
A Logic-based Service for Verifying Use Case Models

Fernando Bautista, Carlos Cares
Computer Science and Informatics Department, University of La Frontera (UFRO)

Temuco, Chile
Email: fernandobautis@gmail.com, carlos.cares@ceisufro.cl

Abstract—Use cases are a modeling means to specify the required
use of software systems. As part of UML (Unified Modeling
Language), it has become the de facto standard for functional
specifications, mainly in object-oriented design and development.
In order to check these models, we propose a theoretical solution
by adapting a general quality of models framework (SEQUAL),
and, following our approach, a rule-based solution that includes
both expert-based and definition-based rules. In order to promote
a distributed set of quality assessment services, a Web service has
been developed. It works on XMI (XML Metadata Interchange)
files which are parsed and verified by Prolog clauses.

Keywords–Rule-based quality; UseCase verification; Logic-
based services; XMI; Prolog.

I. INTRODUCTION

In Software Engineering, use cases are a means to specify
the required uses of software systems. Typically, they are used
to represent what the system is supposed to do. Use cases are
part of UML (Unified Modeling Language) specifications and
they have become so wide spread that they are now considered
the de facto standard for requirements specification of object-
oriented software systems [1].

Quality assurance of use cases is a common topic in
Software Engineering. For example, some heuristics including
UML use cases, have been proposed for model revision [2].
Moreover, preparing good use cases for connection with other
static and dynamic models remains important as they are a key
representation for verification and validation [3].

Other studies have tried to assist in the semi-automatic
verification / validation of use cases. Kotb and Katayama [4]
present a novel approach to check the verification of the use
case diagrams. Shinkawa [5] proposes a formal verification
process model for UML use case, and Gruner [6] details a
meta model of possible relations between use cases, which
may, in the future, be implemented in Prolog. However, these
proposals assume that the set of steps in order to implement
it (known as basic course or basic flow) is always part of
the use case specification. However, this assumption is not
broadly true, and, moreover, it is shown that the way of this
narrative presents ambiguity [7]. From a formal perspective,
an interesting summary is found in [8], where different lapses
are identified for the analyzed approaches.

The objective is to show a tool for supporting a quality
assessment process of use case diagrams, even, when some of
these use cases have no proper narrative inside of them. The
theoretical base is given by SEQUAL (SEmiotic QUALity)
[9]. It is a highly spread quality framework for models and
it addresses different kinds of qualities including syntactic,
semantic, pragmatic and social qualities which make it very
complex to include all these quality perspectives from the
scratch. Under this assumption, a rule-based system is a

modular and scalable solution in order to initially implement
some types of verifications and then another group of them
under an incremental development.

In this paper, we present a first Prolog prototype, as proof
of concept, of a tool that can aid the quality assessment of
a use case diagram. Moreover, we have implemented it as a
Web service in order to illustrate that logic-based solutions can
also be part of key quality assessment process in cloud-based
software development environment.

In order to check use case models and their application,
in Section 2 we present a set of verification syntactic and
semantic rules and how they have been derived from SEQUAL
conceptual framework. In Section 3, we show how the derived
rules have been implemented in Prolog clauses into our first
version of the Use Case Checker (UC2). In the Conclusion
section, we summarize the contributions and we outline the
future work on two tracks: technological improvement of UC2
and broadening the scope of the quality assessment approach.

II. WHERE DO VERIFICATION RULES COME FROM

In order to derive verification rules, we have used the
SEQUAL conceptual framework [9]. Although it was proposed
more than 20 years ago, it has had great influence on verifying
the quality of multiple kinds of models [10]. However, it has
never been used to verify use case models. The SEQUAL
framework is based on semiotic, hence it includes syntactic,
semantic and pragmatic qualities where interpretations and
subjectivity of modelers and users are also considered. We
have specializated the SEQUAL framework as it is illustrated
in Figure 1. Therefore, from a theoretical point of view, this
specialization is our quality of models theory’s contribution,
and, our rule-based solution, may also be considered a proof
of concept to it.

Figure 1. SEQUAL specialization for use case models

5Copyright (c) IARIA, 2017. ISBN: 978-1-61208-535-7

COMPUTATION TOOLS 2017 : The Eighth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Following our SEQUAL specialization, we have generated
rules to principally verify syntactic quality, but also we have
included semantic quality rules in order to illustrate its imple-
mentation.

A use case model may contain several use case diagrams,
and the quality application developed here is applied only to
one use case diagram. Therefore, the process of verifying a
use case model implies verifying all its containing diagrams.

The following rules were generated from the definition
of OMGs (Object Management Group), applicable to UML
use cases (specified in the UML superstructure version 2.4.1).
These rules mainly verify the syntactic quality of a use case
diagram, as defined in the quality model described above.
Later, some of these rules will be verified automatically by
the software prototype developed.

The generated rules are listed and described by adding an
identification number. However, this numbering is arbitrary and
does not represent any kind of hierarchy. In each case, we have
illustrated the right case in opposition to a wrong case.

A. Rule 1 - There must be clear system boundaries
A use case diagram represents the interaction of an actor

with the system. The UML Reference Manual says that the
subject is the system under consideration to which the use
cases apply [1]. Thus, it does not make any sense to model a
use case diagram without a subject or system boundary, which
must be represented either by a package or a classifier. Given
that the existence of a system boundary may be verified in an
explicit diagram structure, we classify this rule as part of the
syntactic verification of a use case model. It is illustrated in
Figure 2.

Right Wrong
System

UseCase

Actor

UseCase

Actor

Figure 2. Example of Rule 1

B. Rule 2 - Actors must not be isolated
The UML Reference Manual says that an actor specifies a

role played by a user or any other system that interacts with
the subject [1]. Modeling an isolated actor does not make any
sense. Although the diagram shows a system boundary and
use cases in it, there is not possible to inference that the actor
interacts with all or some of the present use cases. Given that
the existence of an isolated actor may be verified in an explicit
diagram structure, we classify this rule as part of the syntactic
verification of a use case model. It is illustrated in Figure 3.

Right Wrong
System

UseCase

Actor

System

UseCase

Actor

Figure 3. Example of Rule 2

C. Rule 3 - Use cases must not be isolated/inaccessible
The UML Reference Manual says that a use case represents

a behavior of the system in which an actor or another system
interact with it. Therefore, an isolated use case can never be
executed. Here we refer not only to the fact of being isolated
from actors interactions, but also of other dependencies coming
from its interaction with other use cases. Given that the
existence of an isolated actor may be verified in an explicit
diagram structure, we classify this rule as part of the syntactic
verification of a use case model. It is illustrated in Figure 4.

Right Wrong
System

UseCase UseCase2

Actor

<<Include>>

System

UseCase UseCase2

Actor

<<Include>>

Figure 4. Example of Rule 3

D. Rule 4 - Actors must not be inside the system
The UML Reference Manual says that an actor models a

type of role played by an entity that interacts with the subject
(e.g., by exchanging signals and data), but which is external to
the subject [1]. Therefore, the actor should not be inside the
system or subsystem being modeling. This kind of diagram
does not have nested representation of involved system or
subsystems. Therefore, there is no case in which it can be
possible. Given that an actor being inside the system boundary
may be verified in an explicit diagram structure, we classify
this rule as part of the syntactic verification of a use case
model. It is illustrated in Figure 5.

Right Wrong
System

UseCase

Actor

System

UseCase

Actor

Figure 5. Example of Rule 4

E. Rule 5 - Use cases should be within system boundaries
The UML Reference Manual says that a use case is the

specification of a set of actions performed by a system, which
yields an observable result [1]. We, therefore, created a rule
that a use case should not be outside the system boundary
because it is necessary to specify which system is the owner
of that behaviour. Given that a use case is part of a system, i.e.,
that it belongs to an existing system, then it may be verified
by parsing the diagram structure, then we classify this rule
as part of the syntactic verification of a use case model. It is
illustrated in Figure 6.

F. Rule 6 - Use cases must start with a verb
The UML Reference Manual says that a use case is the

specification of a set of actions performed by a system [1].
Therefore, its description requires, at least, a verb, i.e., the verb
that specifies that action; additionally, as a quality description,

6Copyright (c) IARIA, 2017. ISBN: 978-1-61208-535-7

COMPUTATION TOOLS 2017 : The Eighth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Right Wrong

System

UseCase

Actor

System

UseCase

Actor

Figure 6. Example of Rule 5

we would ask for that verb to appear in the first place of the
sentence that describes the use case behaviour.

In Spanish language, in which we worked, the verb should
properly be used in the imperative form, but given that this
mode is not commonly used, we recommend the use of verbs
in its infinitive form. This last recommendation is irrelevant in
English where these two forms are identical.

Given that verifying the verb form and its position in a
sentence, i.e., that it is necessary to look for external references
beyond UML structure, we classify this rule as part of the
semantic verification of a use case model. It is illustrated in
Figure 7.

Right Wrong
System

Display

summary of

sales

Actor

System

Summary of

sales

Actor

Figure 7. Example of Rule 6

G. Rule 7 - Use cases must represent an observable behavior
of the system

The UML Reference Manual says that a use case is the
specification of a set of actions performed by a system, which
yields an observable result that is, typically, of value for one
or more actors or other stakeholders of the system [1]. We
therefore created a rule that a use case should represent actions
of the system, which are observable to the actor, written from
the perspective of the system.

In order to make this possible we have described a set
of typical verbs of a system behaviour and other that can be
warnings in the redaction of the use case descriptions. For
example, a common mistake in use cases is the use of non-
observable verbs like “To save” or “To register”. Also a com-
mon mistake is the use of a human actions like entering data
or including high level behaviours like selecting or managing.
In order to verify this feature, we have used additional list of
non-observable actions (verbs) of classical system behaviours
and another of classical human behaviours under a system
interaction in order to give warning about them. Given that
these lists are external to the own nature of UML structures,
we classify this rule as part of the semantic verification of a
use case model. It is illustrated in Figure 8.

H. Rule 8 - Actors names should be singular
UML superstructure says: A single physical instance may

play the role of several different actors [1]. Class modeling

Right Wrong
System

Give the option to

enter invoice details

Actor

System

Save invoice in

database

Actor

Figure 8. Example of Rule 7

assumes that actors are classes, which are required to follow
the standard class nomination, including its expression in the
singular case. Due to this verification goes beyond the UML
structure, i.e. it exceeds syntax, we have classified this rule
as part of the semantic verification of a use case model. It is
illustrated in Figure 9.

Right Wrong
System

UseCase

Engineer

System

UseCase

Engineers

Figure 9. Example of Rule 8

I. Rule 9 - Computable verbs
The verb represents the behavior of the system, therefore

the action represented by the verb must be unambiguous
and capable of being implemented into a computer system.
Therefore, using also a reference list of verbs we can warn
about the use of a verb that is not part of “computable verbs”.
Given that the existence of non computable verbs may not be
verified in an explicit diagram structure, we classify this rule
as part of the semantic verification of a use case model. It is
illustrated in Figure 10.

Right Wrong
System

Display a histogram of

the items in the chart of

accounts

Accountant

System

Analyze

accounting

results

Accountant

Figure 10. Example of Rule 9

III. PROLOG CLAUSES FOR USE CASES VERIFICATION

The system consists of software for analyzing a use case
diagram (XMI file), applying the rules generated and sub-
sequently delivering the result of the application in JSON
(JavaScript Object Notation) format. This software will be
implemented in Web technologies as a service. In Figure 11,
the inputs and outputs of the system are represented.

A. Involved technologies
The XMI (XML Metadata Interchange) standard was de-

fined for the exchange of UML diagrams. XMI is an XML-
based integration framework for the exchange of models, and
any kind of XML data. Thus XMI is used in the integration of
tools, repositories, and model-related applications in general.

7Copyright (c) IARIA, 2017. ISBN: 978-1-61208-535-7

COMPUTATION TOOLS 2017 : The Eighth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Figure 11. System view of Use Case Checker (UC2) Prototype

The framework defines rules for generating XML schemas
from a metamodel based on the Metaobject Facility (MOF).
Although XMI is most frequently used as an interchange
format for UML, it can be used with any MOF-compliant
language [11].

Table I shows the XMI representation of some elements of
a use case diagram.

TABLE I. XMI REPRESENTATION OF POSSIBLE USE CASE
EXPRESSIONS

Element XMI Representation

<packagedElement name="{NAME}"
xmi:id="{ID}"↪→

xmi:type="uml:UseCase">

</packagedElement>

<packagedElement xmi:id="{ID}"
xmi:type="uml:Association">↪→

<ownedEnd aggregation="none"
association="{ID ELEMENTO
ORIGEN}" xmi:id="{ID}"
xmi:type="uml:Property">

↪→
↪→
↪→

</ownedEnd>
<ownedEnd aggregation="none"
association="{ID ELEMENTO
DESTINO}" xmi:id="{ID}"
xmi:type="uml:Property">

↪→
↪→
↪→

</ownedEnd>
</packagedElement>

<!-- An include is nested in a
packageElement Use Case, this
use case correspond to the UC
arrow source. -->

↪→
↪→
↪→

<include addition="{ID TARGET UC}"
xmi:id="{ID}"
xmi:type="uml:Include">

↪→
↪→

</include>

SWI-Prolog is a portable implementation of the Prolog
programming language. SWI-Prolog aims to be a robust,
scalable implementation supporting a wide range of applica-
tions, providing interfaces to other languages and providing
support for parsing XML and RDF (Resource Description
Framework) documents. The system is particularly suited for
server applications due to its support for multithreading and
HTTP server libraries [12].

To develop UC2 we have used SWI-Prolog v 7.2.3, which
provides some improvements over version 6.x.x in the creation
and reading of JSON structures.

This component is responsible for implementing the pre-

viously generated rules. For this proof of concept, only some
of these rules are shown.

For the implementation of the rules that verify the quality
of a use case diagram, we defined a set of logical Prolog rules
which allow us: 1) to identify the elements of a use case
diagram within a file XMI; and 2) to see if these elements
comply with the quality rules generated.

Figure 12 shows the code that identifies part of the elements
within an XMI file.

%useCase(XML,ID, NAME)
useCase(XML,ID,NAME):-
xpath(XML,

//packagedElement(@'xmi:type'=
'uml:UseCase'),A),

↪→

↪→

xpath(A, /self(@'xmi:id'),ID),
xpath(A, /self(@'name'),NAME).

%association(XML, ArrowSource,
ArrowTarget)↪→

association(XML,Source,Target):-
xpath(XML,

//packagedElement(@'xmi:type'=
'uml:Association'),A),

↪→

↪→

xpath(A, ownedEnd(1),O),
xpath(O, /self(@'type'),Source),
xpath(A, ownedEnd(2),U),
xpath(U, /self(@'type'),Target).

%extend(XML, ArrowSource, ArrowTarget)
extend(XML,Source,Target):-
xpath(XML, //packagedElement,A),
xpath(A, /self(@'xmi:id'),Source),
xpath(A, extend,E),
xpath(E,

/self(@'extendedCase'),Target).↪→

Figure 12. Prolog clauses for parsing XMI input files

When the above-defined rules are implemented, they must
pass as a text parameter in the XMI file (coded as a variable
named “XML”).

When the Prolog Rules have been identified through the
elements of a use case diagram, the hierarchical relationship
between them must be known. To do this, we defined the
Prolog Rule shown in Figure 13.

%in(XML, ChildElement, ParentElement)
in(XML,Child,Parent):-
xpath(XML, //packagedElement,A),
xpath(A, /self(@'xmi:id'),Parent),
xpath(A, packagedElement,E),
xpath(E, /self(@'xmi:id'),Child)

Figure 13. Prolog clause for getting container-content relationships

B. Service Functions
In this section, we describe some of the previous rules in

order to illustrate the high cohesion and low coupling reached
by this Prolog implementation which has been implemented

8Copyright (c) IARIA, 2017. ISBN: 978-1-61208-535-7

COMPUTATION TOOLS 2017 : The Eighth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

as a REST service.

Unrelated Actor. This rule is the implementation in SWI-
Prolog of Quality Rule 2 “Actors must not be isolated”. Figure
14 shows the diagram in the input file and its corresponding
JSON output.

Prolog verfication for unrelated actors
%unrelatedActor(XML, IdActor,

NameActor)↪→

unrelatedActor(XML,ID,NAME):-
actor(XML,ID,NAME),
not(association(XML,ID,_)).

↪→

↪→

Input Output
{

"test":{
"name":"Test
UnrelatedActor",↪→

"message":[
"Actor"

]
}

}

Figure 14. Implementation and sample for Rule 2:
“Actors must not be isolated”

Isolated Use Case. This rule is the implementation in SWI-
Prolog of Quality Rule 3 “Isolated/Inaccessible use case”. Fig-
ure 15 shows the diagram in the input file and its corresponding
JSON output.

Prolog verification for inaccesible use cases
%accesible(XML, IdElement)
accessible(XML, X):-

association(XML,A,X),
actor(XML,A,_), useCase(XML,X,_).

↪→

↪→

accessible(XML,X):- include(XML,Y,X),
accessible(XML,Y).↪→

accessible(XML,X):- extend(XML,X,Y),
accessible(XML,Y).↪→

%isolated(XML, IdUseCase, NameUseCase)
isolated(XML, X, N):-useCase(XML,X,N),

not(accessible(XML,X)).↪→

Input Output
{

"test":{
"name":"Test
Isolated UC",↪→

"message":[
"UseCase2"

]
}

}

Figure 15. Implementation and sample for Rule 3:
“Use cases must not be isolated/inaccessible”

Actor Inside the System. This rule is the implementation in
SWI-Prolog of Quality Rule 4 “Actors must not be inside the
system”. Figure 16 shows the diagram in the input file and its
corresponding JSON output.

Prolog verification for actors inside of system boundary
%actorInsideSystem(XML, IdActor,

NameActor)↪→

actorInsideSystem(XML,X,N):-
actor(XML,X,N), package(XML ,B,_),
in(XML ,X,B).

↪→

↪→

actorInsideSystem(XML,X,N):-
actor(XML,X,N), model(XML ,B,_),
in(XML ,X,B).

↪→

↪→

Input Output
{
"test":{
"name":"Test
ActorInside
System",

↪→

↪→

"message":[
"Actor"

]
}

}

Figure 16. Implementation and sample for Rule 4:
“Actors must not be inside the system”

Use Case Outside of System Boundary. This rule is the
implementation in SWI-Prolog of Quality Rule 5 “Use cases
should be within system boundaries”. Figure 17 shows the
diagram in the input file and its corresponding JSON output.

Prolog verification of use cases outside of system boundary
useCaseInsideBoundaries(XML,X):-

useCase(XML,X,_), package(XML,B,_),
in(XML,X,B).

↪→

↪→

useCaseInsideBoundaries(XML,X):-
useCase(XML,X,_), model(XML,B,_),
in(XML,X,B).

↪→

↪→

useCaseOutsideBoundaries (XML,X,N):-
useCase(XML,X,N),
not(useCaseInsideBoundarie(XML,X)).

↪→

↪→

Input Output
{
"test":{
"name":"Test
UseCaseOutside
Boundaries",

↪→

↪→

"message":[
"UseCase"

]
}

}

Figure 17. Implementation and sample for Rule 5
“Use cases should be within system boundaries”

9Copyright (c) IARIA, 2017. ISBN: 978-1-61208-535-7

COMPUTATION TOOLS 2017 : The Eighth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Finally, as a sample of a Web site that puts together the
above rules, we show the corresponding Prolog calls in Figure
18.

load_xml(Target, XML, []),
findall(F, isolated(XML,_,F),
Isolated),↪→

findall(F,
useCaseOutsideBoundarie(XML,_,F),
UseCaseOutsideBoundarie),

↪→

↪→

findall(F, actorInsideSystem(XML,_,F),
ActorInsideSystem),↪→

findall(F, unrelatedActor(XML,_,F),
unrelatedActor),↪→

reply_json(json([
test=json([name='Test Isolated',
message=Isolated]),

↪→

↪→

test=json([name='Test
UseCaseOutsideBoundarie',
message=UseCaseOutsideBoundarie]),

↪→

↪→

↪→

test=json([name='Test
ActorInsideSystem',
message=ActorInsideSystem]),

↪→

↪→

↪→

test=json([name='Test UnrelatedActor',
message=UnrelatedActor])

↪→

↪→

])

Figure 18. Prolog clauses for return the result of all the rules as a JSON
response.

Additional expressions like extends or the representation in
XMI of include are not explicitly represented in this document.
The full UC2 source code is available at [13].

IV. CONCLUSION

Use cases are a common choice to specify software re-
quirements. In spite of existing theoretical approach to use
case verification, there are no known implementations that put
together a theoretical background about quality of models and
a derived implementation. In this paper, we propose a general
quality framework and we show an initial implementation for
verifying use case model, represented on demonstrations that
cover the part of our system realized to the moment. This
rule-based approach besides the chosen architecture, shows
that a declarative approach is not only effective but also a
solution presenting two main characteristics: low coupling
and high cohesion which allows an easy maintenance and
high scalability. Moreover, the implemented rules allow to
report both errors and warnings, which can be used in a
software process to improve quality of use cases due to, even
being a partial approach as is, these results are measurable
and repeatable ones, which makes it a valuable under the
perspective of software engineering at any label, as part of
a computer-aided step in a traditional development approach,
or as a part into a model driven development approach.

Future work is related to limitations of the current ap-
proach. Firstly, the integration of SWI-Prolog as part of a Web
service impose a limitation because it does not provide a good
integration to classical Web services as Apache. Thus, we need

to review the technology behind the current solution approach.
However, the most relevant challenge is to add pragmatics rules
and to work with perceived quality. Classical features of a set
of requirements, i.e., completeness and consistency, can not be
validated without considering the context to which the system
has been conceived to work, i.e., the set of stakeholders’
expectations. However, this approach seems to be a way to
reach it.

ACKNOWLEDGMENT

The authors would like to thank DIUFRO project DI13-
0068 from the Vice-rectory of Research and Development and
the Master Program of Informatics Engineering both from
University of La Frontera, by supporting different aspects of
this work.

REFERENCES
[1] O. UML, “2.4. 1 superstructure specification,” document formal/2011-

08-06. Technical report, OMG, Tech. Rep., 2011.
[2] B. Berenbach, “The evaluation of large, complex UML analysis and

design models,” in Proceedings. 26th International Conference on
Software Engineering. Institute of Electrical & Electronics Engineers
(IEEE), 2004.

[3] G. Kösters, H.-W. Six, and M. Winter, “Coupling use cases and class
models as a means for validation and verification of requirements
specifications,” Requirements Engineering, vol. 6, no. 1, pp. 3–17, Feb
2001.

[4] Y. Kotb and T. Katayama, “A novel technique to verify the uml use
case diagrams.” in IASTED Conf. on Software Engineering, 2006, pp.
300–305.

[5] Y. Shinkawa, “Model checking for UML use cases,” in Software En-
gineering Research, Management and Applications. Springer Science
Business Media, 2008, pp. 233–246.

[6] S. Gruner, “From use cases to test cases via meta model-based rea-
soning,” Innovations Syst Softw Eng, vol. 4, no. 3, pp. 223–231, Aug
2008.

[7] S. Tena, D. Dı́ez, P. Dı́az, and I. Aedo, “Standardizing the narrative of
use cases: A controlled vocabulary of web user tasks,” Information and
Software Technology, vol. 55, no. 9, pp. 1580–1589, 2013.

[8] M. Oliveira Jr, L. Ribeiro, É. Cota, L. M. Duarte, I. Nunes, and F. Reis,
“Use case analysis based on formal methods: An empirical study,” in In-
ternational Workshop on Algebraic Development Techniques. Springer,
2015, pp. 110–130.

[9] J. Krogstie, O. I. Lindland, and G. Sindre, “Towards a deeper under-
standing of quality in requirements engineering,” in Advanced Informa-
tion Systems Engineering. Springer Science + Business Media, 1995,
pp. 82–95.

[10] J. Krogstie, G. Sindre, and O. I. Lindland, “20 years of quality of
models,” in Seminal Contributions to Information Systems Engineering.
Springer, 2013, pp. 103–107.

[11] M. Weiss, “Xml metadata interchange,” in Encyclopedia of Database
Systems. Boston, MA: Springer US, 2009, pp. 3597–3597.

[12] J. Wielemaker, S. Ss, and I. Ii, “Swi-prolog 7.2.3-reference manual,”
2015.

[13] F. Bautista and C. Cares. Uc2: A prolog checker for use
cases. Http://dci.ufro.cl/fileadmin/Software/UC2.zip, [retrieved: Jan-
uary, 2017].

10Copyright (c) IARIA, 2017. ISBN: 978-1-61208-535-7

COMPUTATION TOOLS 2017 : The Eighth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

