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Abstract—In recent years, several successful applications of the
Artificial Neural Networks (ANNs) have emerged in nuclear
physics and high-energy physics, as well as in biology, chem-
istry, meteorology, and other fields of science. A major goal
of nuclear theory is to predict nuclear structure and nuclear
reactions from the underlying theory of the strong interactions,
Quantum Chromodynamics (QCD). With access to powerful
High Performance Computing (HPC) systems, several ab initio
approaches, such as the No-Core Shell Model (NCSM), have been
developed to calculate the properties of atomic nuclei. However,
to accurately solve for the properties of atomic nuclei, one faces
immense theoretical and computational challenges. The present
study proposes a feed-forward ANN method for predicting the
properties of atomic nuclei like ground state energy and ground
state point proton root-mean-square (rms) radius based on NCSM
results in computationally accessible basis spaces. The designed
ANNE s are sufficient to produce results for these two very different
observables in ®Li from the ab initio NCSM results in small basis
spaces that satisfy the theoretical physics condition: independence
of basis space parameters in the limit of extremely large matrices.
We also provide comparisons of the results from ANNs with
established methods of estimating the results in the infinite matrix
limit.

Keywords—Nuclear structure of ®Li; ab initio no-core shell
model; ground state energy; point proton root-mean-square radius;
artificial neural network.

I. INTRODUCTION

Nuclei are complicated quantum many-body systems,
whose inter-nucleon interactions are not known precisely. The
goal of ab initio nuclear theory is to accurately describe nuclei
from the first principles as systems of nucleons that interact by
fundamental interactions. With sufficiently precise many-body
tools, we learn important features of these interactions, such
as the fact that three-nucleon (NNN) interactions are critical
for understanding the anomalous long lifetime of *C [1].
With access to powerful High Performance Computing (HPC)
systems, several ab initio approaches have been developed to
study nuclear structure and reactions, such as the No-Core
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Shell Model (NCSM) [2], the Green’s Function Monte Carlo
(GFMCO) [3], the Coupled-Cluster Theory (CC) [4], the Hyper-
spherical expansion method [5], the Nuclear Lattice Effective
Field Theory [6][7], the No-Core Shell Model with Continuum
[2] and the NCSM-SS-HORSE approach [8]. These approaches
have proven to be successful in reproducing the experimental
nuclear spectra for a small fraction of the estimated 7000 nuclei
produced in nature.

The ab initio theory may employ a high-quality realistic
nucleon-nucleon (NN) interaction, which gives an accurate
description of NN scattering data and predictions for binding
energies, spectra and other observables in light nuclei. Dae-
jeonl6 is a NN interaction [9] based on Chiral Effective Field
Theory (xEFT), a promising theoretical approach to obtain a
quantitative description of the nuclear force from the first prin-
ciples [10]. This interaction has been designed to describe light
nuclei without explicit use of NNN interactions, which require
a significant increase of computational resources. It has also
been shown that this interaction provides good convergence of
many-body ab initio NCSM calculations [9].

Properties of 61i and other nuclei, such as H, 3He, *He,
6He, 8He, 9B, 12C and 60, were investigated using the ab
initio NCSM approach with the Daejeonl6 NN interaction
and compared with JISP16 [11] results. The results showed
that Daejeon16 provides both improved convergence and better
agreement with data than JISP16. These calculations were per-
formed with the code MFDn [12]-[14], a hybrid MPI/OpenMP
code for ab initio nuclear structure calculations. However, one
faces major challenges to approach convergence since, as the
basis space increases, the demands on computational resources
grow very rapidly.

The present work proposes a feed-forward Artificial Neural
Network (ANN) method as a different approach for obtaining
the properties of atomic nuclei such as the ground state
(gs) energy and the ground state (gs) point proton root-
mean-square (rms) radius based on results from readily-solved
basis spaces. Feed-forward ANNs can be viewed as universal
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non-linear function approximators [15]. Moreover, ANNs can
find solution when algorithmic methods are computationally
intensive or do not exist. For this reason, ANNs are considered
a more powerful modeling method for mapping complex non-
linear input-output problems. The output values of ANNs are
obtained by simulating the human learning process from the set
of learning examples of the input-output association provided
to the network. Additional information about ANNs can be
found in [16][17].

Although the gs energy and the gs point proton rms
radius are ultimately determined by complicated many-body
interactions between the nucleons, the variation of the NCSM
calculation results appears to be smooth with respect to the
two basis space parameters, h{2 and Np.x, where R is
the harmonic oscillator (HO) energy and Np.x is the basis
truncation parameter. In practice, these calculations are limited
and one can not calculate the gs energy or the gs point proton
rms radius for very large NVy,.x. To obtain the gs energy and
the gs point proton rms radius as close as possible to the exact
results, the results are extrapolated to the infinite model space.
However, it is difficult to construct a simple function with a
few parameters to model this type of variation and extrapolate
the results to the infinite matrix limit. The advantage of ANN
is that it does not need an explicit analytical expression to
model the variation of the gs energy or the gs point proton
rms radius with respect to AS) and Nyax. The feed-forward
ANN method is very useful to find the converged result at
very large Nyax-

In recent years, ANNs have been used in many areas of
nuclear physics and high-energy physics. In nuclear physics,
ANN models have been developed for constructing a model
for the nuclear charge radii [18], determination of one and
two proton separation energies [19], developing nuclear mass
systematics [20], identification of impact parameter in heavy-
ion collisions [21]-[23], estimating beta decay half-lives [24]
and obtaining potential energy curves [25]. In high-energy
physics, ANNs are used routinely in experiments for both
online triggers and offline data analysis due to an increased
complexity of the data and the physics processes investigated.
Both the DIRAC [26] and the H1 [27] experiments used ANNs
for triggers. For offline data analysis, ANNs were used or
tested for a variety of tasks, such as track and vertex re-
construction (DELPHI experiment [28]), particle identification
and discrimination (decay of the Z° boson [29]), calorimeter
energy estimation and jet tagging. Tevatron experiments used
ANNs for the direct measurement of the top quark mass [30]
or leptoquark searches [31]. In terms of types of ANNs, the
vast majority of applications in nuclear physics and high-
energy physics were based on feed-forward ANNSs, other types
of ANNs remaining almost unexplored. An exception is the
DELPHI experiment, which used a recurrent ANN for tracking
reconstruction [28].

This research presents results for two very different phys-
ical observables for ®Li, gs energy and gs point proton
rms radius, produced with the feed-forward ANN method.
Theoretical data for °Li are available from the ab initio
NCSM calculations with the MFDn code using the Daejeon16
NN interaction and HO basis spaces up through the cutoff
Npax = 18. This cutoff is defined for 6Li as the maximum
total HO quanta allowed in the Slater determinants forming the
basis space less 2 quanta. The dimension of the resulting many-
body Hamiltonian matrix is about 2.8 billion at this cutoff. We
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return to discussing the many-body HO basis shortly. However,
for the training stage of ANN, data up through N.x = 10
was used, where the Hamiltonian matrix dimension for SLi
is only about 9.7 million. Comparisons of the results from
feed-forward ANNs with established methods of estimating the
results in the infinite matrix limit are also provided. The paper
is organized as follows: In Section II, short introductions to the
ab initio NCSM method and ANN’s formalism are given. In
Section III, our ANN’s architecture is presented. Section IV
presents the results and discussions of this work. Section V
contains our conclusion and future work.

II. THEORETICAL FRAMEWORK

The NCSM is an ab initio approach to the nuclear many-
body problem for light nuclei, which solves for the properties
of nuclei for an arbitrary NN interaction, preserving all the
symmetries. Naturally, the results obtained with this method
are limited to the largest computationally feasible basis space.
We will show that the ANN method is useful to make pre-
dictions at ultra-large basis spaces using available data from
NCSM calculations at smaller basis spaces. More discussions
on these two methods are presented in each subsection.

A. Ab initio NCSM Method

In the NCSM method, the neutrons and protons (separate
species of nucleons) interact independently with each other.
The Hamiltonian of A nucleons contains kinetic energy (7}e1)
and interaction (V') terms

HA:Trel+V
1 (5 —5)? | < < 1
:ZZ%+Z‘/U+ Z ‘/ijk+ ey ()
1<J 1<J i<j<k

where m is the nucleon mass, p; is the momentum of the i-
th nucleon, V;; is the NN interaction including the Coulomb
interaction between protons and V;;;, is the NNN interaction.
Higher-body interactions are also allowed and signified by the
three dots. The HO center-of-mass (CM) Hamiltonian with a
Lagrange multiplier is added to the Hamiltonian above to force
the many-body eigenstates to factorize into a CM component
times an intrinsic component as in [32]. This way, the spurious
CM excited states are pushed up above the physically relevant
states, which have the lowest eigenstate of the HO for CM
motion.

With the nuclear Hamiltonian specified above in (1), the
NCSM solves the A-body Schrodinger equation using a matrix
formulation

HA\IJA(Fl,FQ,...,’FA):E\I}A(F17FQ,...,FA)7 (2)

where the A-body wave function is given by a linear combi-
nation of Slater determinants ¢;

k
\IIA(FlaF27"'7FA):Zci¢i(F17F23"'7FA)1 (3)
=0

and where k is the number of many-body basis states, con-
figurations, in the system. To obtain the exact A-body wave
function one has to consider infinite number of configurations,
k = oo. However, in practice, the sum is limited to a
finite number of configurations determined by Ny.x. The
Slater determinant ¢; is the antisymmetrized product of single
particle wave functions ¢, (), where « stands for the quantum
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numbers of a single particle state. A common choice for the
single particle wave functions is the HO basis functions. The
matrix elements of the Hamiltonian in the many-body HO basis
is given by H,;; = (¢;|H|¢;). For these large and sparse
Hamiltonian matrices, the Lanczos method is one possible
choice to find the extreme eigenvalues [33].

To be more specific, our limited many-body HO basis is
characterized by two basis space parameters: hS) and Ny,
where A2 is the HO energy and N, is the basis truncation
parameter. In this approach, all possible configurations with
Npax excitations above the unperturbed gs (the HO configura-
tion with the minimum HO energy defined to be the Ny ax = 0
configuration) are considered. Even values of Ny, correspond
to states with the same parity as the unperturbed gs and are
called the “natural” parity states, while odd values of Ny ax
correspond to states with “unnatural” parity.

Due to the strong short-range correlations of nucleons in a
nucleus, a large basis space, or model space, one that is often
not feasible, is required to achieve convergence. To obtain the
gs energy and other observables as close as possible to the
exact results one has to choose the largest feasible basis spaces.
Next, if numerical convergence is not achieved, which is often
the case, the results are extrapolated to the infinite model space.
To take the infinite matrix limit, several extrapolation methods
have been developed (see, for example, [34]).

B. Artificial Neural Networks

ANNs are powerful tools that can be used for function
approximation, classification and pattern recognition, such as
finding clusters or regularities in the data. The goal of ANNs
is to find a solution efficiently when algorithmic methods are
computationally intensive or do not exist. An important advan-
tage of ANNSs is the ability to detect complex non-linear input-
output relationships. For this reason, ANNs can be viewed as
universal non-linear function approximators [15]. Employing
ANNSs for mapping complex non-linear input-output problems
offers a significant advantage over conventional techniques,
such as regression techniques, because ANNs do not require
explicit mathematical functions.

ANNs are defined as computer algorithms that mimic the
human brain, being inspired by biological neural systems.
Similar to the human brain, ANNs can perform complex tasks,
such as learning, memorization and generalization. They are
capable of learning from experience, storing knowledge and
then applying this knowledge to make predictions.

A biological neuron has a cell body, a nucleus, dendrites
and an axon. Dendrites act as inputs, the axon propagates
the signal and the interaction between neurons takes place
at synapses. Each synapse has an associated weight. When
a neuron ‘fires’, it sends an output through the axon and the
synapse to another neuron. Each neuron then collects all the
inputs coming from linked neurons and produces an output.

The artificial neuron (AN) is a model of the biological
neuron. Figure 1 shows a representation of an AN. Similarly,
the AN receives a set of input signals (x1, 2, ...,x,) from
an external source or from another AN. A weight w; (i =
1,...,n) is associated with each input signal z; (i =1,...,n).
Additionally, each AN that is not in the input layer has another
input signal called the bias with value 1 and its associated
weight b. The AN collects all the input signals and calculates
a net signal as the weighted sum of all input signals as
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n+1

net = Z W; T 4
i=1

where z,+1 =1 and w41 = b.

Next, the AN calculates and transmits an output signal,
y. The output signal is calculated using a function called an
activation or transfer function, which depends on the value of
the ner signal, y = f(net).

input signals

X, weights output signal

xW

1
X2 xW2
y
xW

Xn

xD
1

Figure 1. An artificial neuron.

ANNSs consist of a number of highly interconnected ANs
which are processing units. One simple way to organize ANs
is in layers, which gives a class of ANN called multi-layer
ANN. ANNs are composed of an input layer, one or more
hidden layers and an output layer. The neurons in the input
layer receive the data from outside and transmit the data via
weighted connections to the neurons in the hidden layer, which,
in turn, transmit the data to the next layer. Each layer transmits
the data to the next layer. Finally, the neurons in the output
layer give the results. The type of ANN, which propagates the
input through all the layers and has no feed-back loops is called
a feed-forward multi-layer ANN. For simplicity, throughout
this paper we adopt and work with a feed-forward ANN. For
other types of ANN, see [16][17].

Figure 2 shows an example of a feed-forward three-layer
ANN. It contains one input layer, one hidden layer and one
output layer. The input layer has n ANs, the hidden layer
has m ANs and the output layer has p ANs. The connections
between the neurons are weighted as follows: vj; are the
weights between the input layer and the hidden layer, and wy;
are the weights between the hidden layer and the output layer,
where i = 1,...,n), (j = 1,...,m) and (k = 1,...,p). In
this example, the input layer has no activation function, the
hidden layer has activation function f and the output layer
has activation function g. It is also possible to have a different
activation function for each individual neuron.

The activation function in the hidden layer, f, is different
from the activation function in the output layer, g. For function
approximation, a common choice for the activation function
for the neurons in the hidden layer is a sigmoid or sigmoid-like
function, while the neurons in the output layer have a linear
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output layer

hidden layer

input layer
Figure 2. A three-layer ANN.
function: L
=— 5
f@) = e )
where a is the slope parameter of the sigmoid function and
g(z) =z (©)

The neurons with non-linear activation functions allow the
ANN to learn non-linear and linear relationships between
input and output vectors. Therefore, sufficient neurons should
be used in the hidden layer in order to get a good function
approximation.

In the example shown in Figure 2 and with the notations
mentioned above, the network propagates the external signal
through the layers producing the output signal zj at neuron k
in the output layer

m—+1
2l = g(netzk) = g(z wkjf(netyj))
=1
TiLJrl n+1 (7)

=g()_ wi O vjimi).
j=1 i=1

The use of an ANN is a two-step process, training and
testing stages. In the training stage, the ANN adjusts its
weights until an acceptable error level between desired and
predicted outputs is obtained. The difference between desired
and predicted outputs is measured by the error function, also
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called the performance function. A common choice for the
error function is mean square error (MSE).

There are multiple training algorithms based on various
implementations of the back-propagation algorithm [35], an
efficient method for computing the gradient of error functions.
These algorithms compute the net signals and outputs of each
neuron in the network every time the weights are adjusted as
in (7), the operation being called the forward pass operation.
Next, in the backward pass operation, the errors for each
neuron in the network are computed and the weights of the
network are updated as a function of the errors until the
stopping criterion is satisfied. In the testing stage, the trained
ANN is tested over new data that was not used in the training
process. The predicted output is calculated using (7).

One of the known problems for ANN is overfitting: the
error on the training set is within the acceptable limits, but
when new data is presented to the network the error is large.
In this case, ANN has memorized the training examples, but
it has not learned to generalize to new data. This problem can
be prevented using several techniques, such as early stopping,
regularization, weight decay, hold-out method, m-fold cross-
validation and others.

Early stopping is widely used. In this technique the avail-
able data is divided into three subsets: the training set, the
validation set and the test set. The training set is used for
computing the gradient and updating the network weights and
biases. The error on the validation set is monitored during
the training process. When the validation error increases for a
specified number of iterations, the training is stopped, and the
weights and biases at the minimum of the validation error are
returned. The test set error is not used during training, but it is
used as a further check that the network generalizes well and
to compare different ANN models.

Regularization modifies the performance function by
adding a term that consists of the mean of the sum of squares
of the network weights and biases. However, the problem with
regularization is that it is difficult to determine the optimum
value for the performance ratio parameter. It is desirable to
determine the optimal regularization parameters automatically.
One approach to this process is the Bayesian regularization
of David MacKay [36]. The Bayesian regularization algorithm
updates the weight and bias values according to Levenberg-
Marquardt [35][37] optimization. It minimizes a linear com-
bination of squared errors and weights and it also modifies the
regularization parameters of the linear combination to generate
a network that generalizes well. See [36][38] for more detailed
discussions of Bayesian regularization.

For further and general background on the ANN and
how to prevent overfitting and improve generalization refer
to [16][17].

III. ANN DESIGN

The topological structure of ANNs used in this study
is presented in Figure 3. The designed ANNs contain one
input layer with two neurons, one hidden layer with eight
neurons and one output layer with one neuron. The inputs
were the basis space parameters: the HO energy, A2, and the
basis truncation parameter, Ny,,x, described in Section II. The
desired outputs were the gs energy and the gs point proton rms
radius of °Li. An ANN was designed for each desired output:
one ANN for gs energy and another ANN for gs point proton
rms radius. The optimum number of neurons in the hidden
layer was obtained according to a trial and error process.
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energy

or
proton
rms radius

input layer

hidden layer

output layer

Figure 3. Topological structure of the designed ANN.

The activation function employed for the hidden layer was
a widely-used form, the hyperbolic tangent sigmoid function

2

Ate2) L, (®)

f(x) = tansig(x) =

where x is the input value of the hidden neuron and f(z)
is the output of the hidden neuron. tansig is mathematically
equivalent to the hyperbolic tangent function, tanh, but it
improves network functionality because it runs faster than
tanh. It has been proven that one hidden layer and sigmoid-
like activation function in this layer are sufficient to approxi-
mate any continuous real function, given sufficient number of
neurons in the hidden layer [39].

MATLAB software v9.2.0 (R2017a) with Neural Network
Toolbox was used for the implementation of this work. As
mentioned before in Section I, the data set for 5Li was taken
from the ab initio NCSM calculations with the MFDn code
using the Daejeonl6 NN interaction [9] and basis spaces up
through Np,.x = 18. However, only the data with even Ny ax
values corresponding to “natural” parity states and up through
Npax = 10 was used for the training stage of the ANN.
The training data was limited to Ny.x = 10 and below since
future applications to heavier nuclei will likely not have data
at higher Np.x values due to exponential increase in the
matrix dimension. This Np.x < 10 data set was randomly
divided into two separate sets using the dividerand function in
MATLAB: 85% for the training set and 15% for the testing set.
A back-propagation algorithm with Bayesian regularization
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with MSE performance function was used for ANN training.
Bayesian regularization does not require a validation data set.
For function approximation, Bayesian regularization pro-
vides better generalization performance than early stopping in
most cases, but it takes longer to converge. The performance
improvement is more noticeable when the data set is small
because Bayesian regularization does not require a validation
data set, leaving more data for training. In MATLAB, Bayesian
regularization has been implemented in the function trainbr.
When using trainbr, it is important to train the network until
it reaches convergence. In this study, the training process is
stopped if: (1) it reaches the maximum number of iterations,
1000; (2) the performance has an acceptable level; (3) the
estimation error is below the target; or (4) the Levenberg-
Marquardt adjustment parameter 1 becomes larger than 10'°.
A good typical indication for convergence is when the max-
imum value of p has been reached. During training, one can
choose to show the Neural Network Training tool (nntraintool)
GUI in MATLAB to monitor the training progress. Figure 4
illustrates a training example as it appears in nntraintool.
0@

Neural Network Training (nntraintool)

Neural Network

Hidden Output

Algorithms

.

Data Division: Random (dividerand)

Training: Bayesian Regularization (trainbr)
Performance: Mean Squared Error (mse)
Calculations:  MEX

Progress
Epoch: 0 526 itefations 1000
Time: 0:00:05
Performance: 0.744 2.94e-06 1| 0.00
Gradient: 217 2.94a-07 1| 1.00e-07
Mu: 0.00500 5.00e+10 1.00e+10
Effective # Param: 33.0 | 28.8 0.00
Sum Squared Param: 82 | 122 0.00
Walidation Checks: 0 0 0
Plots
Performance (plotperform)
Training State (plottrainstate)
Error Histogram (ploterrh list)
Regression (plotregression)
Fit (plotfit)
Plot Interval: PN g g 1 epochs
v 'Maximum MU reached.'
@ Stop Training @ Cancel

Figure 4. Neural Network Training tool (nntraintool) in MATLAB.

Note the ANN architecture view and the training stopping
parameters with their ranges.
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IV. RESULTS AND DISCUSSIONS

Every ANN creation and initialization function starts with
different initial conditions, such as initial weights and biases,
and different division of the training, validation, and test data
sets. These different initial conditions can lead to very different
solutions for the same problem. Moreover, it is also possible to
fail in obtaining realistic solutions with ANNSs for certain initial
conditions. For this reason, it is a good idea to train several
networks to ensure that a network with good generalization is
found. Furthermore, by retraining each network, one can verify
a robust network performance.

Figure 5 shows the training procedure of 100 ANNs with
architecture mentioned in Section III using the trainbr function
for Bayesian regularization. Each ANN is trained starting
from different initial weights and biases, and with different
division for the training and test data sets. To ensure good
generalization, each ANN is retrained 5 times.

| net = fitnet (8, 'trainbr’);
2 net.performFcn = 'mse’;

3 numNN = 100;

4 numNNr = 5;

5 NN = cell (numNNr, numNN) ;

6 trace = cell (numNNr, numNN);
7 perfs = zeros (numNNr, numNN);
8 $ train numNN ANNs

9 for i = 1:numNN

10 % retrain each ANN numNNr times

11 for j = l:numNNr

12 [NN{j}{i},trace{j}{i}] = train(net, x, t);
13 Y2 = NN{j}{i} (x2);

14 perfs(j, i) = perform(NN{j}{i}, t2, y2);
15 net = NN{j}{i};

16 end

17 % reinitialize initial weights and biases
18 net = init (net);

19 end

20 minPerf = min(perfs(:))

21 [rowMin, colMin] = find(perfs == minPerf)

2 net = NN{rowMin}{colMin};
23 tr = trace{rowMin} {colMin};

Figure 5. Training 100 ANNs and retraining each ANN 5 times to
find the best generalization.

The performance function, such as MSE, measures how
well ANN can predict data, i.e., how well ANN can be
generalized to new data. The test data sets are a good measure
of generalization for ANNS since they are not used in training.
A small performance function on the test data set indicates
an ANN with good performance was found. In this work, the
ANN with the lowest performance on the test data set is chosen
to make future predictions.

Using the methodology described above, two ANNSs are
chosen to predict the gs energy and the gs point proton rms
radius. The ANN prediction results for the gs energies and gs
proton rms radii of SLi are presented in detail in this section.
Comparison with the ab initio NCSM calculation results is also
provided for the available data at Ny, = 12 — 18.

Figure 6 presents the gs energy of Li as a function of
the HO energy, h(2, at selected values of the basis truncation
parameter, Ny.x. The dashed curves connect the NCSM
calculation results using the Daejeon16 NN interaction for
Npmax = 2 — 10, in increments of 2 units, used for ANN
training and testing. The solid curves link the ANN prediction
results for Np.x = 12 — 70. The sequence from Ny.x =
12 — 30 is in increments of 2 units, while the sequence from
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Nmax = 30 — 70 is in increments of 10 units. The lowest
horizontal line corresponds to Ny,,x = 70 and represents
the nearly converged result predicted by ANN. Convergence
is defined as independence of both basis space parameters,
A and Npax. The convergence pattern shows a reduction in
the spacing between successive curves and flattening of the
curves as Np.x increases. The gs energy provided by the
ANN decreases monotonically with increasing Ny, at all
values of K. This demonstrates that the ANN is successfully
simulating what is expected from theoretical physics. That is,
in theoretical physics the energy variational principle requires
that the gs energy behaves as a non-increasing function of
increasing matrix dimensionality at fixed &2 and, furthermore,
matrix dimension increases with increasing Ny ax.

y 7 —
- - N
m

T T I
=2-10 Daejeon16

ax

N =12-70 ANN
max

Ground State Energy (MeV)
)
<

5 10 15 20 25 30 35 40 45 50
hQ (MeV)

Figure 6. Calculated and predicted gs energy of 6Li as a function of A at
selected Nmax values.

To illustrate the ANN prediction accuracy, the NCSM cal-
culation results and the corresponding ANN prediction results
of the gs energy of °Li are presented in Figure 7 as a function
of hQ) at Nyax = 12,14,16, and 18. The dashed curves
connect the NCSM calculation results using the Daejeonl6
NN interaction and the solid curves link the ANN prediction
results. The nearly converged result predicted by ANN is also
shown above the horizontal axis at Ny,x = 70. Figure 7
shows good agreement between the calculated NCSM results
and the ANN predictions up through Ny.x = 18. Actual
NCSM results always converged from above towards the exact
result and become increasingly independent of the basis space
parameters, 7S and Ny, .. That the ANN result is essentially
a flat line at Ny ,x = 70 and that the curves preceding it
form an increasingly dense pattern approaching Ny,x = 70
both provide indications that the ANN is producing a valid
estimate of the converged gs energy.

The gs rms radii provide a very different quantity from
NCSM results as they are found to be more slowly convergent
than the gs energies and they are not monotonic. Figure 8
presents the calculated gs point proton rms radius of 5Li as a
function of 7€) at selected values of N,,,. The dashed curves
connect the NCSM calculation results using the Daejeon16 NN
interaction up through N, = 10, while the solid curves link
the ANN prediction results above Np.x = 10. The highest
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Figure 7. Comparison of the NCSM calculated and the corresponding ANN
predicted gs energy values of 6Li as a function of A{ at
Nmax = 12,14, 16, and 18. The lowest horizontal line corresponds to the
ANN nearly converged result at Nppax = 70.

curve corresponds to Npa.x = 90 and successively lower
curves are obtained with N,,, decreased by 10 units until
the Npax = 30 curve and then by 2 units for each lower
Nmax curve. The rms radius converges monotonically from
below for most of the 7€) range shown. More importantly, the
rms radius shows the anticipated convergence to a flat line
accompanied by an increasing density of lines with increasing
Nmax- These are the signals of convergence that we anticipate
based on experience in limited basis spaces and on general
theoretical physics grounds.
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Figure 8. Calculated and predicted gs point proton rms radius of 611 as a
function of A2 at selected Nmax values.

The NCSM calculated values and the corresponding pre-
diction values of the gs point proton rms radius of °Li are
presented in Figure 9 for Np.x = 12,14,16, and 18. The
dashed curves link the NCSM calculation results using the
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Daejeonl6 NN interaction and the solid curves connect the
ANN prediction results. As seen in this figure, the ANN pre-
dictions are in good agreement with the NCSM calculations,
showing the efficacy of the ANN method.
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Figure 9. Comparison of the NCSM calculated and the corresponding ANN
predicted gs point proton rms radius values of 6Li as a function of A for
Nmax = 12,14, 16, and 18. The highest curve corresponds to the ANN
nearly converged result at Nmax = 90.

Table I presents the nearly converged ANN predicted
results for the gs energy and the gs point proton rms radius of
6Li. As a comparison, the gs energy results from the current
best theoretical upper bounds at Ny.x = 10 and Nyax = 18
and from the Extrapolation B (Extrap B) method [34] at
Nmax < 10 are provided. Similar to the ANN prediction, the
Extrap B result arises when using all available results through
Npax = 10. The ANN prediction for the gs energy is below
the best upper bound, found at Ny, = 18, which is about 85
KeV lower than the Extrap B result.

There is no extrapolation available for the rms radius, but
we quote in Table I the estimated result by the crossover-
point method [40] to be ~ 2.40 fm. The crossover-point
method takes the value at 7{) in the table of rms radii results
through Ny, = 10, which produces an rms radius result that
is roughly independent of Ny, ..

TABLE I. COMPARISON OF THE ANN PREDICTED RESULTS WITH
RESULTS FROM THE CURRENT BEST UPPER BOUNDS AND FROM OTHER
ESTIMATION METHODS.

Observable Upper Bound | Upper Bound Estimation® ANN
Niax = 10 Niax = 18 Nmax <10 | Nmax < 10
gs energy (MeV) -31.688 -31.977 -31.892 -32.024
gs rms radius (fm) - - 2.40 2.49

* The Extrap B method [34] for the gs energy and the crossover-point method [40] for
the gs point proton rms radius

It is clearly seen from Figures 7 and 9 above that the
ANN method results are consistent with the NCSM calcula-
tion results using the Daejeon16 NN interaction at Npax =
12,14,16, and 18. Table I also shows that ANN’s results are
consistent with the best available upper bound in the case of
the gs energy. The ANN’s prediction for the converged rms
radius is slightly larger than the result from the crossover-point
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method and more consistent with the trends visible in Figure 9
at the higher Np.x values. To measure the performance of
ANNSs, MSE for the training subsets up through Ny.x = 10,
as well as on the second test set for data at Ny, = 12, 14, 16,
and 18, are provided in Table II.

TABLE II. THE MSE PERFORMANCE FUNCTION VALUES ON THE
TRAINING AND TESTING DATA SETS AND ON THE Npax = 12,14, 16, AND

18 DATA SET.
Data Set Whole Set Training Set Testing Set; Testing Seta
Nmax < 10 Nmax < 10 Nmax < 10 Niax =12 — 18
gs energy (MeV) | 4.86 x 10 | 5.04 x 10+ | 3.80 x 10+ 0.0072
gs rms radius (fm) 7.88 x 10~ 4.49 x 10~ 2.74 x 1070 9.24 x 10~

The small values of the performance function in Table IT
above indicate that ANNs with good generalizations were
found to predict the results.

V. CONCLUSION AND FUTURE WORK

Feed-forward ANNs were used to predict the properties
of the SLi nucleus such as the gs energy and the gs point
proton rms radius. The advantage of the ANN method is that
it does not need any mathematical relationship between input
and output data. The architecture of ANNs consisted of three
layers: two neurons in the input layer, eight neurons in the
hidden layer and one neuron in the output layer. An ANN was
designed for each output.

The data set from the ab initio NCSM calculations using
the Daejeon16 NN interaction and basis spaces up through
Npax = 10 was divided into two subsets: 85% for the training
set and 15% for the testing set. Bayesian regularization was
used for training and doesn’t require a validation set.

The designed ANNs were sufficient to produce results for
these two very different observables in °Li from the ab initio
NCSM. The gs energy and the gs point proton rms radius
showed good convergence patterns and satisfy the theoretical
physics condition, independence of basis space parameters in
the limit of extremely large matrices. Comparisons of the
results from ANNs with established methods of estimating the
results in the infinite matrix limit are also provided. By these
measures, ANNs are seen to be successful for predicting the
results of ultra-large basis spaces, spaces too large for direct
many-body calculations.

As future work, more Li isotopes such as "Li, 8Li and °Li
will be investigated using the ANN method and the results will
be compared with results from improved extrapolation methods
currently under development.
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