-knn search; distributed indexing structure; high 
dimensionality 

I.  INTRODUCTION  
We are currently witnessing a rapid growth of image data, 

triggered by the popularity of the Internet and the huge 
amount of user-generated content from Web 2.0 applications. 
Given such image collections, performing similarity search 
to find objects most similar to a given object is a classical 
problem with many practical applications. A common 
approach to similarity search is to extract so-called features 
from the objects, e.g., color, shape and texture information, 
and to utilize special index structures for these features.  

To address the demanding search needs caused by large-
scale image collections, several distributed index structures 
for high-dimensional data spaces have been proposed. Most 
of the approaches recently published focus mainly on 
supporting range queries or operating in peer-to-peer systems 
[1 - 4]. However, in order to provide similarity on massive 
high-dimensional data in cloud computing services or web 
search services, we need efficient ways of providing a k-
nearest neighbors (k-NN) search for high-dimensional data 
in cluster environments. The k-NN search is a central 

requirement in database applications such content-based 
multimedia retrieval, because it has no input parameters that 
require prior knowledge of data. The “best” indexes have the 
following properties: 

· The index should be deployable over multiple nodes 
in cluster environments. 

· The index should require no special tuning of 
parameters required for each specific dataset.  

· The set of candidates retrieved by the index should 
contain the most similar objects to the query. 

· The number of candidates retrieved must be as small 
as possible, to reduce I/O and computation costs. 

Over the years, little work for providing an efficient and 
scalable access to high-dimensional data in centralized 
systems have been done on the parallelization of trees or 
Vector Approximation-files (VA-files). In [5 - 6], the authors 
used R-trees [7] as underlying data structure, because they 
guarantee good space utilization and treat geometric objects 
as a whole. Koudas et al. [5] proposed a “Master R-tree” 
architecture. A master server contains all the internal nodes 
of the parallel R-tree, and the leaf level nodes are declustered 
across several data servers. The major focus of the work is 
on finding the optimal declustering “chunk size”. Schnitzer 
et al. [6] designed a “Master Client R-tree” as parallel multi-
dimensional indexing structure. The Master Client R-tree is a 
two-level distributed R-tree that has a single global index on 
a master server and local indexes on the other data servers. 
The Master Client R-tree is similar to the Master R-tree in 
the sense that it declusters leaf level nodes across data 
servers. However each data server creates a   complete R-tree 
as its own local index using the leaf level nodes that are 
assigned to it. Liu et al. [8] introduced a parallel version of a 
hybrid spill tree. A top-tree is built on the sample feature 
vectors. Each leaf node in this top-tree then defines the 
partition, for which a hybrid spill-tree is built on a separate 
machine.  

On the other hand, most multi-dimensional indexing 
structures have an exponential dependence upon the number 
of dimensions.  In recognition of this, a VA-file [9] was 
developed to accelerate the scan through the feature vectors. 
The VA-file consists of two separated files: the vector file 
containing the feature vectors, and the approximation file 
containing a compressed representation of each feature 
vector. Nearest neighbor queries are processed using two 
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phases. In the filtering phase, the entire approximation file is 
scanned sequentially to prune the majority of feature vectors. 
The candidates that cannot be pruned are refined by a 
random search of the vector file in the refinement phase.  
Weber et al. [10] and Chang et al. [11] proposed a parallel 
NN-search based on the VA-file to achieve a linear increase 
on search speed as the number of servers grows. However, 
the query response times of these solutions have not been 
satisfactory for a search engine which enables similarity 
search on the World-Wilde Web.   

In this paper, we present a new distributed indexing 
structure for fast nearest neighbor search in high-dimensional 
feature space, called a Distributed Vector Approximation-
tree (DVA-tree). The core problem of designing a fast 
parallel nearest neighbor search algorithm is to find an 
adequate clustering algorithm which distributes the data onto 
the nodes such that the data, which have to be read in 
executing a query, are distributed as equally as possible 
among the nodes. We create a sample small enough to fit on 
a single machine from large-scale feature vectors and build a 
hybrid spill tree on the sample. The feature vectors 
partitioned to each cluster by the built hybrid spill tree are 
stored into a separate machine. A local index server, which 
operates on the separate machine, manages a VA-file as local 
index to process k-NN queries. We also describe how 
parallel k-NN search based on the DVA-tree works and 
derive cost formulae for predicting the response time of the 
parallel k-NN search. We present an experimental evaluation 
of our indexing scheme using both real and synthetic data 
sets, and compare it against previous techniques. The 
experimental results show that our indexing scheme can 
handle approximate k-NN queries more efficiently for high-
dimensional datasets.  

The remainder of this paper is organized as follows. In 
the next section, we first define the similarity queries and 
briefly present existing methods for similarity query 
processing. In Section III, we introduce our newly proposed 
DVA-tree structure.  We also present the approximate k-NN 
search operation on the DVA-tree and derive cost formulae 
for predicting the response time of the k-NN search. Section 
IV reports the findings of an experimental study conducted 
to evaluate the proposed scheme. Finally, in Section V, we 
draw some conclusions. 

II. PRELIMINARY 
A promising and widely used approach for similarity 

searching in multimedia databases is to map the multimedia 
objects into points in a metric space.  The metric spaces 
include high-dimensional vector spaces, where objects are 
compared using Euclidean (L2) distance.  

A metric space M=(D, d), where D is a domain of objects 
and d is a total distance function  with the following 
properties: 

Symmetry: d(Ox, Oy) = d(Oy, Ox) 
Non negativity: d(Ox, Oy) > 0 (Ox≠Oy) and d(Ox, Ox)=0 

Triangle inequality: d(Ox, Oy) ≤ d(Ox, Oz) + d(Oz, Oy) 

 

The distance between two points P and Q in the metric space 
is defined by Euclidean distance function: 
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The similarity queries in a D-dimensional space may be 
defined as follows: 
 

Definition II.1 Range Query 
Given a query object Q∈D and a maximum search distance 
r, the range query range(Q, r) selects all indexed objects Oj 
such that d(Oj, Q) ≤ r. 

Definition II.2 k- Nearest Neighbors (k-NN) 
Given a query object Q∈D and an integer k ≥1, the k-NN 
query NN(Q, k) selects the k indexed objects which have the 
shortest distance from Q. 
 

In order to achieve a better performance of k-NN search, 
two classes of techniques (index structures and scan 
methods) have been proposed for high-dimensional data. The 
basic idea of most high-dimensional indexing structures is to 
construct a tree structure by partitioning the data space or 
clustering data. These methods can prune the search space 
for queries using the partitioning.  In a M-tree [12],   for each 
routing object Or, there is an associated sub-tree T(Or), called 
the covering tree of Or. All objects in the covering tree T(Or) 
are within the distance r from  Or,  r > 0. Given a query Q, a 
lower bound dmin(T(Or)) on the distance of any object in 
T(Or) from Q  is 

 }0,),(max{))((min rQOdOTd rr -=  (2) 

Upper bound is  

 rQOdOTd rr += ),())((max
 (3) 

Consider the largest distance dk in current nearest neighbors. 
At the execution of k-NN search, the order in which nodes 
are visited can be determined by selecting the node for which 
the dmin lower bound is minimum, and  any sub-tree for 
which dmin(T(Or)) > dk  can be pruned from the search.  
According to experimental observations, these lead to better 
performance. 

The scan based VA-File [9] divides the data space into 2b 
rectangular cells where b denotes a user specified number of 
bits.  For each dimension j, a small number of bits (bj) is 
assigned.  There are 2bj partitions along dimension j, 
requiring 2bj + 1 marks, i.e., mj[0], …, mj[2bj]. An 
approximation a for a data point p is generated as follows.  
Let aj be the number of the partition into which pj falls. A 
point falls into a partition only if it lies between the lower 
and upper bounds of that partition: 

33Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-220-2

CONTENT 2012 : The Fourth International Conference on Creative Content Technologies



 ]1[][ +<£ jjjjj amPam  (4) 

The approximation a is simply the concatenation of the 
binary bj-bit patterns for each partition.  
 

 
Figure 1. lower and upper bounds for L2(Q, P) 

 
In Fig.1, the lower and upper bounds on the distance 
between a query point Q and a data point P are determined 
by the equations: 

 uBoundPQLlBound ££ ),(2  (5) 
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In the VA-file, the approximations are scanned linearly. 

A feature vector is a candidate whenever less than k feature 
vectors have been encountered, or whenever the lower bound 
is less than the k-th largest upper bound currently in the 
candidate set. The actual distance based on L2 is evaluated 
only for these candidate feature vectors. In practical 
experiments, between 95% and 99% of the feature vectors 
were eliminated during scan step of approximations. The 
main advantage of the VA-file is that it retains good 
performance as dimensionality increases. 

III. THE DVA-TREE 
In order to improve the data access performance through 

the benefit of parallel process, it is important to distribute 
large data across multiple machines. For skewed 
distributions, the data density in some parts of a data space is 
higher than in other parts. Therefore, the core idea for a 
distributed indexing structure is to find an adequate 

clustering algorithm which distributes the data onto the 
nodes such that the data, which have to be read in executing 
a query, are distributed as equally as possible among the 
nodes.  On the other hand, a sequential scan is superior to 
tree-based structures on a single machine, if the 
dimensionality of feature vectors exceeds a certain threshold 
[9]. We employ a tree structure as a clustering strategy. The 
tree is utilized for query processing, as usual, to restrict the 
search to relevant parts of the data space. The data points in 
each leaf node of the tree are stored into a separate machine 
with the VA-file. 

A. The Strucuture 
The structure of a DVA-tree is illustrated in Fig. 2. The 

DVA-tree is a distributed version of a two-level index 
scheme. The first level is a hybrid spill-tree consisting of 
minimum bounding spheres, the second level contains data 
points in a compressed representation. 

 

 
 

Figure 2. Structure of the DVA-tree 
 

We first create a sample small enough to fit on a single 
machine from large-scale feature vectors. To accurately 
predict clusters of the entire feature vectors, we use the 
subset obtained from the feature vectors using random 
sampling method, and then build a hybrid spill tree on the 
sample. The hybrid spill-tree is the latest data partition 
method that is efficient in both accuracy and time of retrieval. 
The feature vectors partitioned to each cluster by the built 
hybrid spill tree are stored into a separate machine. Each of 
the separate machines manages a VA-file as local index to 
process a k-NN queries. The overall DVA-tree can be 
viewed conceptually as a single hybrid spill-tree, spanning a 
large number of machines. 

B. K-NN Queries 
The k-NN queries are processed by the three phases as 

shown in Fig. 3. In the first phase, the k-NN queries are 
submitted to the global index server owning the hybrid spill-
tree. The global index server traverses the hybrid spill-tree in 
order to determine which VA-file(s) must be accessed.  At 
this time, the global index server transforms the k-NN 
queries into range queries with arbitrary thresholds. The 
thresholds for the range queries are the average k-th distance 
between the sample data. They are computed while building 
the hybrid spill-tree. In the DVA-tree, whole clusters can be 
pruned by traversing the hybrid spill-tree. The k-NN queries 
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are forwarded to the local index servers determined by the 
global index server. In the second phase, the local index 
servers process the k-NN queries on the VA-files in parallel. 
In the third phase, final results of the k-NN queries are 
obtained from candidate neighbors returned by the multiple 
local index servers. 

 

 
 

Figure 3. K-NN Search 
 

The cost of k-NN query processing TQP on a DVA-tree 
consists of the following components: 

· Cost for traversing a hybrid spill-tree 
· Cost for searching a k-NN query on a VA-file 
· Cost for merging candidates  

Relevant symbols and their descriptions are given in Table 1. 

TABLE I.  SUMMARY OF SYMBOLS AND RESPECTIVE DEFINITIONS 

Symbol Descriptions 
D number of dimensions 
Q query point 
k number of nearest neighbors 

k  average kth distance between points in a sample 

F(x) distance distribution 
Or routing point stored in an internal node on a hybrid spill- tree 
r(Nr) covering radius of node Nr 
l number of nodes in a hybrid spill-tree 

m number of leaf nodes accessed for processing a range query on 
a hybrid spill-tree 

v number of points stored in a local index server 
b number of bits used for bit encoding (compressing) 

tapprox 
time to compute lower and upper bounds per dimension in a 
filtering step for a VA-file search 

tvector 
time to compute the distance between two points per 
dimension 

w number of points remained after the filtering step of a VA-file 
search  

tread time to load a block from a disk  

tcompare 
time to compare two distances between two points and a query 
point 

 
For simplicity, we assume that data points are uniformly 

and independently distributed in the data space. First, 
consider a range query rang(Q,k ). A node Nr of the hybrid 
spill-tree has to be accessed iff the ball of radius k  centered 
in the query object  Q and the region associated with Nr 

interset. This is the case iff d(Q, Or) ≤ r(Nr) +k . For instance, 

the distribution of distance is F(x) = Pr{d(O1, O2) ≤x}. The 
probability that Nr  has to be accessed can be expressed [13] 
as 
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The expected number of nodes accessed for a range query is  
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If the hybrid spill-tree fits entirely into main memory, no IO 
operation are necessary. Therefore, the average cost for a 
range query is the sum of the costs of distance computation 
among the query point and the accessed nodes. 

 )()),((1 vectorst tDkQrangenodesT ××=  (10) 

The local index servers corresponding to m leaf nodes 
determined by tree search process the k-NN query using a 
VA-file in parallel.  The points v in each local index sever 
may be represented by a unique bit-string of length b. We 
consider the case that the approximation file fits into main 
memory. The cost of  the filtering phase is 

 )(btDvT approxf ××=  (11) 

After the filtering phase, a small set of candidiates remain.  
In the refinement phase, the number w of points visited is 
represented in [14]. The disk IO occurs by random access to 
the vector file. The cost of the refinement step can be derived 
as 

 )( vectorreadr tDtwT ×+×=  (12) 

Finally, the total cost of theVA-File based k-NN search is the 
sum of the costs of the two phases. 

 
rfnd TTT +=2
 (13) 

Each local index server returns k sorted candidate points. The 
final k nearest neighbors are determined by comparing m×k 
candidate points obtained from  m local index servers. The 
merge cost of the candidate points is estimated as 

 
comparerd tmkT ×-×= )1(3

 (14) 

Finally, the estimated total cost for k-NN query processing is 

 
rdndstQP TTTT 321 ++=  (15) 
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IV. EXPERIMENTAL RESULTS 
In this section, we present an experimental study to 

evaluate the performance of the DVA-tree. The performance 
is evaluated using the average execution time and accuracy 
of a k-NN search over 100 different queries. We compare the 
performance of the DVA-tree with that of the distributed 
hybrid spill-tree [8] because the distributed hybrid spill-tree 
is a recent indexing structure based on a cluster environment.  

The distributed hybrid spill-tree and DVA-tree algorithms 
were developed using the M-tree C++ package [15]. We 
report our experimental results based on real and synthetic 
datasets. We use a real data set, Aerial40 [16]. Aerial40 
contains 270,000 feature vectors with 61 dimensions. 

All the experiments were conducted on eight server 
machines in a Linux cluster based on a global file system. 
Each of the eight servers has a 3.40 GHz Pentium® D CPU 
processor with 2.4 GB of memory capacity. For the 
distributed hybrid spill-tree or DVA-tree, we dedicated a 
master server and six other servers as local index servers that 
execute k-NN queries either on the local hybrid spill-tree or 
VA-file. Meanwhile, we used the last server as a merger to 
integrate the k-NN search results from the local index servers. 
This is to construct a similar query execution environment as 
the MapReduce operations for the nearest neighbor search 
proposed in [8]. In order to emulate a larger configuration 
including more than six local index servers, we also ran 
multiple local index servers on a single machine. The 
intercommunication between the master server and local 
index servers is done via TCP/IP. 

For a fair performance comparison, the top trees of the 
DVA-tree and distributed hybrid spill-tree are built on same 
sample data, and all the indexing structures have the same 
number of index servers. The number of bits per dimension 
of approximation cell used in the VA-file is 8. 

In many applications, data points are often correlated in 
different ways. We test the performance of the DVA-tree and 
the distributed hybrid spill-tree on the skewed dataset of 
Aerial40. For a fair performance comparison, the top trees of 
the DVA-tree and distributed hybrid spill-tree are built on 
same sample data.  

 

 
Figure 4. The search time on the skewed dataset. 

 
Fig. 4 depicts the performance of the approximate k-NN 

searches as the number of the required nearest neighbors 

increases. The results show that the average execution time 
of the approximate k-NN searches on the DVA-tree runs up 
to 1.78 times faster than on the distributed hybrid spill-tree. 
Moreover, we can notice that the performance gap between 
the DVA-tree and the distributed hybrid spill-tree steadily 
widens as the number of the nearest neighbors increases. 
This is based on the fact that the DVA-tree executes the 
nearest neighbor search based on the VA-file, which scans 
the entire approximation data regardless of the number of 
required neighbors and performs disk operations for few 
vector data. However, the distributed hybrid spill-tree has an 
amount of overhead for processing directories of the tree, 
and this overhead increases when increasing the number of 
desired nearest neighbors. Therefore, the processing delay 
for a nearest neighbor search increases more slowly for the 
DVA-tree than for the distributed hybrid spill-tree. 

On the other hand, both the DVA-tree and distributed 
hybrid spill-tree yield better performances, when we use the 
smaller page capacity of leaf nodes in the top tree. This can 
be explained by the fact that the top tree with smaller page 
capacity of leaf nodes enables the parallel k-NN queries to be 
performed over more local index servers. We observe that 
the DVA-tree yields better performance than the distributed 
hybrid spill-tree regardless of the size of the leaf pages in the 
top-tree. The results are shown in Fig. 4. 

 
Figure 5. The search accuracy of the skewed dataset. 

 
Fig. 5 shows the search accuracy by varying the page 

capacity of the tree from 128 KBytes to 256 KBytes. The 
DVA-tree obtains a better search accuracy compared to the 
distributed hybrid spill-tree when using the same sized leaf 
pages, because it performs k-NN queries based on the VA-
file, which provides an exact k-NN search.  
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Figure 6. The k-NN search time for different data size. 

 
Fig. 6 shows the performance of the approximate 100-

NN search by varying the number of data from 200,000 to 
1,000,000. This result is similar to those of experiments 
using the real dataset and clearly shows the effectiveness of 
the DVA-tree. The DVA-tree outperforms the distributed 
hybrid spill-tree in terms of execution time as the number of 
data increases. This is due to the fact that local index servers 
in the DVA-tree utilize the VA-file technique without any 
processing overhead of the directory of the tree. In 
recognition of this fact, if we consider a larger dataset or a 
higher number of dimensions, such as 100, the difference 
between search performances will widen even more. 

V. CONCLUSIONS 
In this paper, we presented the design of a new high-

dimensional indexing scheme, called a DVA-tree, to solve 
the distributed k-nearest neighbor search problem over large- 
scale high-dimensional data in cluster environments. The 
DVA-tree employs a hierarchical clustering method and 
distributed VA-file management in order to allow a parallel 
k-NN search on each of the VA-files. We use a hybrid spill-
tree as a clustering method and build the hybrid spill-tree on 
the sample data of large-scale high-dimensional data, 
because the sampling is independent of the dimensionality 
and the sampled data maintain the cluster information of the 
data set stored in the database. The data sets clustered by the 
hybrid spill-tree are managed on distributed VA-files. We 
proposed an algorithm for approximate k-NN searches over 
multiple machines. Our experimental evaluation indicates 
that the DVA-tree can efficiently provide a k-NN search with 
high accuracy. Moreover, since our algorithms are very 
simple, they are appropriate for data sets of tremendous size 
or dimensions. 
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