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Abstract—Scripting languages are easy to use and very
popular in various contexts. Their simplicity reduces a user’s
threshold of inhibitions to start programming – especially, if the
user is not a computer science expert. As a consequence, our
generative modeling framework Euclides for non-expert users
is based on a JavaScript dialect. It consists of a JavaScript
compiler including a front-end (lexer, parser, etc.) and back-
ends for several platforms. In order to reduce our users’
development times and for fast feedback, we integrated an
interactive interpreter based on the already existing compiler.
Instead of writing large proportions of new code, whose
behavior has to be consistent with the already existing compiler,
we used a minimally invasive solution, which allows us to reuse
most parts of the compiler’s front- and back-end.

Keywords-JavaScript; generative modeling; procedural model-
ing; compiler; interpreter

I. INTRODUCTION

As John Ousterhout has written in Scripting: Higher Level
Programming for the 21st Century [1], ”Scripting languages
such as Perl and Tcl represent a very different style of
programming than system programming languages such as
C or Java. Scripting languages are designed for ’gluing’
applications; they use typeless approaches to achieve a
higher level of programming and more rapid application
development than system programming languages. Increases
in computer speed and changes in the application mix are
making scripting languages more and more important for
applications of the future.”

Therefore, scripting languages are not only a common
way to automate repeated tasks, but also a relevant tool
in algorithm design – gluing existing algorithms and data
structures to new solutions.

As pointed out by Ousterhout [1] conventional system
programming languages are too ’rigid’ for many tasks in
contrast to scripting languages, whose flexibility has to be
paid by performance.

In order to trade off both, we combined ahead-of-time
compilation techniques with just-in-time compilation meth-
ods to an interactive interpreter. The result is in interactive
environment, in which algorithms can be designed, tested,
etc., and whose consistent data structures can be exported

and compiled to an application at any time. In this way, we
combine the advantages of both worlds.

The field of application as well as the context of this work
is presented in Section “II. Related Work”. A description of
the used compiler has already been published [2], [3] and is
summarized in Section “III. Compiler Construction”. Based
on this compiler, Section “IV. The Interpreter as a Retrofitted
Compiler” illustrates the needed extensions to implement an
interpreter.

II. RELATED WORK

Originally, scripting languages like JavaScript were de-
signed for a special purpose, e.g., to be used for client-side
scripting in a web browser. Nowadays, the applications of
scripting languages are manifold. JavaScript, for example,
is used to animate 2D and 3D graphics in VRML [4] and
X3D [5] files. It checks user forms in PDF files [6], controls
game engines [7], configures applications, and performs
many more tasks.

A. Field of Application

Scripting geometric objects – also known as generative
and procedural modeling – has gained attention within the
last few years [8]. The main advantage of generative mod-
eling techniques is the included expert knowledge within an
object description. For example, classification schemes used
in architecture, archaeology, civil engineering, etc. can be
mapped to procedures. In combination with documentation
and annotation techniques established in software engineer-
ing, 3D objects are easily identifiable by digital library
services (indexing, markup and retrieval) on a textual basis.

From a historical point of view, the first procedural
modeling systems were Lindenmayer systems [9], or L-
systems for short. These early systems, based on grammars,
provided the means for modeling plants. The idea behind
it is to start with simple strings and create more complex
strings by using a set of string rewriting rules.

Later on, L-systems are used in combination with shape
grammars to model cities [10]. Parish and Müller presented
a system that generates a street map including geometry
for buildings given a number of image maps as input. The
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resulting framework is known as CityEngine – a modeling
environment for CGA Shape.

Havemann takes a different approach to generative mod-
eling. He proposes a stack based language called Generative
Modeling Language (GML) [11]. The postfix notation of the
language is very similar to that of Adobe Postscript.

B. Programming Languages and Paradigms
Generative modeling inherits methodologies of 3D model-

ing and programming, which leads to drawbacks in usability
and productivity. The need to learn and use a programming
language is a significant inhibition threshold especially for
archaeologists, cultural heritage experts, etc., who are sel-
dom experts in computer science and programming. The
choice of the scripting language has a huge influence on
how easy it is to get along with procedural modeling.

Processing is a good example of how an interactive, easy
to use, yet powerful, development environment can open up
new user groups. It has been initially created to serve as
a software sketchbook and to teach students fundamentals
of computer programming. It quickly developed into a tool
that is used for creating visual arts [12]. Processing is
basically a Java-like interpreter offering new graphics and
utility functions together with some usability simplifications.

Offering an easy access to programming languages that
are difficult to approach directly reduces the inhibition
threshold dramatically. Especially in non-computer science
contexts, easy-to-use scripting languages are more prefer-
able than complex programming paradigms that need pro-
found knowledge of computer science. This is why we use
JavaScript – a beginner friendly, structured language.

The success of Processing is based on two factors: the
simplicity of the programming language on the one hand
and the interactive experience on the other hand. The in-
stant feedback of scripting environments allow the user to
program via “trial and error”. In order to offer our users
this kind of experience, we enhanced our already existing
compiler to an interactive environment for rapid application
development.

C. Euclides – a JavaScript platform for Cultural Heritage
In the context of Cultural Heritage, the Generative-

Modeling-Language (GML) is an established procedural
modeling environment designed for expert users [13]. The
aim of the Euclides modeling framework [14] is to offer
an easy-to-use approach to facilitate these platforms. The
translation mechanism for GML within Euclides has already
been described in “Euclides – A JavaScript to PostScript
Translator” and presented at the International Conference on
Computational Logics, Algebras, Programming, Tools, and
Benchmarking [2].

III. COMPILER CONSTRUCTION

This section focuses on the existing compilation pipeline
of the Euclides framework. The framework consists of

Generative knowledge
and procedural 3D
models in JavaScript
source files

standard XML for sustainable
documentation and long-term
archival

commonly used 3D formats
for visualization

internet file formats (HTML5)
for publishing and distribution

differentiated code
for numerical optimization

Euclides
framework:

- lexical
scanner

- grammar
parser

- translators
to various
platforms

Figure 1. The meta-modeler approach of the Euclides framework has many
advantages. In contrast to script-based interpreters, Euclides parses and
analyzes the input source files, builds up an abstract syntax tree (AST), and
translates it to the desired platform. Its platform and target independence as
well as various exporters for different purposes are the main characteristics
of Euclides. This innovative meta-modeler concept allows a user to export
generative models to other platforms without losing its main feature – the
procedural paradigm.

several stages to translate JavaScript code to a number of
target languages. Most parts are implemented in Java apart
from the parser which is generated using a third-party tool
(see Figure 1).

An editor component feeds the first stage of the frame-
work: lexer and parser. For semantic recognition of the input
source code, JavaScript syntax needs to be analyzed. All
rules, which define valid JavaScript code, form its grammar.
For each language construct available in JavaScript, this set
of rules is validating syntactic correctness. At the same time
actions within these rules create the intermediate structure
that represents the input source code – a so-called abstract
syntax tree (AST).

The resulting AST is the main data structure for the next
stage: semantic analysis. Once all statements and expres-
sions of the input source code are collected in the AST, a
tree walker analyzes their semantic relationships, i.e., errors
and warnings are generated, for instance, when they are used
but not defined, or defined but not used.

Having performed all compile-time checks, a translator
uses the AST to generate platform-specific files; e.g., java
source code for the JVM platform. In other words, this task
involves complete and accurate mapping of JavaScript code
to constructs of the target language. A translation in the
target language needs to be available for each statement or
expression found in the AST. Usually, a direct mapping to
data types or operators in the target language is not possible.
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Therefore, auxiliary methods and data structures within the
target language are needed to mimic JavaScript behavior.

A. Parser

The parser for JavaScript is written using ANother Tool
for Language Recognition (ANTLR) [15]. ANTLR pro-
vides a framework for constructing recognizers, interpreters,
compilers, and translators from grammatical descriptions. It
relies on a strategy called LL(*) parsing, which extends the
LL(k) parsing strategy with lookahead of arbitrary length.
Using this framework, lexer and parser are generated to
syntactically check the provided input for JavaScript com-
pliance.

public interface ASTFactory {

public static interface Tree {
// tree traversal methods; e.g.
public Tree getUp();
public Tree[] getDown();

}

public static interface
Expression extends Tree {
// validation
public void validate(

ErrorHandler errorHandler);
}

public static interface
Statement extends Tree {
// validation
public void validate(

ErrorHandler errorHandler);
// original source code ref.
public int getLine();
public String getFileName();

}

public static interface
TryCatchBlock {
// This pure markup interface
// is used to ensure type
// compatibility.

}

// the factory methods; e.g.
public Statement statementTry(

String filename, int line,
Scope scope, Statement statement,
TryCatchBlock catchBlock,
TryFinallyBlock finallyBlock);

// the factory utility methods
// to create optional terms; e.g.
public TryCatchBlock utilTryCatchBlock(

Expression identifier,
Statement statement);

}

Source code 1. This source code excerpt shows the main components
of the abstract AST factory used by the Euclides parser to build up an
abstract syntax tree.

A first step is to convert a sequence of characters into
a sequence of tokens, which is done by special grammar
rules forming the lexical analysis. For instance, only a
limited number of characters is allowed for an identifier: all
characters A-Z, a-z, digits and the underscore are allowed

with the condition that an identifier must not begin with a
digit or an underscore. These lexer rules are embedded in
another set of rules – the parser rules. They are analyzing the
resulting sequence of tokens to determine their grammatical
structure. The complete grammar consists of a hierarchical
structure of rules for analyzing all possible statements and
expressions that can be formed in JavaScript, thus forming
the syntactic analysis. Rules can be enriched with so-called
actions. These actions create the intermediate AST structure.

Within these actions, an abstract factory, like described
in [16], called ASTFactory is used to create necessary
instances of statements and expressions for the AST. An
excerpt of the abstract factory including selected inner
interfaces is listed in Source Code 1.

The statements and expressions mentioned in the
ASTFactory are defined as static, inner interfaces
Statement and Expression within the definition of the
factory. Both interfaces extend a common interface called
Tree. The use of a factory has the advantage to be able to
replace their implementations without touching the grammar.
Additionally, markup interfaces are used to ensure type
compatibility, because during AST construction, sub-parts of
the AST are created bottom-up via utility methods. These
parts are collected and passed to the corresponding parent
rule. For example, the AST of the listing in Source Code 2
is created via the following factory calls.

try {

doSomething();

} catch (exception) {

repairSomething();

print("caught exception " + exception);

}

Source code 2. The catch-block of a JavaScript try-statement automatically
declares and defines a variable. In this example it is called exception.

The optional catch-block is parsed by a sub-rule with ac-
tions, which call the factory method utilTryCatchBlock.
This method returns an instance of the markup inter-
face TryCatchBlock, which can only be passed to a
statementTry method. This method itself is called in the
corresponding rule to match a try-statement. In this way,
complex grammar rules are split up into several simpler rules
while using the abstract factory pattern and maintaining type
safety.

The signature of the statementTry call reveals some
properties that are passed to the factory by all statements:
the source code’s file name and line together with the current
scope. In case of statementTry, the statement to try, the
optional catch-block as well as the optional finally-block are
also passed to the factory. (Please note, at least one optional
block must be non-null.)
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B. Abstract Syntax Tree

In JavaScript, the top-level rule of an AST is always a
simple list of statements – no enclosing class structures,
no package declaration, no inclusion instructions, etc. Each
statement contains all included substatements and expres-
sions as well as associated comments. Furthermore, our AST
stores additional formatting information (number of new
lines, white spaces, tabs, etc.), which offer the possibility
to regenerate the original input source code just using the
AST.

During the validation step, this tree structure is extended
by reference and occurrence links; e.g., each method call ref-
erences the method’s definition and each variable definition
links to all its occurrences.

@Override

public void forRangeNoArray( String filename, int line) {

warning(filename, line,

"The range expression of this for-statement is not"

+ " an array. It will be casted automatically, "

+ "which might lead to undesired results.");

}

Source code 3. The Euclides compiler includes a simple and limited
type inference implementation. Its main purpose is to recognize common
pitfalls of JavaScript source code and to present reasonable warnings.

Having assured that all compile-time checks are carried
out, symbols are stored in a so called namespace. During val-
idation, this data structure is used to detect name collisions
(e.g. redefinition of variables) and undefined references (e.g.
usage of undeclared variables). In addition, a simple type
inference system tries to determine the variables’ types. As
this system is incomplete, it cannot be used for compile
time optimizations (e.g. mapping to native data types),
but it can be used for warnings and recommendations. To
provide meaningful error messages is an important aspect
with regard to language processing. In Euclides, an error
handler is responsible for collecting and preparing error
and warning messages. This functionality is not only used
during AST construction to deal with syntactic issues, but
also for semantic validation as well. A total of 52 different
errors and warnings can be issued. For example, if the type
inference system checks the range expression of a for-in
loop, it expects an array. If it finds a different type, the
warning routine listed in Source Code 3 is issued.

C. Translator to Java – the Compiler Backend

The translation backend for the target language Java is
not as straightforward as the similarity in names between
Java and JavaScript would suggest. Although they have some
similarities, the concepts of both languages show major
differences. Java is a statically typed, class-based, general-
purpose programming language.

Because of the conceptual differences in the typing sys-
tem, it is not only unpractical, but impossible to project
all JavaScript data types onto built-in Java data types. In
JavaScript, there is no difference between integer numbers
and floating point numbers. Just one data type called Number
holds any type of number. Other differences can be found
when comparing the remaining data types. Also dynamic
typing is not a language feature of Java – as a consequence,
each JavaScript data type is re-built in Java to match its
functionality.

A total of seven data types are implemented in classes
having a common interface called Var. These data types are:
VarUndefined, VarBoolean, VarNumber, VarString,
VarArray, VarObject, and VarFunction. A number of
access functions and conversion methods are available for
all data types. All internal functions provide an additional
parameter that always refers to a table entry, which ref-
erences the corresponding JavaScript file and line num-
ber. In this way, warnings can be generated at runtime,
if implicit conversion takes place. For example, the im-
plementation of an array access includes the statement
Log.variableTypeChangeImplicit(ii);. In the mes-
sages table (generated by the compiler) there is an entry #ii
that provides reasonable information needed for a runtime
warning.

The access functions reveal the implementation details
and the internal Java data types used:

• Boolean: The mapped Java data type is boolean.
• Number: A JavaScript number is mapped to double.
• String: String is mapped to String.
• Array: A JavaScript array is realized using the collec-

tion java.util.ArrayList<Var>.
• Object: And an object in JavaScript is mapped to
java.util.HashMap<String, Var>.

• Function: A JavaScript functor is realized in Java as a
function pointer using abstract objects.

The instantiation of variables within the generated
Java code is performed using factory methods like
Factory.initString(String text). Furthermore, all
JavaScript operators need to be recreated in Java as well.

A total of 49 operators grouped in unary, binary and
tertiary operators are available. Each operator is applied via
a method call and can therefore be exchanged easily. These
concepts are demonstrated in Source Code 4, which shows
the implementation of the binary subtraction operator found
in JavaScript. In case at least one of the operands is not of
type number, a warning is generated. The operator returns
a new number initialized with the result of the subtraction
operation of the internal Java data types used.

41Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking



public static Var SUB(int ii, Var v1, Var v2) {

if (!v1.getType().equals(Type.NUMBER)

|| !v2.getType().equals(Type.NUMBER))

Log.deviantOperatorCallNoNumber(ii) ;

return Factory.initNumber(

v1.toNumber() - v2.toNumber());

}

Source code 4. During the translation of JavaScript to Java, all JS-
operators are mapped to corresponding Java-based static method calls,
which implement their behaviour.

The factory pattern has been chosen for the generated Java
code in order to easily replace the mapping of JS variables
and operators to different implementations. In this way, we
realized a compiler with included, automatic derivation; i.e.
within the generated code we can evaluate both: a function
f(x1, . . . , xk) as well as its partial derivatives df

dxi
. This

technique offers the possibility to use standard optimization
algorithms to solve numerical optimization problems [17].

All variables defined in the JavaScript source code are
collected in the namespace. The Java translator backend,
however, distinguishes between variables defined in global
scope and local variables. A single class called Variable is
created holding global variables as static objects. All other
variables, e.g. those defined in a function, are exported in-
place. Functions itself are mapped to Java functions and are
collected in a class called Function.

All expressions are exported in their respective embedding
statement. A distinction between global and local scope
is made in case of the statements. All locally defined
statements, e.g., statements defined within a function, are
exported in-place. Global statements are collected in a class
called Main and are executed from the Java main method.

IV. THE INTERPRETER AS A RETROFITTED COMPILER

As stated before, the simplicity of a programming lan-
guage is only one factor of a successful development envi-
ronment. Reasonable feedback and an interactive experience
are also important. In order to offer our users this kind of
experience, we enhanced our already existing compiler to
an interpreter. A similar approach to combine interpretation
and compilation has been presented by Anton Ertl and David
Gregg [18], but in contrast to our system, they start with an
interpreter and end up with a compiler.

A. Compilers and Interpreters

Unfortunately, there is no commonly accepted definition
of the terms “compiler” and “interpreter”. The problem is
the smooth transition between compilation and interpretation
techniques, which blur a clear distinction. On the one hand
many interpreters have integrated just-in-time compilers,
on the other hand, some compilers rely on an interpreter

integrated into each compiled unit. In combination with
virtual machines [19], which have functionality not provided
by any real machine, and CPUs, which can execute source
code directly [20], it is even more complicated to find a clear
distinction.

In our context, we differentiate between compiler and
interpreter by the number of times our ASTFactory is
called per JS-application execution. If the factory is called
every time, the system is called interpreter. Otherwise, it’s
a compiler.

B. Interpreter Design

In order to design, realize, and implement an interpreter
based on an abstract syntax tree [21], current software en-
gineering approaches recommend one of two main designs:
the interpreter pattern and the visitor pattern [22].

According to the interpreter pattern, each node of the
AST should have a specialized version of an evaluation,
respectively, interpretation method; e.g., eval(...). The
visitor pattern in contrast only needs some callback func-
tionality. In this way it can separate algorithms and actions
from the data structure it operates on. As the visitor pattern
(in combination with an iterator pattern for tree traversal) is
already used by the Euclides compiler backends, it is also
used by the interpreter.

The main idea of the interpreter implementation is based
on a property found in many scripting languages. In contrast
to, for example, Java, in which each statement is enclosed
(at minimum) by a class definition, enclosed by a file
definition, the scripting language JavaScript does not have
this “overhead”. As a consequence, the root node of the
AST is simply a list of statements: statementA, statementB,
statementC and for each statement, the list of previous
statements has to be a valid program. This linguistic property
allows to compile each top-level JS statement as a unit
of its own – a dynamic library. While this is not sensible
for regular compilations, it offers the possibility to compile
instructions statement by statement. Finally, if each unit is
executed directly after being compiled, the resulting backend
is an interpreter. Even more, additionally included callback
routines can be used for debugging purposes [23].

C. Implementation Details

Following the observation that even a single statement
can be regarded as a unit of its own, the original JavaScript
compiler is extended to reflect this property. Statements in
the AST are no longer stored in a one-dimensional array,
but a two-dimensional array is used instead. This way it is
possible to group statements, i.e., all statements passed to
the interpreter in a single evaluation call form one group and
are stored in a one-dimensional array. All groups are stored
in an array as well, thus as a consequence, the statements
are stored in a two-dimensional array. These groups can
be accessed by a new set of access functions while at the
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same time retain compatibility to the compiler, e.g., the
command getAllStatements() now simply copies the
two-dimensional structure in a one-dimensional one.

In addition to the changes in the AST, the namespace is
also using a two-dimensional array for storing all symbols
the same way the AST does. It uses the same mechanism
to create units of symbols while being compatible to the
old compiler version. These changes are necessary to allow
tracking of interpretation history as well as to speed up all
operations relying on the AST such as validation and code
generation.

A small change in the runtime, not related to the inter-
preter redesign, was carried out in the process of implement-
ing the changes for AST and namespace. Function pointers
are now being ommited in the favor of using anonymous
inner classes.

V. CONCLUSION

The simplicity of scripting languages reduces a user’s
inhibition threshold to start programming. Our generative
modeling framework Euclides for non-expert users is based
on a JavaScript dialect. It consists of a JavaScript compiler
including a front-end (lexer, parser, etc.) and back-ends for
several platforms.

The main contribution is an interactive interpreter based
on the already existing compiler. Instead of creating large
proportions of new code, whose behavior has to be consistent
with the already existing compiler, we envisaged a minimally
invasive solution. It allows us to reuse most parts of the
compiler’s front- and back-end.
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