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Abstract—In this work, we introduce general specifications 
for the concepts of finitary and infinitary first-order 
combinatorics as well as give preliminary definitions of 
semantic layers of model-theoretic properties connected with 
these combinatorics. We use only the simplest notions of first-
order logic and algorithm theory together with elementary 
properties of signature reduction procedures and constructions 
of finitely axiomatizable theories known in common practice. 
The work represents an ideological basis and starting point for 
investigations on expressive power of first-order predicate 
logic. 
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I. INTRODUCTION 

The principal problem concerning expressive power of 
first-order predicate logic was solved by W. Hanf [2][3], 
who proved that, for any computably axiomatizable theory 
𝑇𝑇, there is a finitely axiomatizable theory 𝐹𝐹 together with a 
computable isomorphism 𝜇𝜇:ℒ(𝑇𝑇) → ℒ(𝐹𝐹)  between their 
Tarski–Lindenbaum algebras. Moreover, in the same work 
[3], Hanf gives a direct formula that presents the 
isomorphism type of the Tarski–Lindenbaum algebra 
ℒ(𝑃𝑃𝑃𝑃(𝜎𝜎))  of predicate calculus 𝑃𝑃𝑃𝑃(𝜎𝜎)  of a finite rich 
signature 𝜎𝜎. The works of Hanf–Myers [4] and Myers [6] 
introduce a method of constructing computable 
isomorphisms between  ℒ(𝑃𝑃𝑃𝑃(𝜎𝜎1))  and ℒ(𝑃𝑃𝑃𝑃(𝜎𝜎2)) , where 
𝜎𝜎1 and 𝜎𝜎2 are arbitrary finite rich signatures.  

Subsequent work of Myers [7] describes an enhanced 
isomorphism between the Tarski–Lindenbaum algebras 
ℒ(𝑃𝑃𝑃𝑃(𝜎𝜎2)) and ℒ(𝑃𝑃𝑃𝑃(𝜎𝜎3)), where signature 𝜎𝜎2 consists of a 
single binary predicate, while 𝜎𝜎3 consists of a single ternary 
(or 𝑛𝑛 -ary, 𝑛𝑛 > 3 ) predicate. He builds a computable 
isomorphism 𝜇𝜇:ℒ(𝑃𝑃𝑃𝑃(𝜎𝜎2)) → ℒ(𝑃𝑃𝑃𝑃(𝜎𝜎3)) such that, for any 
complete extension 𝑇𝑇′  of 𝑃𝑃𝑃𝑃(𝜎𝜎2)  and corresponding 
complete extension 𝑆𝑆′ of 𝑃𝑃𝑃𝑃(𝜎𝜎3), 𝑆𝑆′ = 𝜇𝜇(𝑇𝑇′), the theories 𝑇𝑇′ 
and 𝑆𝑆′ are mutually interpretable in each other via so-called 
tuple-quotient interpretations (using a definable set of tuples 
of a finite length modulo a definable equivalence relation as 
a domain of the interpretation). Thereby, the corresponding 
completions will have rather like model-theoretic properties.  

Our previous work [10] represents a universal 
construction of finitely axiomatizable theories controlling 
the structure of the Tarski–Lindenbaum algebra of a theory 
together with a large layer of model-theoretic properties, 
while the works [8] and [9] describe special methods of 

constructing isomorphisms between the Tarski–Lindenbaum 
algebras of predicate calculi of different finite rich 
signatures. Notice that, the methods in [8] are based on the 
universal construction providing computable transformation 
of the theory, that corresponds to the term “infinitary 
combinatorics”. Furthermore, the methods in [9] are based 
on finite-to-finite signature reduction procedures providing 
first-order definable transformation of the theory, that 
corresponds to the term “finitary combinatorics”. Therefore, 
a natural idea arises to use the combinatory terminology for 
further works in this direction. 

Probably, any exact definition is impossible for the 
concept of combinatorics as well as for its particular cases 
such as “finite combinatorics” or “infinite combinatorics”. 
However, some specifications are possible for these 
concepts if to restrict ourselves to the case of the language 
of first-order logic. The problem to define such 
specifications arises just in connection with the idea to 
define a new approach for investigations on expressive 
power of first-order predicate logic. Earlier, this problem 
was not even posed at all while the methods of first-order 
combinatorics were considered as obvious constructions of 
model theory available in the common practice; 
furthermore, different specialists considered different 
meanings of the term “first-order combinatorics” itself. 

The given work introduces some general specifications 
to finitary and infinitary combinatorics. They are intended to 
be used during investigations on the problem of 
characterization of the Tarski–Lindenbaum algebras of 
predicate calculi of finite rich signatures; these algebras 
should be considered as generalized, i.e., enhanced with an 
assignment function within the finitary or infinitary 
semantic layer of model-theoretic properties. At such an 
approach, finitary first-order methods represent the finite 
(one can say, combinatorial) level of computation, while 
infinitary first-order methods represent the algorithmic level 
of computation in first-order predicate logic.  

II. PRELIMINARIES 

We consider theories in first-order predicate logic with 
equality and use general concepts of logic, model theory, 
algorithm theory, and constructive models found in 
Rautenberg [11], Hodges [5], Rogers [12], Goncharov and 
Ershov [1]. Generally, incomplete theories are considered. 

A finite signature is called rich if it contains at least an 
𝑛𝑛-ary predicate or function symbol for 𝑛𝑛 > 1, or two unary 
function symbols. In this work, the signatures are 
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considered only, which admit Gödel's numbering of the 
formulas. Such a signature is called enumerable. In writing 
of a signature, capital letters are used for predicates, small 
letters for functions and constants, and superscripts specify 
arities of appropriate symbols. If 𝔐𝔐 is a model, |𝔐𝔐| stands 
for the universe set of 𝔐𝔐. If 𝑇𝑇 is a theory, by 𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇), we 
denote the class of all models of 𝑇𝑇. The Tarski–Lindenbaum 
algebra of theory 𝑇𝑇 over formulas without free variables is 
denoted by 𝐿𝐿(𝑇𝑇) , while ℒ(𝑇𝑇)  stands for the Tarski–
Lindenbaum algebra 𝐿𝐿(𝑇𝑇) considered together with a Gödel 
numbering 𝛾𝛾  such that the concept of a computable 
isomorphism becomes applicable to such objects. Such 
isomorphisms between the Tarski–Lindenbaum algebras of 
theories were initially considered by Hanf [2]. 

Let 𝑇𝑇 be a theory of signature 𝜎𝜎 and 𝜎𝜎′ ⊆ 𝜎𝜎. An 𝑚𝑚-ary 
relation 𝑃𝑃𝑚𝑚  is called first-order definable in 𝑇𝑇 relative to 𝜎𝜎′ 
if there is a formula 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑚𝑚 ) of signature 𝜎𝜎′ such that 

 
𝑇𝑇 ⊢ 𝑃𝑃(𝑥𝑥1, … , 𝑥𝑥𝑚𝑚 ) ↔ 𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑚𝑚 ). 

   
Relation 𝑃𝑃  is called ∃ ∩ ∀-definable in 𝑇𝑇  relative to 𝜎𝜎′, if 
there are formulas  𝜃𝜃(𝑥𝑥1, … , 𝑥𝑥𝑚𝑚 )  and 𝜃𝜃′(𝑥𝑥1, … , 𝑥𝑥𝑚𝑚 )  of 
signature 𝜎𝜎′ , such that 𝜃𝜃(𝑥𝑥1, … , 𝑥𝑥𝑚𝑚 )  is an ∃ -formula, 
𝜃𝜃′(𝑥𝑥1, … , 𝑥𝑥𝑚𝑚 ) is a ∀-formula, and two following conditions 
are satisfied: 

 
𝑇𝑇 ⊢ 𝑃𝑃(𝑥𝑥1, … , 𝑥𝑥𝑚𝑚 ) ↔ 𝜃𝜃(𝑥𝑥1, … , 𝑥𝑥𝑚𝑚 ), 

 
𝑇𝑇 ⊢ 𝑃𝑃(𝑥𝑥1, … , 𝑥𝑥𝑚𝑚 ) ↔ 𝜃𝜃′(𝑥𝑥1, … , 𝑥𝑥𝑚𝑚 ). 

 
Particularly, the formula (∀𝑥𝑥1 … 𝑥𝑥𝑚𝑚 )(𝜃𝜃(𝑥𝑥1, … , 𝑥𝑥𝑚𝑚 ) ↔
𝜃𝜃′(𝑥𝑥1, … , 𝑥𝑥𝑚𝑚 ))  must be true in the theory 𝑇𝑇.  Similar 
definitions also apply for functions and constants instead of 
the relation 𝑃𝑃. 

Theories 𝑇𝑇  and 𝑆𝑆  are called first-order equivalent or 
isomorphic, written as 𝑇𝑇 ≈ 𝑆𝑆, if 𝑆𝑆 can be obtained from 𝑇𝑇 
by a finite number of operations of renaming signature 
symbols and by adding and eliminating those signature 
symbols that are first-order definable in terms of other 
signature symbols. Theories 𝑇𝑇  and 𝑆𝑆  are called first-order 
∃ ∩ ∀ -equivalent or algebraically isomorphic, written as 
𝑇𝑇 ≈𝑎𝑎 𝑆𝑆, if 𝑆𝑆 can be obtained from 𝑇𝑇 by a finite number of 
operations of renaming signature symbols and by adding 
and eliminating those signature symbols that are ∃ ∩ ∀ -
definable in terms of other signature symbols. Obviously, 
we have 𝑇𝑇 ≈𝑎𝑎 𝑆𝑆 ⇒ 𝑇𝑇 ≈ 𝑆𝑆 for arbitrary theories 𝑇𝑇 and 𝑆𝑆. 

An arbitrary set 𝔭𝔭 of complete theories of enumerable 
signatures which is closed under ≈ is said to be a model 
property, while a set 𝔭𝔭 of complete theories closed under ≈𝑎𝑎  
is said to be an algebraic property. Both types of properties 
are called model-theoretic properties. Examples of model-
theoretic properties of model type: ''theory has a prime 
model'', ''theory is not stable''. An example of property of 
algebraic type: ''theory is model complete''. By 𝐴𝐴𝐿𝐿 , we 
denote the set of all model-theoretic properties of algebraic 
type, while 𝑀𝑀𝐿𝐿 stands for the set of all properties of model 
type; the inclusion 𝑀𝑀𝐿𝐿 ⊆ 𝐴𝐴𝐿𝐿  is obvious. An arbitrary 
collection 𝐿𝐿  of model-theoretic properties is said to be a 

semantic layer. A set 𝐿𝐿 ⊆ 𝑀𝑀𝐿𝐿  is called a model semantic 
layer, while a set 𝐿𝐿 ⊆ 𝐴𝐴𝐿𝐿  is called an algebraic semantic 
layer. Notice that, any model semantic layer can be regarded 
as an algebraic layer. In the case when there is a computable 
isomorphism  𝜇𝜇:ℒ(𝑇𝑇) → ℒ(𝑆𝑆)  preserving any model-
theoretic properties within a layer 𝐿𝐿, the theories 𝑇𝑇 and 𝑆𝑆 are 
said to be semantically similar over the layer 𝐿𝐿 , 
symbolically written as 𝑇𝑇 ≡𝐿𝐿 𝑆𝑆. 

A. Demonstration of the relation of semantic similarity 

It is a simple exercise to construct a computably 
axiomatizable theory 𝑇𝑇 satisfying the following properties: 𝑇𝑇 
is decidable, the set of all complete extensions of  𝑇𝑇, called 
its Stone space, consists of a countable sequence 𝑇𝑇𝑘𝑘 , 𝑘𝑘 ∈ ℕ ∪
{𝜔𝜔}, such that, each of the theories 𝑇𝑇0,𝑇𝑇1,𝑇𝑇2, … is a stable 
theory without prime models and is finitely axiomatizable 
over 𝑇𝑇, while 𝑇𝑇𝜔𝜔  is not finitely axiomatizable over 𝑇𝑇, it is not 
stable and has a prime model. Applying the universal 
construction, [10,Th.0.6.1], we can find a finitely 
axiomatizable theory 𝐹𝐹  together with a computable 
isomorphism 𝜇𝜇:ℒ(𝑇𝑇) → ℒ(𝐹𝐹) preserving any property in the 
following immediately listed semantic layer of model-
theoretic properties: 

 
𝐿𝐿 = {"theory is stable ", "theory has a prime model "}. 

  
Thereby, within the layer 𝐿𝐿, this theory 𝐹𝐹 has exactly the 

same model-theoretic properties as 𝑇𝑇  did. This example 
demonstrates concepts of a model-theoretic property, 
semantic layer, computable isomorphism between the 
Tarski–Lindenbaum algebras, as well as a possibility of 
applications of the universal construction. 

B. Demonstration of model versus algebraic properties 

Algebraic-type properties are thinner in comparison 
with those of model-type. Often, model-type properties are 
considered, while sometimes, thinner algebraic-type 
properties are also needed. For instance, let 𝑇𝑇 be the theory 
of discrete linear orders considered in signature 𝜎𝜎 =
{<2,⊲2}, where  

 
𝑥𝑥 ⊲ 𝑦𝑦 ↔ (𝑥𝑥 < 𝑦𝑦) & (∀𝑧𝑧)(𝑥𝑥 ≤ 𝑧𝑧 ≤ 𝑦𝑦 → (𝑥𝑥 = 𝑧𝑧 ∨  𝑧𝑧 = 𝑦𝑦)). 

 
Since ⊲ is first-order definable relative to <, we can 

omit predicate ⊲  obtaining another theory 𝑇𝑇0  of discrete 
linear orders in smaller signature 𝜎𝜎0 = {<2}. Theories 𝑇𝑇 and 
𝑇𝑇0  are isomorphic with each other; particularly, we have 
𝑇𝑇 ≡𝑀𝑀𝐿𝐿 𝑇𝑇0. On the other hand, 𝑇𝑇 and 𝑇𝑇0 are not algebraically 
isomorphic because 𝑇𝑇  is model complete; thus, all its 
complete extensions are model complete as well; on the 
contrary, there is a complete extension of 𝑇𝑇0  which is not 
model complete. Thereby, 𝑇𝑇 ≡𝐴𝐴𝐿𝐿 𝑇𝑇0 does not the case. 

III. CARTESIAN EXTENSIONS OF THEORIES 

Let 𝜎𝜎 be a signature and 
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                      𝜉𝜉 = 〈𝜑𝜑1
𝑚𝑚1 ,𝜑𝜑2

𝑚𝑚2 , … ,𝜑𝜑𝑠𝑠
𝑚𝑚𝑠𝑠〉                         (1) 

 
be a finite sequence of formulas of this signature, where 𝜑𝜑𝑘𝑘  
is a formula with 𝑚𝑚𝑘𝑘  free variables. Starting from a tuple 𝜉𝜉 
and an arbitrary model 𝔐𝔐 of signature 𝜎𝜎, we will construct 
some new model 𝔐𝔐1 = 𝔐𝔐〈 𝜉𝜉〉 of signature 

 
   𝜎𝜎1 = 𝜎𝜎 ∪ {𝑈𝑈1,𝑈𝑈1

1, … ,𝑈𝑈𝑠𝑠1} ∪ {𝐾𝐾1
𝑚𝑚1+1, … ,𝐾𝐾𝑠𝑠

𝑚𝑚𝑠𝑠+1}      (2) 
  

as follows. As a universe for the model, we take the 
following set 

 
|𝔐𝔐1| = |𝔐𝔐| ∪ 𝐴𝐴1 ∪ 𝐴𝐴2 ∪ …∪ 𝐴𝐴𝑠𝑠 , 

  
where the pointed out parts are pairwise disjoint. In the part 
|𝔐𝔐|, all symbols of signature 𝜎𝜎 are defined exactly as they 
were defined in 𝔐𝔐; in remaining, these symbols are defined 
trivially; 𝑈𝑈 is defined by 𝑈𝑈(𝑥𝑥) ⇔ 𝑥𝑥 ∈ |𝔐𝔐|; 𝑈𝑈𝑘𝑘  is defined by 
𝑈𝑈𝑘𝑘(𝑥𝑥) ⇔ 𝑥𝑥 ∈ 𝐴𝐴𝑘𝑘 ; predicate 𝐾𝐾𝑘𝑘  represents a one-to-one 
correspondence between the set of tuples {𝑎𝑎�|𝔐𝔐 ⊨ 𝜑𝜑𝑘𝑘(𝑎𝑎�)} 
and the set 𝐴𝐴𝑘𝑘 . So defined model 𝔐𝔐〈 𝜉𝜉〉  is said to be 
Cartesian extension of 𝔐𝔐 by means of sequence (1), denoted 
by 𝔐𝔐〈 𝜑𝜑1

𝑚𝑚1 ,𝜑𝜑2
𝑚𝑚2 , … ,𝜑𝜑𝑠𝑠

𝑚𝑚𝑠𝑠〉 , or 𝔐𝔐〈 𝜉𝜉〉  for short. Now, we 
consider a theory 𝑇𝑇 of signature 𝜎𝜎, and fix signature (2) for 
extensions of models. Let us define a new theory 𝑇𝑇′  as 
follows 

 
𝑇𝑇′ = 𝑇𝑇ℎ{𝔐𝔐〈𝜉𝜉〉|𝔐𝔐 ∈ 𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇)}. 

  
It is said to be Cartesian extension of 𝑇𝑇  by means of 
sequence of formulas (1), denoted by 𝑇𝑇〈 𝜑𝜑1

𝑚𝑚1 ,𝜑𝜑2
𝑚𝑚2 , … ,𝜑𝜑𝑠𝑠

𝑚𝑚𝑠𝑠〉, 
or 𝑇𝑇〈 𝜉𝜉〉 for short. According to the construction, the theory 
𝑇𝑇〈 𝜉𝜉〉 is defined uniquely up to an algebraic isomorphism of 
theories; moreover, an interpretation 𝐼𝐼𝑇𝑇,𝜉𝜉  of the source theory 
𝑇𝑇 in the target theory 𝑇𝑇〈 𝜉𝜉〉 is naturally defined. 

Now, we consider a sequence of formulas of signature 𝜎𝜎 
of a more common form 

                            
               𝜘𝜘 = 〈𝜑𝜑1

𝑚𝑚1 /𝜀𝜀1,𝜑𝜑2
𝑚𝑚2 /𝜀𝜀2, … ,𝜑𝜑𝑠𝑠

𝑚𝑚𝑠𝑠/𝜀𝜀𝑠𝑠〉,                     (3) 
  

where 𝜑𝜑𝑘𝑘(�̅�𝑥)  is a formula with 𝑚𝑚𝑘𝑘  free variables, while 
𝜀𝜀𝑘𝑘(𝑦𝑦�, 𝑧𝑧)̅  is a formula with 2𝑚𝑚𝑘𝑘  free variables. By 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝜀𝜀𝑘𝑘 ,𝜑𝜑𝑘𝑘), we denote a sentence stating that 𝜀𝜀𝑘𝑘  is an 
equivalence relation on the set of tuples distinguished by the 
formula 𝜑𝜑𝑘𝑘(�̅�𝑥). Let us repeat the construction given above 
with the only difference that (𝑚𝑚𝑘𝑘 + 1) -ary predicate 𝐾𝐾𝑘𝑘  
represents a one-to-one correspondence between the quotient 
set {𝑎𝑎�|𝔐𝔐 ⊨ 𝜑𝜑𝑘𝑘(𝑎𝑎�)}/𝜀𝜀�̂�𝑘  and the set 𝐴𝐴𝑘𝑘 , where 𝜀𝜀�̂�𝑘(𝑦𝑦�, 𝑧𝑧)̅ =
𝜀𝜀𝑘𝑘(𝑦𝑦�, 𝑧𝑧)̅ ∨⌝𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝜀𝜀𝑘𝑘 ,𝜑𝜑𝑘𝑘). The obtained theory 𝑇𝑇〈 𝜘𝜘〉 is said 
to be Cartesian-quotient extension of 𝑇𝑇  by means of 
sequence of formulas 𝜘𝜘. Similarly to the previous case, the 
theory 𝑇𝑇〈 𝜘𝜘〉  is determined uniquely up to an algebraic 
isomorphism of theories; moreover, there is a natural 
interpretation 𝐼𝐼𝑇𝑇 ,𝜘𝜘  of the source theory 𝑇𝑇 in the target theory 
𝑇𝑇〈 𝜘𝜘〉. 

The introduced operations are used in further definition 
of first-order combinatorics. 

1. Statement: Up to an algebraic isomorphism of 
theories, each finite-to-finite signature reduction procedure 
represents a particular case of Cartesian extension of 
theories. 

Proof. Immediately, by Beth's Definability Theorem, [5, 
Th. 5.5.4]. □ 

IV. FIRST-ORDER COMBINATORICS 

First, we introduce some common specification in a 
compact form. 

By first-order combinatorics, we mean transformation 
methods of countable (specifically, computably 
axiomatizable) theories, which can change both signature 
and axiomatic of the theory preserving, as much as possible, 
its model-theoretic properties. The emphasis is on the 
methods definable in first-order predicate logic, while the 
principal goal is the maximality of the collection of 
preserved model-theoretic properties. Moreover, the main 
objective is naturalness of the accepted specification. 
Significance of the complex of definitions for combinatorics 
is considered as higher if these definitions adequately 
correspond to an available approach to logic (particularly, in 
set theory or model theory). In the case of ambiguity in the 
choice of some technical details, the preference should be 
directed to the variants of concepts simplifying the situation 
or providing more perfect appearance. As an initial basis for 
the concept of combinatorics we take the class of signature 
reduction procedures, which are considered as a particular 
case of combinatorial methods in first-order logic. The 
common problem is to generalize these particular methods to 
maximum wide natural approach in such a way that so 
serious term as "combinatorics" would become acceptable 
here. 

With this, the common specification is complete. 
Now, we turn to develop the common idea in a 

mathematical form. 
A signature reduction procedure is normally applied, 

when we are going to transform a given theory 𝑇𝑇 having an 
infinite or too large finite signature to some new theory 𝑆𝑆 
having a small finite signature. Moreover, the target theory 𝑆𝑆 
must inherit from the source theory 𝑇𝑇  all model-theoretic 
properties within a given layer 𝐿𝐿 = {𝔭𝔭0, 𝔭𝔭1, 𝔭𝔭2, … }. 
Generally, specifications for the signature reduction methods 
are subordinated to the purpose to pass from 𝑇𝑇 to 𝑆𝑆 as large 
collection of properties as possible; thus, any exotic methods 
of signature reduction distorting some evident model-
theoretic properties should be rejected. Ordinarily, the 
signature reduction procedure is determined by an 
interpretation 𝐼𝐼  of 𝑇𝑇  in 𝑆𝑆  preserving the demanded 
properties. It is possible to establish (for instance, with the 
back-and-forth Ehrenfeucht method), that generally, such an 
interpretation 𝐼𝐼  defines an isomorphism of the Tarski–
Lindenbaum algebras 𝜇𝜇:ℒ(𝑇𝑇) → ℒ(𝑆𝑆)  passing from 𝑇𝑇  to 𝑆𝑆 
both structure of extensions of theory and any model-
theoretic properties within the layer 𝐿𝐿  from complete 
extensions of 𝑇𝑇 to corresponding complete extensions of 𝑆𝑆. 
In many cases, reviewing is limited by complete theories 
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only; in this case, the Tarski–Lindenbaum algebras ℒ(𝑇𝑇) and 
ℒ(𝑆𝑆) are 2-element Boolean algebras. 

Notice that, in technical realization, signature reduction 
procedures may consist of two or more separate stages. 
Particularly, first, a reduction from an infinite in some finite 
signature could be performed, while on the second stage, the 
obtained finite signature is reduced to the wished small finite 
signature. Another remark is that the universal construction 
of finitely axiomatizable theories (see [10, Th.0.6.1]) is a 
transformation from the class of computably axiomatizable 
theories in the class of finitely axiomatizable theories (of 
finite signatures); thereby, such a transformation can be 
considered as an improved variant of infinite-to-finite 
signature reduction procedure. Moreover, for the 
construction, the whole transformation procedure consists of 
so called main stage (performing the actual passage from a 
computably axiomatizable theory to a finitely axiomatizable 
theory) and a few auxiliary stages performing signature 
reductions of certain types. Practical observation shows that, 
the universal construction can control the same model-
theoretic properties which are under control of infinite-to-
finite signature reduction procedures. This definitely shows 
that, both signature reduction procedures and constructions 
of finitely axiomatizable theories should be considered 
jointly as an integrated complex of transformations of 
theories. 

V. TWO TYPES OF FIRST-ORDER COMBINATORICS 

Combinatorics of a given type is characterized by a 
definite set of used methods and by collection of those 
model-theoretic properties which are controlled by 
application of these methods. Since we consider 
combinatorics in first-order logic, the concept of a method is 
understood as some manner 𝔪𝔪 of first-order transformation 
of a computably axiomatizable theory 𝑇𝑇  in another such 
theory 𝑆𝑆  producing a computable isomorphism of the 
Tarski–Lindenbaum algebras 𝜇𝜇:ℒ(𝑇𝑇) → ℒ(𝑆𝑆); moreover, as 
a control over a model-theoretic property 𝔭𝔭 we mean that the 
isomorphism 𝜇𝜇  passes without change this property 𝔭𝔭 from 
any complete extension of 𝑇𝑇  to corresponding complete 
extension of 𝑆𝑆. As mentioned above, some interpretation 𝐼𝐼 of 
𝑇𝑇 in 𝑆𝑆 is meant behind the isomorphism 𝜇𝜇. Thus, by way of 
constructing an input theory 𝑇𝑇, it is possible to influence on 
properties of the target theory 𝑆𝑆 within the semantic layer 𝐿𝐿 
of the controlled properties. 

Now, we define finite first-order combinatorics or 
shortly finitary combinatorics as combinatorics that is 
determined by finitary transformation methods between first-
order theories, and infinite computable first-order 
combinatorics or shortly infinitary combinatorics as 
combinatorics that is determined by effective infinitary 
transformation methods between first-order theories. Finite-
to-finite (𝑓𝑓2𝑓𝑓)  signature reduction procedures represent 
transformations of theory from one finite signature in another 
finite signature. They are examples of finitary methods in 
first-order logic; at the same time, some other finitary 
methods in this logic exist; particularly, any Cartesian-
quotient (or Cartesian) extension of a theory represents a 

finitary first-order method. Infinite-to-finite (𝐸𝐸2𝑓𝑓) signature 
reduction procedures represent transformations of theory 
from an infinite enumerable signature in a finite signature. 
They are examples of infinitary methods in first-order logic; 
at the same time, some other infinitary methods in this logic 
exist; particularly, any release of the universal construction 
represents infinitary first-order methods transforming 
computably axiomatizable theories in finitely axiomatizable 
theories. 

There are two possibilities to compare semantic layers. 
2. Rule of inverse inclusion: Any relatively smaller 

class of methods defines the relatively larger semantic layer, 
i.e., if ℳ1 and ℳ2 are classes of transformation methods of 
theories, while 𝐿𝐿1 and 𝐿𝐿2 are the semantic layers determined 
by these classes, we have ℳ1 ⊂ℳ2 ⇒ 𝐿𝐿1 ⊇ 𝐿𝐿2 ; 
furthermore, the union of classes of methods ℳ1 ∪ℳ2 
determines the intersection of layers 𝐿𝐿1 ∩ 𝐿𝐿2 ; the rule is 
formally exact. 

3. Rule of representative check: We fix a large 
enough list ℛ  of commonly known model-theoretic 
properties, which is agreed to be considered as 
representative. For two semantic layers 𝐿𝐿1  and 𝐿𝐿2 , 𝐿𝐿1 𝐿𝐿2 
means that 𝔭𝔭 ∈ 𝐿𝐿1 ⇔ 𝔭𝔭 ∈ 𝐿𝐿2  for all 𝔭𝔭 ∈ ℛ , and 𝐿𝐿1 𝐿𝐿2 
means that 𝔭𝔭 ∈ 𝐿𝐿1 ⇒ 𝔭𝔭 ∈ 𝐿𝐿2  for all 𝔭𝔭 ∈ ℛ ; this rule 
represents a practical method of comparison even in the case 
when no possibility exists for formally exact comparison of 
volumes of the semantic layers; for ℛ, it are possible to take 
the join of collections of model-theoretic properties 
immediately listed in [9, Lem.4.2] and [10, Th.0.6.1]. 

Let us formulate an important relation between finitary 
and infinitary methods. 

4. Principle of subordination of finite to infinite: If a 
class of transformation methods ℳ is intended for definition 
of some version of infinitary layer, we must include in ℳ all 
finitary methods relevant to this class; this requirement 
prevents unacceptable situation when an infinitary semantic 
layer is defined by a class of infinitary methods where some 
finitary methods are missed. 

There is an obvious possibility to introduce the concept 
of abstract infinite first-order combinatorics as a version of 
infinite combinatorics with omitted requirement of 
computability for the passage from 𝑇𝑇 to 𝑆𝑆, and thus, for the 
isomorphism 𝜇𝜇:ℒ(𝑇𝑇) → ℒ(𝑆𝑆) . Since the class of abstract 
infinite methods is obviously wider in comparison with the 
class of computable infinite methods, by the rule of inverse 
inclusion, the semantic layer defined by computable infinite 
methods extends the layer defined by abstract infinite 
methods. This shows minor significance of the abstract 
approach and establishes computable infinite first-order 
combinatorics as the principal player in this direction of 
investigations. 

VI. SEMANTIC LAYERS DEFINED BY COMBINATORICS 

Now, we specify semantic layers, which are actual in 
this problematic. 

We introduce the following notations: 
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𝐹𝐹2𝑓𝑓ℒ = the set of all model-theoretic properties of algebraic 
type preserved by any 𝑓𝑓2𝑓𝑓  signature reduction 
procedure, 

𝐼𝐼2𝑓𝑓ℒ = the set of all model-theoretic properties of algebraic 
type preserved by any 𝐸𝐸2𝑓𝑓  signature reduction 
procedure ∩𝐹𝐹2𝑓𝑓ℒ, 

𝑈𝑈𝑛𝑛𝐸𝐸ℒ  = the set of all model-theoretic properties of model 
type preserved by any transformation of theories 
defined by the universal construction of finitely 
axiomatizable theories ∩ 𝐼𝐼2𝑓𝑓ℒ ∩ 𝐹𝐹2𝑓𝑓ℒ, 

𝐴𝐴𝑃𝑃𝐿𝐿 = the set of all model-theoretic properties of algebraic 
type preserved by any Cartesian extension of any 
computably axiomatizable theory, 

𝐴𝐴𝐴𝐴𝐿𝐿 = the set of all model-theoretic properties of algebraic 
type preserved by any Cartesian-quotient extension 
of any computably axiomatizable theory, 

𝑀𝑀𝐴𝐴𝐿𝐿 = the set of all model-theoretic properties of model 
type preserved by any Cartesian-quotient extension 
of any computably axiomatizable theory, 

𝑀𝑀𝑀𝑀𝐿𝐿 =  the set of all model-theoretic properties of model 
type preserved by any quasiexact interpretation from 
a computably axiomatizable theory to another such 
theory ∩𝑀𝑀𝐴𝐴𝐿𝐿, 

𝐹𝐹𝐸𝐸𝑛𝑛ℒ = the set of all model-theoretic properties of algebraic 
type preserved by any finitary method between 
computably axiomatizable theories (an ideal 
concept), 

𝐼𝐼𝑛𝑛𝑓𝑓ℒ = the set of all model-theoretic properties of model 
type preserved by any infinitary method between 
computably axiomatizable theories (an ideal 
concept). 

For infinitary layers, intersections with finitary layers 
∩𝐹𝐹2𝑓𝑓ℒ and ∩𝑀𝑀𝐴𝐴𝐿𝐿 are added for the sake of realization the 
requirement of subordination of finite methods to infinite 
ones, while ∩ 𝐼𝐼2𝑓𝑓ℒ ∩𝐹𝐹2𝑓𝑓ℒ  is added because the universal 
construction includes intermediate stages of types 𝐸𝐸2𝑓𝑓  and 
𝑓𝑓2𝑓𝑓. By the rule of inverse inclusion, these intersections can 
be equivalently realized by adding corresponding methods in 
the definition. The class of quasiexact interpretations, [10, 
Ch.5], represents a technical framework for the universal 
construction, while currently, an advanced definition is 
available for this class (in forthcoming publication). 

Semantic layer 𝐹𝐹𝐸𝐸𝑛𝑛ℒ is said to be the truly finitary layer, 
while another layer 𝐼𝐼𝑛𝑛𝑓𝑓ℒ  is the truly infinitary layer. 
Currently, these definitions are just formal (presenting some 
ideal concepts), since we have not provided specifications to 
the set of all methods for the combinatorics. Nevertheless, 
one can believe that these two classes of methods must exist 
as mathematical objects. 

The scheme in Fig. 1 shows all available model-theoretic 
inclusions between the layers we have defined, where the 
relation 𝐿𝐿1 𝐿𝐿2 ⇔𝑀𝑀𝑓𝑓𝑛𝑛 (𝐿𝐿1 ⊆ 𝐿𝐿2 & 𝐿𝐿1  𝐿𝐿2)  is used pre-
senting so called 'inclusion-almost-coincidence' relation. 
Two upper rows in the scheme represent layers of algebraic 
types, while its lower part represents layers of model type. 

 
Figure 1. A dependence scheme between the semantic layers 

5. Statement: All inclusions and inclusions-almost-
coincidences between the semantic layers presented in Fig. 1 
take place. 

Justification. Most of the inclusions are checked 
immediately, using the rules of inverse inclusion and 
representative check. The inclusion 𝐴𝐴𝑃𝑃𝐿𝐿 ⊆ 𝐹𝐹2𝑓𝑓ℒ  is 
provided by Statement 1, while inclusions 𝑀𝑀𝑀𝑀𝐿𝐿 ⊆ 𝐴𝐴𝐴𝐴𝐿𝐿 and 
𝐼𝐼𝑛𝑛𝑓𝑓ℒ ⊂ 𝐹𝐹𝐸𝐸𝑛𝑛ℒ are justified by the principle of subordination 
of finite layers to infinite. □ 

In Fig. 1, we have marked two particular semantic layers 
𝐴𝐴𝑃𝑃𝐿𝐿 and 𝑀𝑀𝑀𝑀𝐿𝐿. They play the role of working versions of the 
semantic layers for finitary and respectively infinitary 
combinatorics. It is important that the pointed out layers have 
complete definitions; moreover, they are most useful in 
applications. On the other hand, these two layers properly 
cover the truly finitary and respectively truly infinitary layer 
ensuring that practical applications with 𝐴𝐴𝑃𝑃𝐿𝐿  and 𝑀𝑀𝑀𝑀𝐿𝐿  are 
independent of investigations concerning approaches to 
definition of the truly semantic layers 𝐹𝐹𝐸𝐸𝑛𝑛ℒ and 𝐼𝐼𝑛𝑛𝑓𝑓ℒ. 

VII. CONCLUSION 

Methods of finitary combinatorics represent simple and 
evident constructions in model theory. Methods of infinitary 
combinatorics are also often used. A key moment is that, 
each combinatorial method 𝔪𝔪  transforming 𝑇𝑇  to 𝑆𝑆  must 
define a computable isomorphism of the Tarski–Lindenbaum 
algebras 𝜇𝜇:ℒ(𝑇𝑇) → ℒ(𝑆𝑆). Operation of a Cartesian extension 
of the theory as well as other methods of finitary first-order 
combinatorics do not represent a great interest themselves, 
but they become an effective tool for investigations of the 
Tarski–Lindenbaum algebra of predicate calculi of finite rich 
signatures. However, the pointed out types of combinatorics 
were not provided with any strict definitions or even general 
agreements.  

Regular references to the results known in the common 
practice are inappropriate within technically complicated 
fragments of reasoning; therefore, it is needed to introduce 
some formal basis for the concepts of finitary and infinitary 
combinatorics. This paper, providing a fundament to initial 
definitions concerning these combinatorics, represents a 
conceptual framework for the further investigations on 
expressive power of first-order predicate logic. 

35Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking



REFERENCES 
[1] S. S. Goncharov and Yu. L. Ershov, Constructive models, Plenum, 

New York, 1999. 
[2] W. Hanf, “Model-theoretic methods in the study of elementary logic,” 

Symposium on Theory of Models, North-Holland, Amsterdam, 1965, 
pp. 33-46. 

[3] W. Hanf, “The Boolean algebra of Logic,” Bull. American Math. 
Soc., vol. 31, 1975, pp. 587-589. 

[4] W. Hanf and D. Myers, “Boolean sentence algebras: Isomorphism 
constructions, ”J. Symbolic Logic, vol. 48, no. 2, 1983, pp. 329-338. 

[5] W. Hodges, A shorter model theory, Cambridge University Press, 
Cambridge, 1997. 

[6] D. Myers, “Lindenbaum–Tarski algebras,” Handbook of Boolean 
algebras, Ed: J. D. Monk, R. Bonnet, Elsevier Science Publishers, 
1989, pp. 1167-1195. 

[7] D. Myers, “An interpretive isomorphism between binary and ternary 
relations,” Structures in Logic and Computer Science: A Selection of 
Essays in Honor of Andrzej Ehrenfeucht, 1997, pp. 84-105. 

[8] M. G. Peretyat'kin, “Semantic universal classes of models,” Algebra 
and Logic, 1991, vol. 30, no. 4, pp. 414-434. 

[9] M. G. Peretyat'kin, “Semantic universality of theories over superlist,” 
Algebra and Logic, 1992, vol. 30, no. 5, pp. 517-539. 

[10] M. G. Peretyat'kin, Finitely axiomatizable theories, Plenum, New 
York, 1997. 

[11] W. Rautenberg, A concise introduction to mathematical logic, 
Textbook, Third Edition, Springer, 2010. 

[12] H. J. Rogers. Theory of Recursive Functions and Effective 
Computability, McGraw-Hill Book Co., New York, 1967. 

 

 
 
 
 

   
. 

36Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking


	I. Introduction
	II. Preliminaries
	A. Demonstration of the relation of semantic similarity
	B. Demonstration of model versus algebraic properties

	III. Cartesian extensions of theories
	IV. First-order combinatorics
	V. Two types of first-order combinatorics
	VI. Semantic layers defined by combinatorics
	VII. Conclusion
	References


