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Abstract—In this exploratory paper, we present a framework
for simplifying software development in the astrophysical sim-
ulations branch - Astrophysical-oriented Computational multi-
Architectural Framework (ACAF). The ACAF is designed to
provide a user with the set of objects and functions covering some
aspects of application development for astrophysical problems.
The target data to be processed with the ACAF is a set of states
of a particle system. Being designed as a C++ framework, the
ACAF decreases the expertise needs required to implement such
programs preserving the extension flexibility and the possibility
to use the existing libraries. The ACAF abstracts the accelerating
device itself, the usage of it, the data distribution and usage. Also,
the ACAF incorporates the different kernel implementations into
a single object.
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I. INTRODUCTION

Astrophysical simulation tasks have usually high com-
putational density, therefore it’s common to use hardware
accelerators for solving them [1]. Also, the astrophysical
simulations have a huge amount of data to calculate, which
makes it reasonable to use computer clusters. But the data
dependencies of the simulation algorithms limit the usage
of big clusters because of high data communication rate.
Therefore, the astrophysical simulations tasks are normally
solved using heterogeneous clusters [2][3][4]. According to
TOP500, the top-rated heterogeneous clusters use Graphics
Processing Units (GPU) or Field Programmable Gate Arrays
(FPGA) as computational accelerators.

The most important computational astrophysical problems
include N-Body simulations, Smoothed Particle Hydrodynam-
ics (SPH), Particle-Mesh and Radiative Transfer. All of them
are usually approximated for the calculation purposes with
respective particle physics problems. Where particle physics is
a branch of physics which deals with existence and interactions
of particles, that refer to some matter or radiation. Therefore,
computational astrophysics data represents a collection of
particles - a particle system. Each particle contains a number of
parameters like position in 3D space, speed, direction, mass,
etc. A collection of certain values for all parameters of all
particles is named a state of a particle system. While the
computational tasks embrace numerical solving of a number
of equations, which evaluate the state of a particle system [5].

Developing astrophysical simulation applications for het-
erogeneous clusters without usage of specialized frameworks
and libraries requires the following knowledge:

e  knowledge of astrophysics, since the problem consists

of simulating the astrophysical objects;
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e  knowledge of network programming for cluster utiliz-
ing;
e knowledge of parallel programming and hardware

accelerators programming including usage of specific
interfaces and languages;

e knowledge of micro-electronics for designing FPGA
boards.

This means much time and expertise for astrophysicists,
what restricts the scientists to perform calculation experiments
easily on clusters and distracts them from the main goal.
So the aim of our research is to simplify software devel-
opment for astrophysical simulations implementation re-
ducing programming knowledge requirement. The solution
we suggest is the ACAF. ACAF stands for Astrophysical-
oriented Computational multi-Architectural Framework. The
ACAF is a toolkit for development of astrophysical simulation
applications. The target data to be processed with the ACAF is
a set of states of a particle system. In this exploratory paper,
we present the current state of art and the results of some
experiments with the ACAF.

Technically, developing of a distributed multi-architectural
application could be divided into a set of the following aspects:

e  balance loading;
e data communication between nodes;

e data communication between the devices inside of
each node;

e computational interfaces for different architectures;

e programming languages for different interfaces (like
Open Multi-Processing (OpenMP) for Central Pro-
cessing Unit (CPU); Open Computing Language
(OpenCL), Compute Unified Device Architecture
(CUDA), Open Accelerators (OpenACC) for GPU
and Very High Speed Integrated Circuit (VHSIC)
Hardware Description Language (VHDL) for FPGAs).

All these aspects should be taken into account in order to
develop an application and all of them should be examined
for the current system in order to reach high computational
performance. Hence, it makes sense to have the ACAF, which
facilitates astrophysical research by providing a user with a set
of objects and functions fulfilling the following requirements:

e the structure of an object and the semantics of a func-
tion should be plain and similar to the objects often
used by scientists in other programming environments
and in theoretical problem descriptions;
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the objects and functions should cover most of pro-
gramming aspects mentioned above;

in the same time, there should be a possibility to
extend the tools in use as well as to provide the
alternative implementations of existing tools;

finally, it would be an additional advantage to pre-
serve a possibility to reuse the existing computational
libraries, when it makes sense.

The rest of the paper is divided into 4 sections. The Section
IT highlights the currently existing standards, frameworks and
languages for the software development targeted heterogeneous
systems. The Section III consists of 3 subsections, each of
them presenting some design motivations and solutions we
have used to reach the goal. In the Section IV, the usage
example of the current framework implementation is given.
Finally, the Section V concludes the paper with an outlook to
the most important advantages of the ACAF.

II. CURRENT STATE OF ART

This section covers mostly used and important frameworks,
libraries, languages and standards, which can optimize or
simplify development of the specific astrophysical cluster
applications.

A. Standards
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OpenMP [6] is a standard Application Program-
ming Interface (API) for shared-memory program-
ming, which enables easy and efficient CPU utilization
on a single node using compiler directives. The latest
version 4.0 includes the compiler directives for hard-
ware accelerators, which were previously presented in
another branch OpenACC [7]. OpenMP API model
definitely reduces the requirements in parallel pro-
gramming skills abstracting the numerous function
calls in easy-readable pragmas. Still, it doesn’t hide
a lot of implementation details, which are out-of-
interests for scientific programmers: device data allo-
cation, data transferring, runtime synchronization, etc.
Also, API doesn’t cover at all any kind of network
communications and is designed solely for a single
node.

Message Passing Interface (MPI) [8] is a standardized
message-passing system designed to function on a
wide variety of parallel computers. MPI is widely
used on many computer clusters for parallel compu-
tations on several machines. MPI can also be used
for parallel computations on a single node by running
multiple instances of the program. Using the extension
MVAPICH2 [9], it is also possible to integrate CUDA-
enabled GPU data movement transparently into MPI
calls.

CUDA [10] stands for Compute Unified Device Archi-
tecture and is a parallel computing platform and API
model created by Nvidia and is only used for Nvidia
GPUs. CUDA enables a user to utilize Nvidia GPUs
for general-purpose computations on a single node.

OpenCL [11] is an open standard for general purpose
parallel programming across different heterogeneous
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processing platforms: CPUs, GPUs and others. Choos-
ing OpenCL, a user can utilize some hardware accel-
erators on a single node.

SyCL [11] is a new C++ single-source heterogeneous
programming model for OpenCL. SyCL benefits from
C++11 features like lambda functions and templates.
SyCL provides a high level programming abstraction
for OpenCL 1.2.

B. Frameworks and Languages

Cactus [12] is an open-source modular environment,
which enables parallel computation across different ar-
chitectures due to its modularity. As separate modules,
Cactus code also provides CUDA and MPI utilization.
Additionally, there is an extension of Cactus code -
CaCUDA, which is able to utilize Nvidia GPUs across
cluster nodes by converting CaCUDA source code into
CUDA kernels. No other hardware accelerators are
supported so far. As of 2015, CaCUDA looks like to
be not developed any more.

Charm++ [13] is a message-driven parallel language
implemented as a C++ library. The usual Charm++
program consists of a set of objects called “chares”.
A chare is an atomic function, which performs some
calculations. Charm++ library is responsible for dis-
tributing chares between the processing units and es-
tablishes the communication between them. Charm++
provides also an additional library - Charm++ GPU
Manager, which enables the user to utilize GPU di-
rectly from Charm++. In order to run some code on
GPU, a user should define a work request for GPU
Manager providing CUDA kernel, input and output
arguments to be transferred to GPU. GPU Manager
ensures the overlapping of transfers and executions
on GPU and runs GPU kernel asynchronously.
Chapel [14] is a parallel programming language.
Chapel provides a user with a high-level parallel pro-
gramming model which supports data parallelism, task
parallelism and nested parallelism. Chapel is a very
powerful language, which enables the user to write
the parallel programs with several lines of code. While
being designed as a new standalone language, Chapel
has limited possibilities for extending the functionality
- since Chapel is an open source project, everybody
can have the source code and change Low Level
Virtual Machine (LLVM) grammar for having new
commands. But this means, even reusing the existing
computational libraries could be only done with new
language features.

Flash Code [15][16] is a modular Fortran90 frame-
work, which uses MPI to distribute the calculations
over the cluster nodes. The Flash system has no built-
in support for any hardware accelerators and relies on
the particular modules to optimize the calculations as
much as possible. A module in the Flash system is
some atomic algorithmic routine performing mathe-
matical evaluation of the particle system. This means
that a module can be implemented using any accel-
erating techniques and libraries, but anyway requires
the proficiency in parallel programming (hardware ac-
celerators utilization; MPI usage; data distribution and
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synchronization using MPI and hardware accelerators,
etc). The Flash system is deployed with a big number
of modules.

e Swarm [17] is a CUDA library for parallel n-body
integrations with focus on simulations of planetary
systems. The Swarm framework targets single ma-
chines with Nvidia GPUs as hardware accelerators.
The framework provides a user with a possibility to
extend the calculations algorithm, but the final system
isn’t scalable and cannot utilize the power of a cluster.
It is designed to solve some specific problems.

e AMUSE [18] is Python framework designed to couple
existing libraries for performing astrophysical simula-
tions involving different physical domains and scales.
The framework uses MPI to involve cluster nodes.
While the utilization of any hardware accelerators
should be a part of libraries coupled in a particular
configuration.

e The Enzo [19] project is a community-developed
adaptive mesh refinement simulation code. The code
is modular and can be extended by users. Enzo doesn’t
support network communication. Still, it contains sev-
eral modules developed to utilize Nvidia GPUs using
CUDA.

e  Some other languages, which aren’t that widely used:
Julia [20] language, X10 [21] language, Fortress lan-
guage [22]. All these languages were initially designed
for CPU clusters. Some of them provide ports or
extensions for hardware accelerators, which usually
have no abstraction for the accelerator memory space
communications.

e  And other widely used domain-specific libraries: Wal-
Berla [23], RooFit [24], MLFit [25].

III. ACAF DESIGN AND STRUCTURE

The design of the ACAF should be both user-friendly for
astrophysicists and easily extendable for computer scientists.
Therefore, we’ve designed the ACAF basing on 3 concepts:

1) The computational concept describes the principal
algorithm used for calculating. In other words, the
computational concept is a mathematical, physical
and astrophysical background of the problem solution
and the environment necessary to execute the solu-
tion of the problem on some particular device. This
concept bases on a set of efficient high-parallel multi-
architectural algorithms. So that each function in the
space of user tools has an efficient implementation
for each architecture and device in use. And all
implementations for the same function can work
together on different platforms.

2) The communication concept describes data trans-
fers and synchronization points between computing
units or storages. The concept lies in efficient data-
distribution mechanisms, which warranty presence of
the necessary data in the required memory space and
in the required order. This means that the commu-
nication concept is responsible for transferring data
from one memory space to another and transforming
it according to the user-defined, architecture-defined
or device-defined rules.
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3) The data concept describes logical and physical
representation of the data used in a solution, as well
as distribution of this data between different storages.
This concept lies both in a set of data-structures
providing an efficient way of managing the data of
the astrophysical objects; and a set of functions for
manipulating these structures.

Design of the computational concept is a technical problem
lying in the space of a properly implemented set of pro-
gramming interfaces to access the necessary functions on the
necessary platforms.

While the design of the data concept and the commu-
nication concept can be coupled into a special distributed
database. Here and further, we understand under the database
its basic definition: a database is an organized collection of
data. This database should provide the user with an interface
for managing data. Besides, it should manipulate the data
according to the requirements and properties of computational
units and algorithms. Hence, the database should fulfill the
following requirements:

e  operating with a set of structures efficient for repre-
senting astrophysical data: tuples, trees (oct-trees, k-d
trees), arrays;

e  operating with huge amount of data;

e the native support of hardware accelerators like GPUs
and FPGAs;

e the data should be efficiently distributed between both
cluster nodes and the calculating devices inside of
each node;

e the database should be programmatically scalable: a
user should be able to extend the number of features
in use - architectures; devices; data-structures; data
manipulation schemes and functions; communication
protocols;

e the database should store the data according to the
function, device and platform requirements.

This means that this special database can be seen as a
partitioned global address space (PGAS), which is already
addressed in several existing solutions like Chapel and X10.
But in our approach, we incorporate into the database not only
partitioning of the address space, also other properties specified
above.

Hence in this work, we address only the communication
and data concepts - the design and implementation of a
distributed database. The computational concept is designed
to contain only the algorithms and functions, necessary to
present the capabilities of the database.

A. Database Design

The target data for the ACAF database is a set of states of
some particle system. According to the definition of a particle
system (see Section I), there is no need for our database
to store various data of various types. All parameters of a
particle are some physical properties of it. So in computer
representation, the parameters are usually either integer, float
or double (integral) values. Hence in our database, these
types of data are only considered. A state of some particle
system can be represented in some computer memory space
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as an array of structures, where members of a structure are
particle parameters, e.g., integral data types. Therefore, the
ACAF database is only targeted to store arrays of integral data
elements.

As soon as a particle system usually includes some millions
of particles, it’s common and necessary to use computer
clusters and accelerators to simulate its states. So the aim of
the ACAF is to simplify implementing the simulations tasks
targeted to be run on heterogeneous computer clusters utiliz-
ing as much computational power as possible. The efficient
utilization of any computational device (e.g., processing unit)
becomes possible only when all the parameters necessary for
computation reside in the cheapest memory space in terms
of access latency. The efficient use of low-level memory
spaces (processing registers and near by caches of a unit)
is a part of both compiler implementation and the operating
system scheduler. While the programmer’s task is to ensure
the presence of data in the nearest high-level memory space
(usually device Random-access memory (RAM)). Moreover,
it’s necessary to store data in high-level memory spaces in the
format acceptable with computational algorithms. Hence, raw
arrays are preserved in our database. This provides the direct
access to the parameters of a particle.

The ability of the ACAF database to distribute data between
cluster nodes and devices enables the scalability of data
amount. So the amount of data to be processed is only limited
to the mutual storage capabilities of cluster nodes and devices.

Distributing data between cluster nodes and devices im-
plies division and synchronization of data according to the
implementation of the computational concept particular to a
certain problem. While data synchronization in heterogeneous
computer clusters context implies interoperability of different
programming technologies used on different computational
devices. Since the ACAF database is targeted to utilize GPUs,
CPUs, FPGAs and a network, the technologies we’ve used
include: threads and OpenCL for CPUs; OpenCL and CUDA
for GPUs; OpenCL for FPGAs; MPI for a network.

Interoperability of the technologies mentioned above means
the following functionality of the ACAF database: copying
and/or converting of memory buffers from one technology to
another; synchronizing the memory buffer content distributed
between different technologies.

B. Database Implementation

The suggested database is implemented as a part of the
framework - the ACAF. The implementation is done in C++
language and is organized as a collection of classes. Some of
them are template classes. We concentrate on the key classes
used in the ACAF in this section. The current framework im-
plementation is targeted to be built and executed on machines
running Unix operating system.

1) Device: A device instance represents some computa-
tional device, which can be used for simulation calculations
on the current node. A device instance is always described
by some architecture instance, the vendor name, the vendor
identifier, the device name, the device identifier and a set of
technology instances. The format and type of the identifiers are
always architecture-dependent. All device instances are cre-
ated automatically by ACAF during framework initialization
according to the devices found in the operating system. No
manual instantiation of a device class is possible.
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2) Architecture: Architecture class is an interface class
for any device type supported by ACAF. The instance of
each ancestor architecture type is a singleton in any ACAF
process. This instance provides the functionality to identify all
computational devices of the desired type in the current cluster
node. The predefined architecture ancestor types are:

o  CPUArchitecture - identifies all CPU devices pre-
sented in the current node by parsing /proc/cpuinfo
file;

e  GPUArchitecture - identifies all GPU devices pre-
sented in the current node by scanning all Periph-
eral Component Interconnect (PCI) devices of Video
Graphics Array (VGA) type.

3) Technology: Technology class is an interface class for
describing some programming technology, which can be used
for some devices presented in the current node. The instance
of each ancestor technology type is a singleton in any ACAF
process. The ancestor class describes how to utilize a device
for computational purposes: which devices are supported;
which programming language (if any) should be used; how to
set the parameters before executing the code; which storage
class should be used for storing buffers; etc. Assigning the
correct set of technology instances for each device is also
done automatically during the initialization of ACAF. The
predefined technology ancestor types are:

o  pthreadTechonology - includes the functionality to run
native functions in several threads using Unix pthreads
library;

e  OpenCLTechnology - includes the functionality to run
OpenCL kernels on the supported devices;

e  CUDATechnology - includes the functionality to run
precompiled CUDA kernels on Nvidia devices.

4) Network: Network class is an interface class for describ-
ing some network protocol to utilize network-based computer
clusters. The instance of a network type is a singleton in any
ACAF process. The ancestor class describes:

e the topology of the current process instances dis-
tributed over the network;

e the communication protocol between the processes of
different cluster nodes (implemented as a sforage class

type);
e the synchronization mechanisms between nodes.

The selection of the particular ancestor network type is
done according to the configuration provided by the user.
ACAF predefines only one network ancestor type: MPINet-
work which includes the functionality to utilize MPI library.

5) Context: The context instance is a set of devices and
the programming technologies to be utilized for executing the
simulation.

6) Database: The database instance is a part of context,
which manages the data used in the scope of the parent context.
The database object has a set of storage instances and a set
of content instances. The database instance is the main user
interface to manipulate the data: to list all available storages
in the system; to create new distributed content instances; to
list the existing content instances.
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7) Storage: The storage class is the interface for al-
locating/reading/writing/synchronizing data in the associated
memory space. The storage classes implemented in ACAF are
divided into the following categories:

e RAMStorage serves the functionality to operate with
on-board RAM of the current node. This object is a
singleton for a database.

e  DeviceStorage serves the functionality to operate with
some built-in device high-level memory (usually de-
vice RAM), like GPU or FPGA. For example, CUDA
storage or OpenCL storage are typical device storage
instances. Usually, the implementation of a particular
device storage type is fechnology-dependent. There-
fore, any device storage is instantiated by the tech-
nology instance used in the current context for the
particular device.

e  FileStorage serves the functionality to operate with the
files, available in the current operating system.

o  NetworkStorage serves the functionality to operate
with the remote content. The network storage imple-
mentation is network-dependent. The network storage
instances are created automatically by the ACAF dur-
ing the initialization according to the network ancestor
class currently used.

Each storage instance has a collection of buffers, which
are physical or abstract regions in some memory space. A
storage instance doesn’t reflect the logical organization of the
data and only operates with its representation in the memory
(some sequence of bytes).

8) Content: The content class is the interface for logical
organization of the data stored in the sforage instances of the
database. An instance of the content class reflects the particular
representation of data in some memory buffer. Additionally, the
ancestor content classes provide the user with some data ma-
nipulation functions, like initializing, dumping, synchronizing
data. The ACAF predefines the following content types:

e  Array class is a template class, which represents a dis-
tributed array with elements of the template type: each
calculation device in the context comprises some part
of the array. The parts are completely independent. A
typical example of an array is masses of particles.

e SyncedArray class is a template class, which repre-
sents a synchronized distributed array with elements
of the template type: each calculation device in the
context comprises the full array, but owns only some
part of it. This means that the device should mod-
ify only its own part, while the rest array will be
synchronized time-to-time according to the algorithm.
A typical example of a synced array is positions of
particles.

9) Kernel: A kernel represents some atomic function,
which is run on the computational devices of the context.
Each kernel instance contains a collection of its implemen-
tations, where each kernel implementation represents some
binary-coded technology-dependent executable function. The
instances of the kernel class are created by the user according
to the computational algorithm.
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10Fxtending the ACAF: The user has an opportunity to
extend the functionality of the ACAF by implementing the
other ancestor classes of the following entities:

e Architecture - to support other device types;

e  Technology - to support other programming technolo-
gies;
e  Network - to support other network protocols;

e  Content - to support other logical data organizations.

IV. USAGE EXAMPLE

A running example of ACAF usage is represented with
several parts: the configuration, the mathematical algorithm
implementation and the environmental host code. The provided
example represents the code necessary for running distributed
NBody simulation on a cluster using MPI for network commu-
nication, pthread technology for CPU code and OpenCL tech-
nology for GPU code. Any changes in the resource utilization
can be made by modifying the configuration file without any
need to recompile the program.

A. Configuration File

A configuration file contains the network protocol, the
context specification and possible distribution descriptions (see
Figure 1).

network="MPI";
context: { skip = true; CPU = "pthread"; GPU = "OpenCL"; };
distribution: {
default = (
{ architecture
{ architecture
)i
};

"GPU"; size = [1024]; block = [256]; },

1
2
3
4
5
6 "CPU"; size [256]; block = [4]; }
7

8

Figure 1. The configuration example.

The current configuration file consists of 2 sections:

e The first section specifies which devices and nodes
should be used for running the calculation (parameters
network and context). Particularly, the example file
above specifies that the calculation is going to be
distributed over the network with a help of MPI
interface and that on each node of the network all
CPUs are going to be utilized by pthread technology
and all GPUs are going to be utilized by OpenCL
technology. An additional flag skip identifies that
all devices unsupported by the specified technologies
should be skipped.

e The second section specifies the distribution of the
data inside of a single node. The user can specify
as many different distributions as it’s necessary using
the distinct names. In our example, we have a single
distribution with the name default.

B. Algorithm Code (OpenCL and pthread)

According to the technologies specified in the configuration
file and the host code initialization routine, the mathematical
algorithm should be implemented for one or several tech-
nologies. In our example, the algorithm is implemented for
OpenCL (see Figure 2) and pthread (see Figure 3) tech-
nologies, using respectively OpenCL C language and C++
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language. The code of OpenCL implementation is represented
as a separate file, while pthread implementation code is a part
of the environmental host code and passed to ACAF as a
pointer to the function.

enable
enable

1 #pragma OPENCL EXTENSION cl_khr_fp64 :
2 #pragma OPENCL EXTENSION cl_amd_fp64 :

3
4 #define SOFTENING 0.001
__kernel void force (

5
6 __
7 __global double * mass, __global double4 * position,
8 __global double4 * velocity, double time_step )

9 {

10 _local double4 shared position[ITEMS_PER_GROUP];
11 51ze t lid = get_local_id(0);

12

13 shared position[lid] =
14 double4 this_acc;

15 this _acc.x = th15 acc.y = this_acc.z = this_acc.w =

16 for ( size t i = 0; i< get_ global offset(0) + get glnbal size(0); ++i )

position[get global_id(0)];

17 {

18 double4 dist = shared_position[lid] - position[i];

19 this_acc += mass[i] * dist / powr(length(dist) + SOFTENING, 3.);
20}

21

22 size t gid = get_global _id(0);
23 velocity[gid] += this_acc * time_step;
24 position[gid] += velocity[gid] * time_step;

Figure 2. The OpenCL algorithm example.

#define SOFTENING 0.001

1
2
3 status force (

4 const acaf::uint4 & jid, const acaf::uint4 & jtotal,

5 const acaf::variant_vector & args

6 )

74

8 double * mass = reinterpret_cast<double *>(*(args[0].get<void *>()));

9 double4 * position = reinterpret_cast<double4 *>(*(args[1l].get<void *>(
10 double4 * velocity = reinterpret_cast<double4 *>(*(args[2].get<void *>(
11 double time_step = *(args[3].get<double>());

)));
1))

13 double4 this pos = position[jid[0]];
14 double4 this acc (0.);
15 for (size_t i = 0; i < jtotal[0]; ++i)

16 {

17 doubled4 dist = this_pos - position[i];

18 this_acc += mass[i] * dist / pow(dist.length() + SOFTENING, 3.)
19 }

20

21 velocity[jid[0]] += this_acc * time_step
22 position[jid[0]] += velocity[jid[0]] * time step;

24 return error::Success;

Figure 3. The pthread algorithm example.

C. Environmental Host Code

Finally, the environmental host code represents the main
function with initialization instructions, content creations, ker-
nel instantiations and kernel running calls written in C++
programming language with the usage of the classes described
in Section III-B (see Figure 4).

V. CONCLUSION AND FUTURE WORK

In this exploratory paper, we presented the current
state of art and some results for the Astrophysical-oriented
Computational multi-Architectural Framework. The ACAF is
targeted to simplify the software development for astrophysical
simulations implementation by providing a user with the set
of objects and functions covering some aspects of application
developing.

In the current work, we focused on the communication and
the data concepts of software development problem designing
the special distributed database. The database is aimed to
process particle systems with float and/or double (integral)
parameters. The database aims to store data in high-level
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int maini{int argc, char ** argv)
{

1
2
3 HPI_Init(&argc, Bargw);

4  status s = error::Success;

5 do

6 o

7 S/ initialize the framework, the configuratien file will be read
8 s = acaf::initializelargc, argvl:

-] if (s.faill}) break;

13

11 Handle < DataBase > db = Context::getContext()-=getDBE();

12 LinearParticles distriContext::getContext{), acaf string({“default"));
13 Handle=Content= mass, pos, wvelo;

14

15 i

1a /f create arrays for masses, positions and welocities

17 acaf::palr<Handle=Content>, statuss tmp;:

13 tnp = db-=create= Array=double, 1= ={"mass",

19 Content::ACAF_CONTENT GLOBAL, distr.umits(l));
21 if (tmp.second.fail()} cout =< tmp.second;

21 mass = tmp.first;

22 mass-=fill{acaf: variant{1.));

23 tnp = db-=create= SyncedArray=doubled, 1= =(“position”,
24 Content::ACAF_CONTENT GLOBAL, distr.umits(l));
25 if (tmp.second.faili)} cout == tmp.second;

26 pos = tmp.first;

27 pos-=random| acaf::variant{doubled{{-1., -1., -1., B.}}],
28 acaf::variant{doubledi{2., 2., 2., B.}4)}:
29 tnp = db-=create= Array=doubled, 1= =["velocity",

3d Content: :ACAF_CONTENT _GLOBAL, distr.units(1});
31 if (tmp.second.faili)} cout == tmp.second;

32 velo = first

33 velo- bulEiacaT. wariant|doubled(d.})};

34 }

35

36 double current time = 0.;

37 double and time = 1.;

38 double time step = 0.01;

39 S/ instanciate kernal

L1i] Kernel force|{"force®, Context::getContext{));

41 Jf add kernel Jrr.pLerlentations - Opencl and ptnreaus

42 5 = force.add|"OpenCL”, "gravity.cl® -nad-enable”, true};
43 if (s.faill}) cout =< 5 << endl;

44 s = force.add(*pthread®, &::force);

45 if (s.faill}) cout << 5 << endl;

di Jf add kernel arguments, which will be forwarder Later to
a7 Jf the implementations code

ad s = force.set(0, mass);

49 if (s5.faill}) cout =< "Adding mass falled:" << 5 =< endl;
5@ s = force.set(l, "position”);

51 if (s.faill}) cout == "Adding pesitiaon failed:" == s == endl;
52 s = force.set(2, “velocity");

53 if (s.faill}) cout == "Adding welocity failed:" == s == endl;
54 s = force.set(3, variantitime_stepl):

55 if (s.faill}) cout == "Adding timestep failed:" == s == endl;
56

57 s/ evaluate the particle system

58 while (current_time = end_time)

59 i

&6l #f run the kernel

6l s = force.startidistr.units(1}h;

(] if (s.faili}) break:

63 #f synchronize pesitions all-to-all

64 pos-=synchronize();

[ current_time += time_step:

1] H

67 t while (false);

L)

69 acaf::finalize{}:
Ta MPI Finalizae(};
71 if {s.faili)}

72 printfi“an error %4 {(%s] occurred. Failed!yn", s.code(], s.nama()};
73 else

74 printfi“Successiin"}j;

75 return s.codef);

78 }

Figure 4. The main function example.

memory spaces in the format acceptable with computational
algorithms.

The current database implementation utilizes pthreads,
OpenCL and CUDA technologies to run the calculation on
CPU and GPU devices and MPI interface to distribute and
exchange data over the network. The implementation uses 2
types of content: array and synced array. Extending of the
database functionality can be easily done by implementing the
certain program interfaces.

We can conclude that the current ACAF implementation
facilitates the development of network-enabled heterogeneous
NBody force simulation program. With the help of ACAF, the
user is able to write an application without the expertise neither
in the network programming nor in the parallel programming
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of some devices (CPU, GPU). ACAF requires the user to do
the following tasks:

e  Write a configuration file, which specifies the devices
and nodes to be used and defines the distribution of
the data.

e Implement the mathematical, physical part of the
program.

e  Write some environmental code, which does the ini-
tialization, data definition, data initialization, kernel
instantiation and defines the main particle system
evaluation loop.

We performed the comparison tests of the ACAF-based
implementation of the Nbody forces simulation (see Section
IV) against the bare OpenCL/MPI implementation. The Figure
5 represents the percent overhead of the execution time of
the ACAF-based implementation to the execution time of the
bare implementation scaled over the particles number in the
example system. According to this chart, we see, that the time
overhead of using ACAF drops to less than 1 percent for the
bigger particle systems, which equivalents to 97 seconds for
the case of 327680 particles.

6,00%
5,

4,00%
3,00%

2,00%

Perce nt overhead

1,00%

00%

10240 20480 40960 81920 122880 163840 245760 327680
Particles count

== ACAF-based code to bare code comparison

Figure 5. The ACAF-based implementation to bare implementation
comparison chart.

The tests were carried out on the following test platform:
the 7-nodes cluster with 4 processing nodes, each of them
has the NVIDIA GeForce GTX 285 GPU with 2GB of RAM,
the Intel Xeon E5S504 CPU and 6GB of RAM. The nodes run
Linux OS. For each test the calculation was equally distributed
over all 4 processing nodes. The calculation was performed
only on the GPUs using OpenCL and the positions of the
particles were synchronized after each iteration using MPI.

In comparison with the other approaches mentioned in
Section II-B, the following advantages of our approach can
be mentioned:

1)  ACAF is designed as a C++ framework in the first
place. This implies that a lot of different other exist-
ing libraries and tools can be reused when necessary.
So the user has a choice either to reimplement the
algorithm using the framework tools or reuse the
existing solution.

2)  ACAF is designed to be domain specific for astro-
physical (particle) problems, therefore it can have
lighter structures as the generic tools.

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-466-4

3)  ACAF abstracts the device itself and the usage of the
device as well. This allows to create one’s own usage
schemas (Technologies) as well as extend the devices
supported (by implementing Architecture interface).

4)  ACAF abstracts the data distribution and usage, while
providing still the flexibility for the user to implement
other Storage classes and other Content classes. The
Storage classes can also represent files, which ab-
stracts input-output operations in the same manner.

5)  ACAF incorporates the different kernel implementa-
tion into one object. And the object “knows” where
and how to execute the code.

While the current implementation of the ACAF has the
following limitations:

1)  ACAF requires the usage of the extended C lan-
guages, like OpenCL and CUDA for utilizing GPUs.

2) The user should be aware that the computational
code will be run simultaneously on different data and
therefore the code should be reentrant.

3) ACAF provides only arrays as the content objects.

In the future, it’s necessary to improve ACAF by extending
it with the following features:

e Implement tree-structure content, which can be di-
rectly utilized for advanced SPH and NBody simu-
lations.

e Implement the support of astrophysical-native file for-
mats: Hierarchical Data Format version 5 (HDF5),
Flexible Image Transport System (FITS), etc.

e Move ACAF implementation forward by introducing
the domain specific language, which will eliminate the
separate implementations for each technology.

e Implement partially synchronized arrays, enabling so
even bigger data ranges.
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