
Recognition of Java Source Code by Graph Matching Algorithm

Tomáš Bublík

Faculty of Nuclear Sciences and Physical Engineering

Czech Technical University in Prague

Prague, Czech Republic

e-mail: tomas.bublik@gmail.com

Miroslav Virius
Faculty of Nuclear Sciences and Physical Engineering

Czech Technical University in Prague

Prague, Czech Republic

e-mail: miroslav.virius@fjfi.cvut.cz

Abstract— This paper describes an option how to detect a

desired Java code snippet in a large number of Java source

files. The scripting language Scripthon is used to describe the

desired section. Next, from this piece, an abstract tree is

created, and it is compared to the other trees which are created

from the Java source codes. The Java Compiler API is used to

obtain the trees from the Java source codes. The final result of

tree matching process is presented to a user.

Keywords-abstract syntax tree; Java; Scripthon; trees

matching; compiler API

I. INTRODUCTION

 Searching source code is an easy task. Nevertheless, this
applies only in the case of a simple text or simple structure
names. This feature is supported in most of the current Java
development environments. Some integrated development
environments (hereinafter IDE) [11] [12] support an
advanced searching with the regular expressions. But, what if
a user wants to know, whether a program contains the
singleton? Or, whether the specific method (with three
concrete parameters) is somewhere in a program? It is very
difficult to find such information; however, using the
mathematical and programming knowledge, it is possible.

When using the Scripthon language [1], these special
structures can be described very precisely. On the other
hand, by using the Java Compiler application programming
interface (hereinafter API), the abstract syntax trees
(hereinafter AST) can be obtained and compared with
Scripthon output. This paper is about using these trees for
searching the desired code snippet. This task is similar to the
graph matching and isomorphic sub-graphs finding in a large
set of trees. An additional problem arises in the applications
where an input graph needs to be matched not only to
another graph, but to an entire database of graphs under a
given matching paradigm. Therefore, some complexity
reducing algorithms are proposed in this paper.

There are several reasons to consider graphs to be very
advantageous tool for the representation of source code of
some language. One reason is that there is no unnecessary
material like spaces, comments, etc. Another reason is that
there are many well described mathematical algorithms to
work with graphs. Some of the algorithms are known for
decades. Representing the code as a graph has also the
disadvantage: it has large demands on a computer power and
memory; especially for larger programs.

The first section compares existing similar solutions with
this one. Several tools with the similar function are
mentioned there. The next section introduces necessary

graph theory concepts. The definitions of a graph, a sub-
graph and a graph isomorphism are given. The Scripthon
language is introduced briefly in fourth chapter. Because the
language has been described already in another paper [1],
only the important properties are mentioned here. The next
two sections are about graphs generation, optimizations, and
the comparison of graphs generated by the Compiler API.
An algorithm for trees matching can be found in Section 6.
Finally, several results are presented in the conclusion.

II. COMPARATION WITH SIMILAR SOLUTIONS

There are many approaches to the code search area.

These approaches can be classified as textual, lexical, tree-

based, metrics-based and graph-based. This distribution

depends on how the source code is expressed. More on this

topic can be found in [6]. Scripthon belongs to the tree-

based solutions.

A number of similar solutions for all the mentioned tasks

have been proposed in [6]; however, Scripthon is quite

different tool. This tool is not supposed to detect the clones

automatically. However, it is possible with the assistance of

the user,. Our previous work dealt with automatic detection

and removal of clones in Java source code [2]. Finally, with

respect to other solutions and a complexity of this topic, we

decided to try another way. In addition, we considered that

the detection and removal of the so-called “non-ideal”

clones is very difficult without some additional information

from a user. (The “non-ideal” clones are repeated pieces of

source code that are not exactly the same, but execute

similar operations.) The Scripthon is primarily designed to

search known patterns in source code. It means that the user

must approximately know how the clone looks like. Then,

he or she creates a script based on his or her ideas which

finds the desired patterns.

A similar solution is described in [7]. Refactoring NG is

an interesting tool which allows defining a refactoring

operation programmatically; however, it cannot be used for

defining the searching patterns.

In addition, Scripthon is not aimed to detect design

patters. With Scripthon, it is possible to find a simple design

pattern within one class (for example, the above mentioned

Singleton), but it is not its main purpose. It is not possible to

find a design pattern composed of multiple classes.

1Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Unlike regular expressions, Scripthon offers an

interesting alternative to search a shape or properties of a

given Java source code.

Figure 1. Complete process

Figure 1 shows the whole process of searching Java

source snippets using Scripthon. The tool runs in two

threads. The first one is a Scripthon compiler. Its output is a

modified AST. The second thread is aimed to create a Java

AST. Both trees are compared with the matching algorithm.

A result of the process is the references to a given Java

source code. Typically, it is the name of a Java class and the

line number where the match occurred.

III. BASIC GRAPH THEORY CONCEPTS

A graph is a four-tuple , where
denotes a finite set of nodes, is a finite set of
edges, is a node labeling function, and
 is an edge labeling function. and are
finite of infinite sets of node and edge labels, respectively.

All the graphs in this work are considered to be directed.
A subgraph of a graph g is a subset of
its nodes and edges, such that

Two graphs and are isomorphic to each other if there
exists a bijective mapping u from the nodes of to the nodes
of , such that the structure of the edges as well as all node
and edge labels are preserved under . Similarly, an

isomorphism between a graph and a subgraph of a

graph is called subgraph-isomorphism form to .
A tree is a connected and undirected graph with no

simple circuits. Since a tree cannot have a circuit, a tree
cannot contain multiple edges or loops. Therefore, any tree
must be a simple graph. An undirected graph is a tree if and
only if there is a unique simple path between any two of its
vertices.

The graph matching problem is actually the same as the
problem of finding the isomorphism between the graphs.
Moreover, matching the parts of a graph with a pattern is the
same challenge as the finding the isomorphic subgraph.

IV. SCRIPHON DESCRIPTION

The Scripthon language is widely described in [1]. The
following text will present only the summary of important
properties of this language. Scripthon is a simple-to-learn
language which is able to describe a Java source code
structure. Because of its simple syntax, it is very easy to
learn. The syntax of the Scripthon language is similar to the

syntax of Java, and it is very intuitive. Basically, the
keywords represent the structures in Java language. Thus, a
Scripthon program is built only with these words and its
properties. Each keyword has a special set of its own
properties. There are three sets defining the usable keyword,
its properties and the properties values. For example, this is
the set of structural keywords (Str):

For a Class() keyword, the set of parameters (SAtr) looks

like:

For these parameters, the set of available values (AVal)

is:

For example, a class is represented by a Class() keyword.

The parameters of this keyword can be in the parentheses,
however, if the brackets include no parameters, each class is
a candidate for searching and each class of a given program
corresponds to this structure. For example, the following
command:

means that the wanted structure is a public class with the
name Main. The options of the parameters are specified in
the Scripthon documentation. The structure nesting it is
denoted only by the line separators.

This example means that the searched structure is a

private method with two parameters. Inside the method is a
block with two statements. The first statement is a variable
named sum of type int. The second statement is a return
statement with a parameter of the previously specified
variable.

The big advance of the Scripthon language is the ability
to describe the elements with a variable depth of details.
This means that the searched structures can be described in
a detail or very loosely. For example, this is a very detailed
description:

The same script without details follows:

Class(Name = "TestDecompile"; Rest = public)
 Meth(Name = "main"; Ret = void; Rest = public)
 Init(Name = "toPrintValue"; Type = String)
 MethCall(Name = "System.out.println")

Meth(Rest = private; ParamsNum = 2)
 Block()
 Init(Type = int; Value = ""; Name = "sum")

Class(Name = "Main"; Rest = public)

2Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Therefore, a searched subject can be found on the base

of a very inaccurate description. The results can be obtained
with the iterative refinement of the input conditions. In the
end, the user can get better results.

Furthermore, Scriphon contains a special keyword
Any(). It is not a structural keyword, but it is information
for the matching algorithm to act as anything. When used, it
means that a searching structure could be anything (even
with the sub-trees) or nothing. With respect to the previous
example, the desired structure can be described even with
this script:

However, because of the generality of this script, the

number of results found will be very high. (Actually, any
class corresponds to this script)

The level of detail which can be described by the current
version of Scripthon is up to – but not including – the
expression. In addition, Scripthon can describe a lot of Java
structures, but it cannot describe the individual elements of
an expression statement. For example, while describing the
if statement, it is possible to address the inner block, or the
else block with inner statements; however, the if-expression
in the parentheses cannot be described. Moreover, Scripthon
is not able to describe the mathematical operations. If a
variable i is declared such as:

The most accurate Scripthon statement to find is:

In the current version of Scripthon, nothing more can be

described. On the other hand, this language is designed to be
extensible. The main program consists of several modules
appropriate to corresponding stages of searching process.

Current version of the language cannot describe all the
Java language structures. For example, annotations,
generics, diamond operators, and many others are omitted,
but they can be easily added in future versions. It would be
necessary to introduce new structural word, define its
properties, and define the rules to the searching algorithm.
There is no need to change syntax, or even the compiler.

V. GRAPH GENERATION WITH JAVA COMPILER API

The Java Compiler API is used to get a graph for the
searching algorithm. This API is free, and it is included in

Figure 2. Tree with optimizations

the Java distribution. Basically, the Java Compiler API
serves to the advanced control of a compilation process.
This API uses the AST and the visitor design pattern.
Unfortunately, this design pattern is not suitable for
searching purposes. This is because the Scripthon language
cannot to describe such a quantity of structures, and also
because the searching algorithm is not suitable for the
implementation with the visitor design pattern. Therefore,
the more advanced graph is created from a Java AST. This
graph is based on the AST, but it has a several benefits.

The first benefit is the replacement of the visitor pattern
with the classic approach. The second one is that some
additional information is included, which significantly
facilitates the searching.

While browsing the Java source code, the tree with the
nodes enhanced by four numbers is created. These numbers
are the natural numbers named left, right, level and level
under. The first and the second number (left, right) denote
the order index of a node in the tree preorder traversal.
Therefore, an ancestor’s left index is always smaller than its
children left index, while the right index is always bigger
than any children’s right index. The level number denotes
the level in a tree hierarchy of vertices, and the level under
number denotes a number of levels under the current node
(compare with the method described in [4]).

Suppose that and are two nodes from a tree; the

following rules are valid for these values.

 The node is an ancestor of and is a descendant

of if

 The node is a parent of and is a child of if

1) and 2)

 The node has sub-nodes.

Init(Name = "i"; Type = int)

int i = a + b;

Class()
 Meth()

Class()
 Meth()
 Init()
 MethCall()

3Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

All these data are acquired during a single pass through
the tree. Obtaining this information is not a time consuming
operation, because it is made during the tree production
process. On the other hand, the number of comparisons can
be significantly reduced with these numbers. Moreover,
while comparing the trees, it is very easy to detect:

 How many elements have a given structure

 Whether a node is a leaf

 How many sub-statements are included in a given
structure

The comparison of two trees is much more time

consuming without this information. In summary, this
information is used in cases where the shape of the given
structures and its coupling is considered more than its
properties.

A line reference to source code is important information
which is also added to the tree as a metadata. Therefore, it is
easy to link the results with the original source position and
show it to the user. There are some more elements in a node
metadata. For example, some of the other metadata
information is a filename of the source file.

Because the number of the comparisons is a key
indicator for the algorithm speed, it is necessary to keep the
number of nodes as small as possible. Therefore, only the
supported structures and their properties are considered
while creating a tree from source code. Thus, the same
Scripthon definition set is used during the tree creation
process. Other elements are omitted.

VI. GRAPH MATCHING

The simple and many times described backtracking
algorithm is used for the graph matching. Basically, it is the
problem of finding an isomorphic tree to the given tree from
a large database of trees. Comparing to the common tree
matching, there are two differences. The first one is that the
node properties need to be considered during the process.
The second difference is that not every Scripthon node
corresponds exactly to one Java structure node. For
example, the already mentioned keyword Any() could
correspond to more nodes.

The source trees are created from the corresponding
classes. The classes and the trees are mapped one-by-one.
Each tree corresponds to exactly one class. In the first step,
the algorithm checks whether the shape of the structure
match, and then the properties are compared. This is
because the properties matching is much more time
consuming operation than shape detection. Many structures
are eliminated very quickly from the process in the case that
the shape does not fit.

If the shape of the structure corresponds to the required
shape, the structure parameters are compared. All the
parameters of a given node must be met. The node

properties are provided by the Java compiler.

Figure 3. Simplified tree matching algorithm.

Figure 3 shows the simplified matching algorithm. It is
written in Java pseudo-code. The algorithm skeleton is
similar to the algorithm described in [8]. The main
difference is that in our solutions are compared not two Java
trees, but a Java tree and a Scriphon tree. The whole
program iterates over all given Java classes (line 1in the
figure 3). Instead of finding a corresponding sub-tree, the
algorithm tries to exclude quickly a mismatching part. It can
be seen from line 2.

At the beginning, it is assumed that the given source
matches. The rest of the algorithm iterates over Scripthon
statements (line 3) and tries to find a match between a
statement and a node of a Java AST (line 4). A matching
method (line 10) is called recursively as the sub-nodes are
traversed. If a result of this method is false, the loop over
Scripthon statements is interrupted (line 6), because even
the first statement does not correspond to anything of a Java
class. The result of the “compare” method is true (line 21)
or false (line 20). A statement and a node are equal if all
their corresponding properties are equal (line 12) and all the
children are equal (line 13). Therefore, all children are
iterated and compared recursively (line 14). If a match is
found, this method returns true (line 18). Otherwise it
returns false (line 16). If true, the result is added to the result
list.

Many aspects are considered during properties matching
process. Not only keywords and Java nodes properties are
considered. According to the previous section, it is possible
to exclude quickly the mismatched parts, because some
additional data are known about a shape of the sub-tree.

The typical size of a class graph depends on the source
size and on the number of supported structures. About 80
nodes of the graph are created from a Java class with length
about 200 lines nodes in the current version of Scripthon. In
future versions, when more structures will be supported,
may the number of the nodes significantly increase.

1.for (Class c) //iterate over all classes from given sources

2. match = true
3. for (Statement s)

4. match = compare(s, c.parentNode)

5. if (match == false)
6. break

7. if (match)

8. add it to the list of founded structures
9.

10.boolean compare(Statement s, Node n)

11. match = true
12. if (s.properties match n.properties)

13. for (s.children, n.children)
14. compare(s.child, n.child)

15. if (match == false)

16. return false
17. else

18. return true

19. else
20. return false

21. return true

4Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Unfortunately, because all the Java classes with all their
nodes must be compared with all the Scripthon statements,
the number of complexity rapidly grows. According to [3],
the sub-graph isomorphism problem has complexity
in worst case. Since the number of occurrences can be more
than one, each class must be browsed more than once. Each
class needs to be traversed until the number of results is 0.
According to [9, 10] the graph isomorphism problem is
polynomial. Therefore, even in this case, the complexity of
our algorithm remains polynomial. On the other hand, with
the above outlined optimizations, the number of node
comparisons is significantly decreased. More on the similar
graph matching techniques can be found in [5].

VII. MEASUREMENTS RESULTS

The used algorithm modifications substantially reduced
the time needed to find the requested Java structures.
Moreover, also the time of the tree generation procedure has
been shortened. According to the measurements, the meta-
information counting does not significantly affect the time
of a graph creation.

The searching with optimization is much faster. The
following tables show the measured time results. The small
program means a program consisting of approximately 20 to
30 classes, while the larger program is a program with
approximately 100 to 150 classes. There are also the results
before and after the described optimizations.

TABLE I. Graph creation times

Program type Time

Small program (no optimizations) 412 ms

Larger program (no optimizations) 4 423 ms

Small program (optimized) 132 ms

Larger program (optimized) 337 ms

TABLE II. Searching times

Program type Time

Small program (no optimizations) 2 345 ms

Larger program (no optimizations) 11 236 ms

Small program (optimized) 753 ms

Larger program (optimized) 1 986 ms

TABLE III. Total times

Program type Time

Small program (no optimizations) 2 757 ms

Larger program (no optimizations) 15 659 ms

Small program (optimized) 886 ms

Larger program (optimized) 2 323 ms

The measurements were performed on the quite common

computer. The computer configuration was: 4GB of
memory, the Intel Core I5 processor with a frequency of 2.4
GHz and Windows 7 as an operating system. The individual
results represent the averages of several consecutive

measurements. The first column indicates the time needed to
the AST generation, while the second one represents the
time required to find a piece of the sample code described
by the Scripthon language. The last column is the sum of
both times. The lines represent the sizes of programs on
which the measurements were performed.

As it is shown in the tables, in case of the small
program, the graph assembling is not significantly different.
On contrary, better results can be obtained in the case of
larger programs. Probably, this is because some time is
needed for the overhead services related to the starting and
initializing the own search.

VIII. CONCLUSION

With the described solution, we proved that the proposed

concept of searching is possible. Moreover, it is also very

effective. With used optimizations, the algorithm

significantly improved performance of a whole process.

Next, the Scripthon project is designed as a modular system.

Therefore, as will the functionality requirements grow, it is

not difficult to add more supported Java structures. Even the

language itself could be enhanced by new syntax elements

very easily. There are many possibilities of how Scripthon

could be used. One of the planned usage areas is a student’s

work controlling task. With Scripthon, it is easy to detect

whether a student’s work contains prescribed programming

structures.

The Scripthon language improved. The Scripthon

compiler is available as a command line tool now. We

suppose to develop the Scripthon plug-in for some popular

integrated development environments in the future.

ACKNOWLEDGMENT

This work is supported by the SGS 11/167 grant of the

Ministry of Education, Youth and Sports of the Czech

Republic.

REFERENCES

[1] T. Bublík and M. Virius.: “New language for searching Java

code snippets,” in: ITAT 2012. Proc. of the 12th national
conference ITAT. diar, Sep 17 – 21 2012. Pavol Jozef Safrik
University in Kosice, pp. 35 – 40.

[2] T. Bublík and M. Virius: “Automatic detecting and removing
clones in Java source code,” in: Software Development 2011.
Proc. of the 37th national conference Software Development.
Ostrava, May 25 – 27 2011. Ostrava: Technical University of
Ostrava 2011. ISBN 978-80-248-2425-3, pp. 10 – 18.

[3] I. D. Baxter, A. Yahin, L. Moura, M. Sant'Anna, and L. Bier.
1998. “Clone Detection Using Abstract Syntax Trees,” in
Proceedings of the International Conference on Software
Maintenance (ICSM '98). IEEE Computer Society,
Washington, DC, USA, pp. 368-377.

[4] J. T. Yao and M. Zhang. 2004. “A Fast Tree Pattern Matching
Algorithm for XML Query,” in Proceedings of the 2004
IEEE/WIC/ACM International Conference on Web
Intelligence (WI ’04). IEEE Computer Society, Washington,
DC, USA, pp. 235-241.

5Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

[5] H. Bunke, Ch. Irniger, and M. Neuhaus. 2005. “Graph
matching – challenges and potential solutions,” in
Proceedings of the 13th international conference on Image
Analysis and Processing (ICIAP'05), Fabio Roli and Sergio
Vitulano (Eds.). Springer-Verlag, Berlin, Heidelberg, pp. 1-
10.

[6] Ch. K. Roy, J. R. Cordy, and R. Koschke. 2009. “Comparison
and evaluation of code clone detection techniques and tools:
A qualitative approach,” Sci. Comput. Program. 74, 7 (May
2009), pp. 470-495.

[7] Z. Troníček. 2012. “RefactoringNG: a flexible Java
refactoring tool,” in Proceedings of the 27th Annual ACM
Symposium on Applied Computing (SAC '12). ACM, New
York, NY, USA, pp. 1165-1170.

[8] W. Yang. 1991. “Identifying syntactic differences between
two programs,” Softw. Pract. Exper. 21, 7 (June 1991), pp.
739-755.

[9] J. Köbler and J. Torán. 2002. “The Complexity of Graph
Isomorphism for Colored Graphs with Color Classes of Size 2
and 3,” In Proceedings of the 19th Annual Symposium on
Theoretical Aspects of Computer Science (STACS '02),
Helmut Alt and Afonso Ferreira (Eds.). Springer-Verlag,
London, UK, UK, pp. 121-132.

[10] I. S. Filotti and J. N. Mayer. 1980. “A polynomial-time
algorithm for determining the isomorphism of graphs of fixed
genus,” In Proceedings of the twelfth annual ACM
symposium on Theory of computing (STOC '80). ACM, New
York, NY, USA, pp. 236-243.

[11] T. Boudreau, J. Glick, and V. Spurlin, “NetBeans: The
Definitive Guide,” Sebastopol, CA, USA: O'Reilly &
Associates, Inc., 2002.

[12] S. Holzner, “Eclipse,” O'Reilly Media, April 2004.

6Copyright (c) IARIA, 2013. ISBN: 978-1-61208-277-6

COMPUTATION TOOLS 2013 : The Fourth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

