
The Study of Statistical Simulation for

Multicore Processor Architectures

Jongbok Lee

Dept. of Information and Communications Engineering

Hansung University

Seoul, Republic of Korea

Email: jblee@hansung.ac.kr

Abstract—The execution-driven or trace-driven simulation is
often used for the performance analysis of widely used multicore
processors in the initial design stage. However much time and
disk space is necessary. In this paper, statistical simulations are
performed for high performance multicore processors with vari-
ous hardware configurations. For the experiment, the SPEC2000
benchmarks programs are used for the statistical profiling and
synthesis. As a result, the performance obtained by the statistical
simulation is comparable to that of the trace-driven simulation,
with a tremendous reduction in the simulation time.

Keywords–multicore processor, statistical simulation

I. INTRODUCTION

Currently, multicore processors are widely used for enhanc-
ing the performance of the computer system, such as smart
phones, tablet PCs, notebook computers, desk top computers,
etc. [1][2][3]. Since extensive simulations are necessary in
the initial design stage of these multicore processors, the
execution-driven simulation or trace-driven simulation is gen-
erally used. The execution-driven simulation is accurate but
requires excessive time, whereas the trace-driven simulation
is less accurate with the benefit of relatively reduced time. In
addition, the trace-driven simulation has the disadvantage of
requiring excessive disk space.

In order to address these obstacles, various alternative
techniques have been studied. In the statistical simulation, the
statistical characteristics of the processor architecture and the
benchmark programs are collected. The statistical profiling is
the collection of the characteristic distribution of the programs
and the processor architectures. And then, new instruction
traces are synthesized upon these statistical profiles. Since
the new instruction traces are randomly generated by the
statistical profiles, they represent the characteristics of each
benchmark implicitly. Finally, the statistical simulation is per-
formed with the new instruction traces on a simple statistical
trace-driven simulator, which drastically reduces the simulation
time [4][5][6][7][8]. Therefore, the statistical simulation can be
useful for measuring the performance of multicore processors
in the initial design stage, with the reduced time and space.

In this paper, the SPEC2000 integer benchmark programs
are used for estimating the performance of multicore proces-
sors using statistical simulation. The result is compared with
the performance of the trace-driven simulation by calculating
the relative errors. This paper is organized as follows. In
the Section 2, the statistical profiling will be discussed. The

simulation environment will be described in Section 3. In
Section 4, the simulation results will be analyzed. Finally,
Section 5 concludes our paper.

II. THE STATISTICAL PROFILING

The statistical simulation consists of four stages, as shown
in the Figure 1.

Generate Instruction
Trace

Statistical Profiling

Synthesize Instruction
Trace

Statistical Simulation

Figure 1. The statistical simulation process

The first stage is the generation of the instruction traces,
which is the same as the conventional method. Each bench-
mark program is executed and its instruction traces are ob-
tained by the instruction trace generator.

Secondly, the statistical profiling and the statistical data
collection are performed. In this process, the instruction is
analyzed and the intrinsic characteristic and the local property
of each benchmark program is collected. The intrinsic charac-
teristic of each benchmark program consists of instruction class
distribution, the number of operand register distribution, and
the data dependency among instructions. The instruction class
distribution is obtained by reducing the original instruction
set to that of only nine simple instructions. The register
dependency among instructions is defined as the distance
between the preceding instruction that includes the destination
register and the subsequent instruction that has the source
register on which it depends. These characteristics of bench-
mark are independent of the given microprocessor architecture,
but dependent only on the instruction set and the compiler.
The local characteristics include task misprediction rates, and

27Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-394-0

COMPUTATION TOOLS 2015 : The Sixth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking



various cache miss rates, etc. [9]. These are affected by the
microprocessor hardware. This procedure is performed only
once during the whole process.

Thirdly, using the collected statistical profiles of the second
stage, a new benchmark is synthesized by the random number
generation. A random number between 0 and 1 is generated
and mapped onto the cumulative distribution function obtained
from statistical profile in order to synthesize a new instruction
trace.

Finally, the synthesized instruction trace is input to the
statistical multicore simulator with the task prediction hit rates
and the cache hit rates. Once all the data from the statistical
profile and the synthetic instruction traces are secured,various
experiments can be conducted by modifying the hardware ar-
chitecture such as the number of cores, the task size, instruction
fetch rates, the number of pipeline stages. Thus, a number of
various simulations can be performed in a dramatically reduced
time and space.

III. THE SIMULATION ENVIRONMENT

A. The multicore processor architecture

Figure 2 shows the multicore processor with N cores. Each
core is an in-order or out-of-order superscalar processor which
can execute instructions in a task [2][9].

Figure 2. The multicore processor

In addition, it has a L1 instruction cache and a L1 data
cache. For the cache coherency of the L1 data cache, MESI
(Modified Exclusive Shared Invalidate) protocol is utilized
[10]. If the data in the L1 data cache associated with a core is
over-written by another core, it is invalidated. The L2 cache
is shared among the cores, which is connected with the main
memory.

The superscalar processor core is allocated with a task
which consists of a number of instructions. The fetched
instructions in the task are decoded, renamed, executed, and
written back. When all the instructions in the task are retired
and becomes empty, new instructions of task are fetched. If the
task is mispredicted, the fetch is aborted, and all the remained
instructions in the task are squashed. Since the instructions
are renamed, the instructions can be issued and executed out-
of-order as long as there is no true-dependency. Although the
instructions can be retired out-of-order, the instructions are
inserted into the reorder buffer and committed in-order as to
preserve the original program order.

The detailed architecture configurations and cache param-
eters for each core are listed in Table I. The number of
simulated cores are 2, 4, and 8. Each core is assigned one
task respectively. Since the small task size cannot take the
benefit of the instruction level parallelism, the task sizes are
set to 4, 8, and 16. The functional unit of each core consists of
a number of ALUs (Arithmetic Logic Units), load/store units
according to each configuration.

TABLE I. ARCHITECTURE CONFIGURATION FOR EACH CORE.

Item Value

number of cores 2,4,8

number of task 1

task size 4,8,16

fetch rate 2,4,8

issue rate 2,4,8

retire rate 2,4,8

functional integer ALU 2,4,8

unit load/store 1,2,4

L1-instruction 64 KB, 2-way set assoc.,

cache 16 B block,

10 cycles miss penalty

L1-data 64 KB, 2-way set assoc.,

32 B block

cache 10 cycles miss penalty

task address cache 2K entry

task predictor 14-bit global history based

6 cycle mispred. penalty

For the memory disambiguation, load-store and store-store
pairs are inhibited from the speculative execution when the
effective addresses are matched, within or among the cores.
The L1 instruction cache and L1 data cache for each core
is 64 KB, and it is designed as 2-way set associative. This
is because the data cache hit ratio can be degraded by using
MESI protocol among multicores. Tasks are predicted using
the Two-level Adaptive Task Prediction scheme, and the task
address cache has the size of 2048 entries. Since we do not
model the main memory, the hit ratio of L2 cache is assumed
to be 100 %.

B. The multicore processor simulator

Figure 3 depicts how the developed simulator works.
Initialize function initializes all the associated variables,
and Grouping, Create Window, and Fetch One Instr function
fetches new instructions every cycle. The instruction fetched
by Get Node function is renamed at Rename function by
receiving timestamps. After the instruction is renamed, it
is inserted into the instruction window by Insert function.
At the Issue function, the instruction in the window can
be retired as long as the corresponding functional unit is
available and its time stamp is less than or equal to the
current cycle. For the multicore simulation, Grouping function
fills an instruction into n-cores, and Issue function deletes
instructions according to their timestamps. This process is
repeated until all the fetched instructions are deleted so that all
the instruction windows are empty. Then, the cores are filled
again with instructions with Grouping function. Since the cycle
is incremented for each process, the core which spends the
longest cycles determines the global cycle. If the total number
of executed instructions is divided by the number of cycles
spent, then IPC (Instruction per Cycle) can be obtained.

The seven SPEC 2000 integer benchmark programs that
are used for the input are bzip2,crafty, gap, gcc, gzip, parser,

28Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-394-0

COMPUTATION TOOLS 2015 : The Sixth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking



Analysis

Initialize

Grouping(N)

Create_Window(N)

Fetch_One_Instr(N)

Get_Node(N)

Rename(N)

Insert(N)

Grouping(1)

Create_Window(1)

Fetch_One_Instr(1)

Get_Node(1)

Rename(1)

Insert(1)

Issue(N)

Mem_Process(N)

Mark_Node(N)

Delete_Node(N)

Issue(1)

Mem_Process(1)

Mark_Node(1)

Delete_Node(1)

Figure 3. The flow chart of the multicore processor simulator

and twolf, as shown in Table II. The programs are compiled
by SimpleScalar cross C compiler to obtain executables under
Linux 3.3.4 [11]. The execution files are run with SimpleScalar
to obtain 100 million MIPS IV instruction traces. While these
are used as input for the multicore processors, the task-level
parallelism is mapped onto each core.

TABLE II. SPEC 2000 BENCHMARK PROGRAMS

benchmark description

bzip2 compression

crafty chess game

gap group theory interpreter

gcc C programming language compiler

gzip compression

parser word processor

twolf placement and global routing

IV. THE SIMULATION RESULTS

Figure 4 presents the simulation results of running SPEC
2000 integer programs on the three different task sizes of dual
core, quad core, and octa core processors. The performance
results obtained by the general trace-driven simulation and the
statistical simulation are compared in parallel. Figure 4a and
4b are the result of the multicore processors with the maximum
task size of four. For the dual core processors, the trace-driven
simulation brings the geometrical mean of 1.1 IPC, whereas
the statistical simulation results in 1.3 IPC. For the quad
core processors, the trace-driven simulation and the statistical
simulation results in 2.0 IPC and 2.4 IPC, respectively. Finally,
the respective performances for the octa core processors are 3.2
IPC and 4.3 IPC. Unlike the respective relative error of 18 %
and 20 % of dual core and quad core processors, the octa core
processors scores the relative error of 25 % in the average.

Figure 4c and 4d show the results with the maximum task
size of eight. The performance of the dual core, the quad core,
and the octa core processors measured by the trace-driven
simulations are 1.3 IPC, 2.4 IPC, and 4.0 IPC, respectively.

The corresponding values by the statistical simulations are 1.8
IPC, 3.1 IPC, and 5.4 IPC. The average relative error results
in 35 %.

Finally, Figure 4e and 4f presents the comparison result
when the maximum task size is sixteen. For the dual core
processors, the trace-driven simulation brings 1.5 IPC, whereas
the statistical simulation results in 2.1 IPC. For the quad cores,
the respective values are 2.8 IPC and 3.7 IPC. And for the octa
cores, the relative error is increased by the results of 4.7 IPC
and 6.4 IPC, respectively. However, the average relative error
does not exceed 35 %.

As the result shows, the performance of multicore proces-
sors evaluated by statistical simulation has the similar tendency
of the trace-driven simulation with the average relative error
of 18 % to 35 %. Encouragingly, the average statistical
simulation time is 9 seconds per benchmark program, which
is 30 times faster than the trace-driven simulation. Therefore,
this compensates for not being highly accurate.

V. CONCLUSIONS

In this paper, the performance of multicore processors
has been evaluated and analyzed by the statistical simulation.
Since the statistical simulation takes advantage of the newly
synthesized instruction traces by statistical profile, the disk
space is saved and the average simulation time is drastically
reduced. Although the experiment shows the average relative
error of 18 % to 35 %, the simulation time has been drastically
reduced to 1/30.

For future research, we will study the method to further
improve the accuracy of the statistical simulation, as well as
expanding our scope to the multicore embedded and multicore
digital signal processor architectures.

ACKNOWLEDGEMENT

The author would like to thank Hansung University for the
financial support of this research.

REFERENCES

[1] T. Ungerer, B. Robic, and J. Silk, “Multithreaded Processors,” The
Computer Journal, vol. 45, no. 3, 2002.

[2] S. W. Keckler, K. Olukotun, and H. P. Hofsee, Multicore Processors
and Systems. Springer, 2009.

[3] M. Monchiero, “How to simulate 1000 cores,” ACM SIGARCH Com-
puter Architecture News archive, vol. 37, no. 2, May 2009, pp. 10–19.

[4] D. B. Noonburg and J. P. Shen, “A Framework for Statistical Mod-
eling of Superscalar Processor Performance,” in Proceedings on Third
International Symposium on High Performance Computer Architecture,
1997.

[5] R. Carl and J. E. Smith, “Modeling Superscalar Processors via Statistical
Simulation,” in Workshop on Performance Analysis and Its Impact on
Design, Jun. 1998.

[6] L. Eeckout, K. D. Bosschere, and H. Neefs, “Performance Analysis
through Synthetic Trace Generation,” in International Symposium on
Performance Analysis of Systems and Software, Apr. 2000.

[7] D. Genbrugge and L. Eckhout, “Chip multiprocessor design space
exploration through statistical simulation,” IEEE Transactions on Com-
puters, vol. 58, no. 12, Dec. 2009, pp. 1668–1681.

[8] A.Rico, A. Duran, F. Cabarcas, A. Ramirex, and M. Valero, “Trace-
driven simulation of multithreaded applications,” in ISPASS, 2011.

[9] T. N. Vijaykumar and G. S. Sohi, “Task selection for a multiscalar
processor,” in 31st International Symposium on Microarchitecture, Dec
1998.

29Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-394-0

COMPUTATION TOOLS 2015 : The Sixth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking



 0

 1

 2

 3

 4

 5

 6

 7

 8

bzip2 crafty gap gcc gzip parser twolf

IP
C

benchmarks

2-cores
4-cores
8-cores

(a) simulated, task size =4

 0

 1

 2

 3

 4

 5

 6

 7

 8

bzip2 crafty gap gcc gzip parser twolf

IP
C

benchmarks

2-cores
4-cores
8-cores

(b) statistical, task size =4

 0

 2

 4

 6

 8

 10

 12

bzip2 crafty gap gcc gzip parser twolf

IP
C

benchmarks

2-cores
4-cores
8-cores

(c) simulated, task size =8

 0

 2

 4

 6

 8

 10

 12

bzip2 crafty gap gcc gzip parser twolf

IP
C

benchmarks

2-cores
4-cores
8-cores

(d) statistical, task size =8

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

bzip2 crafty gap gcc gzip parser twolf

IP
C

benchmarks

2-cores
4-cores
8-cores

(e) simulated, task size =16

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

bzip2 crafty gap gcc gzip parser twolf

IP
C

benchmarks

2-cores
4-cores
8-cores

(f) statistical, task size =16

Figure 4. Performance results of the trace-driven and the statistical simulation

[10] M. S. Papamarcos and J. H. Patel, “A low-overhead coherence solution
for multiprocessors with private cache memories,” in Proceedings of
the 11th Annual International Symposium on Computer Architecture,
Jun 1984, pp. 348–354.

[11] T. Austin, E. Larson, and D. Ernest, “SimpleScalar : An Infrastructure
for Computer System Modeling,” Computer, vol. 35, no. 2, Feb. 2002,
pp. 59–67.

30Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-394-0

COMPUTATION TOOLS 2015 : The Sixth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking


