COMPUTATION TOOLS 2016 : The Seventh International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

A Perceptron-Based Task Predictor

for Multi-Core Processor Architectures

Jongbok Lee

Dept. of Information and Communications Engineering
Hansung University
Seoul, Republic of Korea
Email: j bl ee@ansung. ac. kr

Abstract—In order to increase the performance of multi-core

system processors, the task predictor which speculativelfietches

and allocates tasks to each core should be highly accuraten |
this paper, a perceptron-based task predictor is proposeddr the

multi-core processor architectures. Using SPEC 2000 benafarks

as input, the trace-driven simulation has been performed fo

the dual-core to octa-core processors employing perceptnebased
task predictor extensively. Its performance is compared wh the

architecture which utilizes the conventional two-level adptive

task predictor.

Keywords—multi-core processor, perceptron Figure 1. The perceptron.

. INTRODUCTION

Currently, multi-core processors are widely used for the Yy = wo + lewz (1)
high performance of the computer system, such as smart i—1

phones, tablet PCs, notebook computers, and desk top comp
ers, etc [1]-[6]. By utilizing a task predictor, a progranpis-
titioned into speculative multiple tasks which are assijt®
the processing core units. Hence, the task predictor sHuil
very accurate in order to effectively take advantage of aimul

core processor architecture. Recently, neural network$ su . . : .
as perceptrons are widely used in the digital systems, whick; When the output is negative, the branch is predicted as not

: . ken; When the output is positive, it is predicted as taken.
can take advantage of learning. In this paper, a perceptro axen, - ' .
based task predictor for multi-core processor is proposedV1€" @ branch is met, the branch address is used to generate
The SPEC2000 integer benchmark programs are used féf) ndex between 0 and N-1 to access the perceptron table.
fter obtaining the weight vectoP, n by fetching thei;;,

estimating the performance of multi-core processors usin)
perceptrons. The result is compared with the performance _ertceptron_, tthe dot produ;:té)ftthe v;/eu?ht \{rer(]:to(rj_andt_thegotb
the multi-core processor with the conventional scheme. IStory Tegister IS generated (o output'y. fhe direction
_ _ _ _ next branch is predicted upon the sign of the output. When the
This paper is organized as follows. In the Section 2,actual direction of the branch is available, the result sdu®

the perceptron-based task predictor will be discussed. Thgpdate the weight value of the vector P. Then, the vector P is
simulation environment will be described in the Sectionr8. | recorded to the,, entry of the perceptron table.

the Section 4, the simulation results will be analyzed. Rina
the Section 5 concludes our paper.

l1Iherefore, before adapting to the previous branch resthi¢s,
biased weightv, always enables the perceptron to be biased
d in the initial stage. The output of a perceptron is represnt
as (1). The input to a perceptron is bipolar, which means
that the branch is not taken if; is -1, and taken ifz; is

After the perceptron output y has been computed, the
following algorithm is used to train the perceptron. Let t-the
if the branch was not taken, or 1 if it was taken, and let be the
[I. RELATED STUDIES threshold, a parameter to the training algorithm used taddec

Perceptron is the neural network capable of learning by'Nen enough training has been done. Since tigrate always
producing outputs combined with the inputs and the assatiat Ster -1 or 1, this algorithm increments the weight when
weight values. In the past studies, it has been adopted f(;(Fe branch outcome agrees with, and decrements when it
predicting branches in the computer systems [7]-[9]. Fadur ISagrees.
describes the graphic model of a perceptron. A perceptron is

represented by weight vectors, which are composed of pesiti Il. " THE PERCEPTRONBASED TASK PREDICTOR

or negative integers. The output is the dot product of theyhtei The task prediction of multi-core processors using percep-
vectorwy. .y and the input vector,, . The first element:g trons can be implemented in the similar mechanism as the
is always set to 1 to serve as a bias input. branches are predicted. Figure 3 illustrates the mechanism

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-466-4 1

COMPUTATION TOOLS 2016 : The Seventh International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

. . | instructions in a task [10]. In addition, it has a L1 instiant
if signly,)=t or |y, <=6

Superscalar Superscalar Superscalar Superscalar
then Core 1 Core 2 Core3 |oee| CoreN

for i =0 to n do

W/' = l/V/' + Z‘X/' *V \ i *
9/701 fOf L2 cache
end if 1‘
Figure 2. The perceptron algorithm
Main Memory
of the perceptron-based predictor. The predictor recadnds t Figure 4. The multicore processor

finite length of task history results to the task history ségji
and accesses the weight vector table to make a prediction. A
temporary task history register is utilized, and at the beigiy ~ cache and a L1 data cache. For the cache coherency of the L1
of each multiple task prediction, the contents of the taskony ~ data cache, MESI protocol is utilized. If the data in the L1
register is transferred to the temporary task history tegis data cache associated with a core is over-written by another
In order to predict multiple tasks, the task’s starting addr core, it is invalidated. The L2 cache is shared among thescore
which is connected with the main memory.
v

| The superscalar processor core is allocated with tasks

Task T emporary s which consist of a number of instructions. The fetched irgstr
Address Register Reigg, Outcome tions in the task are decoded, renamed, executed, andrwritte

back. When all the instructions in the task are retired and
becomes empty, new instructions of task are fetched. If the
task is mispredicted, the fetch is aborted, and all the reethi
instructions in the task are squashed. Since the instngtio
are renamed, the instructions can be issued and executed out
of-order as long as there is no true-dependency. Although th
instructions can be retired out-of-order, the instruciare
inserted into the reorder buffer and committed in-orderaas t

!

¢

i-th task
prediction

L'

i+1 th task

[Setected Percptran] prediction preserve the original program order.
1 The detailed architecture configurations and cache parame-
Y ters for each core are listed in Table I. The number of sinadlat
ML cores are 1, 2, 4, and 8. Each core is assigned with the

maximum of two tasks respectively. Since the small task size
cannot take the benefit of the instruction level paralleligme
task sizes are set to 4, 8, and 16. The functional unit of each

Figure 3. The perceptron-based task predictor TABLE I. ARCHITECTURE CONFIGURATION FOR EACH CORE.
| ltem I Value |
is hashed by the k-bits of history register which is used to number of cores 1,248
. . . number of tasks per core 1,2
index the weight vector table and to predict thg task. The task length 7816
i+ 1, task is predicted on the assumption that the first task fetch,ssueretire rate 2,48
prediction is correct. For this purpose, the rightmost tietbi f“”ﬁf‘:i‘t’”a' ‘l '“I‘Oegde/fst’;rf ir‘z"i
the_temporary _task history register is updated and _mgétiplb CTamstruction 64 KB, 2-way Sl assoc.,
an indexed weight vector to make the 1, task prediction. In cache 16 B block,
this way, two tasks can be predicted per cycle. Later, when th 10 cycles miss penalty
. . . L1-data 64 KB, 2-way set assoc.,
task outcomes are known,_th_e task h|story register is ugdate cache 32 B block
according to the results. Similarly, to predict the 2, task, 10 cycles miss penalty
the rightmost 2 bits of the temporary task history regisger i task address cache 2K entry_
X 2 task predictor | two-level adaptive 14-bit global history
updated based on the first and the second task predictions. perceptron 8-bit global istory,
4096 Pattern History Tablg

IV. THE SIMULATION ENVIRONMENT

A. The multi-core processor architecture core consists of a number of ALUs, load/store units accgrdin
Figure 4 shows the multi-core processor with N cores. Eaclo each configuration. For the memory disambiguation, load-
core is an out-of-order superscalar processor which catuéxe store and store-store pairs are inhibited from the spdvelat

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-466-4 2

COMPUTATION TOOLS 2016 : The Seventh International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

execution when the effective addresses are matched, withimgain with instructions bysrouping function. Since the cycle

or among the cores. The L1 instruction cache and L1 dat& incremented for each process, the core which spends the
cache for each core is 64 KB, and it is designed as 2longest cycles determines the global cycle. If the total peim
way set associative. This is because the data cache hit ratad executed instruction is divided by the number of global
can be degraded by using MESI protocol among multiplecycles spent, then Instruction per Cycle (IPC) can be obthin
cores. For the reference, tasks are predicted using the twdhe eight SPEC 2000 integer benchmark programs that is used
level adaptive prediction scheme. The two-level adaptakt for the input arebzip2, crafty, gap, gcc, gzip, mcf, parser, and
predictor is similar to the two-level adaptive branch petidn twolf as shown in Table Il. The programs are compiled by
scheme where the branch address simply corresponds to the
task starting address [11] [12]. In correspondence with the
perceptron-based task predictor, the two-level adaptsk t
predictor employs a 14-bits of global history register and

TABLE IIl. SPEC 2000 BENCHMARK PROGRAMS

benchmark][description |

16,384 items for the pattern history table. For the perosptr bzip2 compression

based task predictor, the length of task history registe3-is ;’;p“y ;*r‘(‘jj; tghaergfy T

bits, and the number of pattern history table is set to 4096. gce C programming Tanguage complier
The threshold value for the perceptron learning is shown, as 2 gzip compression _
where TN is the length of the task history register. For both ;"aifser Svgt;g“';f:;lgrcomb'“a“o“
predictors, the task address cache has the size of 2048sentri twolf placement and global Touting

Since we do not model the main memory, the hit ratio of L2

cache is assumed to be as 100 %. , , ,
SimpleScalar cross C compiler to obtain executables under

§=2xTN +14 (2) Linux 3.3.4 [14]. The execution files are again run with
. . SimpleScalar to obtain 100 million MIPS IV instruction tes;
B. The multi-core processor simulator which are used as input for the multi-core processors. Téle ta

Figure 5 depicts how the developed simulator workslevel parallelism is mapped onto each core, and the tragerdr
[13]. Initialize function initializes all the associated variables, simulation is performed to get performance [15].
and Grouping, Create_'Wndow, andFetch_One_Instr function

fetches new instructions to fill core tasks every cycle. The V. THE SIMULATION RESULTS
Figure 6 presents the simulation results of running SPEC
Initialize 2000 integer programs on the three different task lengths fo
- the single-core, dual-core, quad-core, and octa-coreepsacs.
The performance results obtained by the two-level adaptive
Sroupingt) Grouping®) task predictor and the perceptron-based task predictor are

Create Window(l Create Window(N compared in parallel. Figure 6a and 6b are the result of

Fetch_One_Instr(1)

Get_Node(1

Fetch_One_Instr(N)

the multi-core processors with the maximum task length of
four. Across the number of different cores;ip2 and mcf
scores the highest performance owing to the relatively high
parallelism and the low cache miss rates. Howeyer,results
in the lowest performance due to the severe losses from the

\2 low instruction and data cache hit rates. For the dual-core
esueti] T processors, the two-level adaptive task predictor brirges t
[Mem Process(t) | [Mem Process(v| geometrical mean of 2.60 IPC, whereas the perceptron-based
Mark_Node(1) 0000 Mark_Node(N)

task predictor results in 2.63 IPC. For the octa-core prmss

the two-level adaptive task predictor and the perceptased

predictor results in 7.64 IPC and 7.73 IPC, respectivelythWi

v the perceptron-based task predictor, the performance7s 1.

III times enhanced as the number of cores doubles. Therefore,
when the performance of the octa-core processor is compared

with the single-core, it is 5.4 times higher. With the maximu

task length of four, the perceptron-based task predictor pe

forms 1.1 % higher than the two-level adaptive task predicto

instruction fetched byGet_Node function is renamed aRe- Figure 6¢c and 6d show the results with the maximum
name function by receiving timestamps. After the instruction task length of eight. Still,bzip2 and gcc show the best

is renamed, it is inserted into a core task limgert function. and the poorest performance, respectively. For the ques-co
At the Issue function, the instruction in the core task can processor, the two-level adaptive task predictor brings3 7.
be retired so long as the corresponding functional unit idPC, whereas the perceptron-based task predictor scorés 7.
available and its time stamp is less than or equal to the murre IPC. The respective performance for the octa-core processo
cycle. For implementing the multi-core simulatioBrouping are 12.3 IPC and 12.5 IPC. With the task length of eight, the
function fills instructions of n-core tasks, amssue function octa-core processor brings 5.3 times higher performarme th
deletes instructions according to their timestamps. Tlosgss the single-core processor, which is slightly lower thanttsk

is repeated until all the fetched instructions in the coskda length of four. However, the task length of eight performg 1.
are deleted to become empty. Then, the core tasks are filldines better than the task length of four. Hence, the prapose

Delete_Node(1) Delete_Node(N)

Figure 5. The flow chart of the multi-core processor simulato

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-466-4 3

COMPUTATION TOOLS 2016 : The Seventh International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

scheme scores higher performance than the two-level adapti [g]
scheme by 2.8 %.

Finally, Figure 6e and 6f present the comparison result !
when the maximum task length is sixtedturser outperforms
bzip2 by the enlargement of the task length, whergasstill
maintains low performance. For the dual-core processbes, t
two-level adaptive task predictor brings 6.5 IPC, wheréwes t
perceptron-based task predictor results in 6.9 IPC. For thE1]
guad-cores, the respective values are 11.24 IPC and 1157 IP
And for the octa-cores, they are increased to 17.8 IPC arfl 18,
IPC, respectively. With the perceptron, the performance halt?
increased 1.8 times higher as the single-core goes to tHe dua
core processor. However, it is slightly decreased to 1.@gim [13]
when the quad-cores go to the octa-cores. The octa-coriésresu
in the 4.9 times higher performance than the single-coré wit
the maximum task length of sixteen. Although the increate ra
has been slowed down, the maximum task length of sixteeH4l
gives 1.5 times and 2.4 times higher performances than the
maximum task length of eight and four, respectively. When
the maximum task length is sixteen, the perceptron-bastd ta
predictor prevails the two-level adaptive task predictprshl
%.

[10]

[15]

VI. CONCLUSIONS

In this paper, a perceptron-based task predictor for multi-
core processors has been proposed. The single-core to octa-
core processors using perceptron with different task lengt
have been simulated. As the result shows, the performance of
multi-core processors with the perceptron-based taskqiced
scores higher performance than the two-level adaptive task
predictor. When the task lengths are 4, 8, and 16, the ragpect
performance increase over the two-level adaptive scheme ar
1.1 %, 2.8 %, and 5.1 %.

For the future research, we will apply the perceptron-based
task predictor to the asymmetric multi-core processor tthér
improve the efficiency, as well as expanding our scope to the
multi-core embedded and multi-core digital signal prooess
architectures.

ACKNOWLEDGMENT

The author would like to thank Hansung University for the
financial support of this research.

REFERENCES

[1] D. E. Culler and J. P. Singh, Parallel Computer Architeet Morgan
Kauffmann Publishers Inc., Aug. 1998.

[2] T. Ungerer, B. Robic, and J. Silk, “Multithreaded Prosess,” The
Computer Journal, vol. 45, no. 3, 2002.

[3] S. W. Keckler, K. Olukotun, and H. P. Hofsee, MulticoreoBessors
and Systems. Springer, 2009.

[4] M. Monchiero, “How to simulate 1000 cores,” ACM SIGARCHo@-
puter Architecture News archive, vol. 37, no. 2, May 2009, pp-19.

[5] S. Biswas, D. Franklin, A. Savage, R. Dixon, T. Sherwoadd F. T.
Chong, “Multi-execution : Multicore caching for data-sleni execu-

tions,” in Proceedings of the 36th Annual International $psium on
Computer Architecture, 2009, pp. 164-173.

[6] D. Genbrugge and L. Eckhout, “Chip multiprocessor desipace
exploration through statistical simulation,” IEEE Traaosans on Com-
puters, vol. 58, no. 12, Dec. 2009, pp. 1668-1681.

[71 D. A. Jimenez and C. Lin, “Neural methods for dynamic hofan
prediction,” ACM Transactions on Computer Systems, vol. 4@. 2,
Mar 1999, pp. 24-36.

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-466-4

——, “Dynamic branch prediction with perceptrons,” indfi Perfor-
mance Computer Architecture, Jun 2001, pp. 197-206.

D. A. Jimenez, “Fast path-based neural branch predictim Pro-
ceedings of the 36th annual IEEE/ACM International Sympwsion
Microarchitecture, Dec 2003, pp. 243-252.

T. N. Vijaykumar and G. S. Sohi, “Task selection for a tadalar
processor,” in 31st International Symposium on Microaestture, Dec
1998, pp. 81-92.

T.-Y. Yeh and Y. Patt, “Alternative Implementations divo-Level
Adaptive Branch Prediction,” in Proceedings of the 19theidnational
Symposium on Computer Architecture, May. 1992, pp. 124-134

J. Gummaraju and M. Franklin, “Branch prediction in tthreaded
processors,” in Parallel Architectures and CompilationhFeques, Oct
2000, pp. 179-188.

J. Lee, “The study of statistical simulation for mutitre processor
architectures,” in The Sixth International Conference am@utational
Logics, Algebras, Programming, Tools, and Benchmarkingr RD15,
pp. 27-30.

T. Austin, E. Larson, and D. Ernest, “SimpleScalar : Afrastructure
for Computer System Modeling,” Computer, vol. 35, no. 2, .F202,
pp. 59-67.

A.Rico, A. Duran, F. Cabarcas, A. Ramirex, and M. Valeforace-
driven simulation of multithreaded applications,” in ISB8, Apr 2011,
pp. 87-96.

COMPUTATION TOOLS 2016
12 T T T T T T T
1-core M-
2-cores mm—
4-cores mmmm—
8-cores mmmm—
10 q

IPC
o

20

15

10

IPC

40

35

30

25

IPC

20

15

10

Copyright (c) IARIA, 2016.

bzip2 crafty gap gce gzip mcf parser twolf
Benchmarks

(a) two-level adaptive, maximum task length of 4

T
1-core M
2-cores mmm—
4-cores mmmm—
8-cores

bzip2 crafty gap gce gzip mcf parser twolf
Benchmarks

(c) two-level adaptive, maximum task length of 8

bzip2 crafty gap gce gzip mcf parser twolf
Benchmarks

(e) two-level adaptive, maximum task length of 16

IPC

IPC

IPC

12

10

20

15

10

35

30

25

20

15

10

: The Seventh International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

T
1-core mm—
2-cores mmm—
4-cores mmmm—
8-cores

bzip2 crafty gap gce gzip mcf parser twolf
Benchmarks

(b) perceptron, maximum task length of 4

T
1-core mm—
2-cores mm—
4-cores mmmmm—
8-cores

bzip2 crafty gap gce gzip mcf parser twolf
Benchmarks

(d) perceptron, maximum task length of 8

T
1-core mmmmmm |
2-cores mm—
4-cores
8-cores mmm—

bzip2 crafty gap gce gzip mcf parser twolf
Benchmarks

(f) perceptron, maximum task length of 16

Figure 6. Performance results of the two-level adaptive thedperceptron-based task predictor

ISBN: 978-1-61208-466-4

