
Utilising an Ant System for a Competitive Real-Life Planning Scenario

Christopher Blöcker1

Research and Development
implico GmbH

Hamburg, Germany
Email: christopher.bloecker@implico.com

Sebastian Iwanowski
Department of Computer Science

FH Wedel, University of Applied Sciences
Wedel, Germany

Email: iw@fh-wedel.de

Abstract—This paper describes the design of an ant system
for a dynamic tour planning scenario for oil and gas delivery.
The software has been integrated into an existing planning
system and achieved satisfying results in the simulation of real-
life scenarios considering spontaneous non-predictable changes
of tasks. The notion of such dynamics is more general than in
previous approaches. The response time and other complexity
measures match the needs of real practice. While other papers
already exist describing the functionality and advantages of ant
systems and giving some case studies, this paper is the first one
referring to an integration into a standard operational SAP
system. Thus, this paper shows how to bridge the gap between
innovative scientific research and industrial application.

Keywords-ant system; dynamic tour planning; vehicle routing
problem with time windows; greedy strategy; SAP system

I. MOTIVATION

Software for tour planning solutions often suffers from
the problem that typical real-life applications continuously
violate the original input specifications due to changes of
existing tasks, generation of new tasks, malfunction of
operational units, and traffic congestion in the underlying
route system. All these dynamic events may occur while the
software is executing its current task.

Tour planning is an NP complete problem, which makes
it infeasible to design an efficient solution satisfying all
theoretical needs. Real-life logistics requires a solution for
the even more complex vehicle routing problem VRP (cf.
[1], [2]) dealing with several vehicles to serve delivery orders
meeting pre-defined time windows.

Despite these theoretical obstacles, reasonable heuristics
for tour planning already exist achieving remarkable run
time results for problem sizes occurring in real problems.
Besides classical OR techniques (e.g., cf. [3]), some promis-
ing heuristics also use innovative artificial intelligence tech-
niques such as neural networks, genetic algorithms, and ant
algorithms (cf. [4], [5], [6], [7]).

However, the benchmarks normally used in the scientific
community (cf. [8], [9]) in order to evaluate the different
heuristics do not consider problems of the type described
above i.e., problems where the input is subject to continuous

1This work was done while the author was working on his Bachelor’s
degree at FH Wedel.

and unpredictable changes even during execution of the
software.

Some of the ant papers cited above (e.g., [6]) do work
with dynamic changes explicitly, which is not surprising
because ant algorithms are specially suited for that situation
as we will also elaborate in the following. But none of them
referred to the exact planning tasks we wanted to deal with,
which are described in Section II.

The task of this work is an implementation of a tour
planning system coping with dynamic changes. The software
has to be integrated smoothly into the IDM (Integrated
Dispatch Management), which is an implico framework for
tour planning of oil and gas delivery linked to an SAP
system. Typical scenarios of past applications of IDM serve
as evaluation benchmarks.

This paper is organised as follows: Section II presents
the problem to be solved in practice. Section III describes
the software architecture of the operational system, in which
the new solution had to be integrated, and the functionality
of the modules existing before. Section IV gives a short
description of principles and advantages of ant systems in
general. Section V shows how we adapted these general
principles for the actual problem. Section VI gives some
test results and interpretations. The conclusion in Section
VII compares with other approaches.

II. THE ACTUAL PLANNING TASK

Our actual planning problem is the scheduling and routing
of oil and gas delivery to a set of customers: The customers
specify the requested product and a time window, in which
they want to receive the delivery. The possible transportation
units are heterogeneous trucks, which are initially located
at several truck depots. The products are located at several
supply depots differing in availability and price. Not all
trucks are eligible to transport all kind of products or fit
further needs of all customers.

Among the frequent dynamic events that we want to
take special care of are the failure of a vehicle, delays in
the delivery procedure, incoming of new orders with high
priority, and traffic congestion during the tour. Our target
is to provide a substitute schedule shortly after a dynamic
event occurs and to minimize the additional costs.

7Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Plan

Tour 0

Tour 1

vehicle 0

vehicle 1

truck depot load depot delivery delivery

stop 0 stop 1 stop 2 stop 3 stop 4

load depot

Trip 0

truck depot load depot delivery delivery

stop 0 stop 1 stop 2 stop 3 stop 4

load depot

Trip 0 Trip 1

vehicle 2

Figure 1. The structure of a delivery plan built from tours, trips and stops.

A schedule in our context consists of a set of several
delivery plans each describing the deliveries to be performed
within one day in the given planning period. A single
delivery plan is composed of a set of several delivery tours,
one tour per vehicle. Due to common practice in oil and
gas delivery, every tour is defined to begin and end at the
corresponding truck’s home depot. A tour contains several
subsequently ordered trips. Each trip is a sequence of stops.
The first stop of a trip is a supply depot followed by several
delivery stops. When a product for a subsequent customer
is finished, the truck has to reload new supply at a depot
starting a new trip. An extract of a sample plan is shown in
Fig. 1.

Each customer may reserve time windows, in which he
wants to be delivered. Additional attention has to be paid to
the reservation of recreation breaks for the drivers prescribed
by law. Furthermore, not all different products are eligible
to be shipped together on the same trip due to possible
chemical reactions or even explosions.

In general, we assume that there is no need to split deliv-
ery charges because for each single delivery charge there will
be at least one vehicle providing sufficient transport capacity.
If this is not the case, we require that the delivery charge
is decomposed in appropriate sizes prior to consideration
within our planning procedure.

III. SOFTWARE ARCHITECTURE OF THE OPERATIONAL
SYSTEM

The underlying business framework IDM provides all
functionalities a human dispatcher needs. For example, it
visualizes current orders to be fulfilled, the current delivery
plan on a map and gives easy opportunities for manual
integration of new stops and rearranging the current plan.
It is based on an SAP system [10], which handles the entire
delivery order process. In addition to this base functionality,
IDM provides an interface for the integration of various tour
optimizers, which may even be operated simultaneously and
should ideally make a manual interaction unnecessary. But
since the dispatchers are often overcharged with the frequent

dynamic changes of the situation in practice, they should at
least be supported by an automatic tour optimizer being able
to handle specially the dynamic case in a very short response
time.

Currently, IDM involves three different optimizers in the
context of delivery scheduling (including our ant system),
each addressing a different part of the problem.

The first of them, TermiDe, is used to determine whether
an incoming request can be served considering the time
window and other constraints given by the customer. This
is typically done by a phone order several days prior to the
actual delivery. If a delivery can be granted, the order is put
into a pre-schedule for tour planning, which is the starting
point for subsequent optimizations. Since TermiDe is used
for telephone sale, it must provide its decision a few seconds
after the request. This leads to a feasible but not very good
solution.

The second optimizer, IcedG, uses a metaheuristic ap-
proach based on tabu search [11], [12] in order to ap-
proximate solutions for the static VRP. It is run daily
with the purpose to precompute the delivery plan for the
following day based on the results of TermiDe. IcedG faces
no competitive restrictions regarding the response time, but
the quality of the result is required to be very high because it
has direct influence on the operational costs of the schedule.
Typically, IcedG computes almost the optimal result, but it
may need several hours for computation.

The tour optimizer, which is subject of this paper, is called
Dyonisys, which is short for Dynamic optimization using
a nature-inspired system. This optimizer is running during
the execution of a delivery plan, i.e., during the whole day.
In the morning it gets its input from the schedule, which
was previously computed by IcedG. Whenever a notable
event occurs, Dyonisys tries to adapt the schedule to the
new situation. In fact, Dyonisys can also be configured such
that it may further improve the current plan while there is
no other work to do.

Most likely Dyonisys will not be able to compute as good
results as IcedG would do. The advantage of Dynisys is the
following: While IcedG only solves the static VRP and needs
several hours to compute an approximate solution, Dyonisys
is capable of solving the dynamic VRP and to reduce the
response time to a few minutes.

At any time, IDM may ask Dyonisys for the next stop
for a particular vehicle and assign a task to it according to
the current schedule. Dyonisys then considers the stop the
vehicle is currently heading to as granted and estimates the
time point when the vehicle will be available for further
deliveries when the next delivery has been rolled out.

If the situation happens that a certain delivery cannot be
performed at all according to the current schedule due to an
unexpected event, this is detected by IDM, which informs
Dyonisys. Then, Dyonisys would reply with a substitute
schedule, as soon as required. This can be guaranteed,

8Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

IDMTermiDe

IcedG

Dyonisys

customer requests

pre-schedule plan, events

adapted plan

pre-schule optimized plan

(with SAP)

Figure 2. Communication between IDM and its optimizers TermiDe, IcedG
and Dyonisys.

because ant systems are anytime algorithms which always
can provide a solution. Of course, the quality of the solution
depends on the allowed response time.

The communication between the different modules de-
scribed above is given in Fig. 2.

IV. GENERAL PRINCIPLES OF ANT SYSTEMS AND THEIR
ADVANTAGES

Ant systems are used to solve optimization problems on
graphs. The current optimization problem is defined by a
target function depending on edge costs and possibly further
information about the graph. Ant systems are specially
designed for the scenario that edge costs and the target
function vary during operation. They resemble the behavior
of natural ants when they seek for food.

Being living animals with a nondeterministic behaviour,
ants differ in their strategy from classical optimization
methods in the way that there are always some individuals
searching a solution on an obviously non-optimal path.
An ant colony consists of a large number of individuals,
who communicate via pheromones, which are chemical
substances dropped on the paths. The intensity of the
pheromones biases the behaviour of ants, which leads to
a nearly optimal solution for the majority of the individuals.
However, the nondeterministic behaviour of the minority
enables such a system to react rather quickly to dynamic
changes of the environment. This is the main advantage of
ant systems.

In the following, we describe the general idea of artificial
ants and ant systems.

An (artificial) ant is a software unit, which is continuously
generated over time by the ant system. Each ant uses the
current data of the graph, considers the current constraints
to be solved at the time of its generation, and tries to
find a single solution for this problem. The quality of the
result influences the modification of pheromones, which
are dynamic information chunks placed onto the edges of
the graph. The pheromones represent the collected memory
of previous ants using the respective edge. Subsequently
generated ants are biased by these pheromones for their own
construction of a solution.

In general, ant systems use complete graphs for tour
planning problems since this will always enable them to

complete partial solutions. For our problem, this assumption
is reasonable because in practice it is always possible to find
a route from one location to any other.

The probability of selecting an edge for tour completion
depends on the quality of pheromones put so far as well as
on some heuristic value, which is usually derived from the
graph’s cost function. Usually, this heuristic value is static,
but for ant systems even that need not be. The trade-off
between the dynamic pheromones and this heuristic value
may vary depending on the stage of the process or on
the application in general. The continuous generation of
ants by the system guarantees that the pheromone value is
successively updated to the latest situation in an eager way
i.e., prior to a possible request from a user to the ant system.
This guarantees a quick response time for any request.
However, after the occurrence of a new event, the longer the
ant system is running, the better do the pheromones reflect
the current situation.

The construction of solutions is carried out in different
phases.

First, in the initiation phase, initial pheromones are dis-
tributed to all edges in the graph. Normally, all edges get the
same pheromone value, but at initialization we could make
that also dependent on the cost function [4].

Then, in a loop, construction and coordination phase are
executed in turn as long as the ant system is needed. In
the following, we denote a construction step followed by a
coordination step as one iteration.

In the construction phase, a certain number of ants is
generated simultaneously. Each ant has to find a solution.
Applied to our VRP, the task of a single ant is to construct
an assignment of vehicles to the stops in a certain order
such that the tour is feasible for each vehicle, each station
is served in the requested time window, and there is always
sufficient product supply. At each stop, which is reached by
an ant during the construction of a tour, the probability that
this ant will use a certain edge leaving this stop is directly
proportional to the amount of the pheromone value. Thus,
more ants will use the edges baring good pheromone values.

When all ants that were generated in the construction
phase have constructed a solution, the construction phase
is finished and the coordination phase starts, in which all
pheromone values are updated: First, all pheromones are
decreased resembling evaporation. This makes the future
results more decisive than the past ones. After evaporation
all ants increase the pheromones on the edges they actu-
ally used for their specific solution. The increase of the
pheromones is inversely proportional to the real costs of the
associated solution. In total, this makes pheromones of edges
belonging to favorable tours increasing and of disfavorable
tours decreasing.

Note that the alternating phases of construction and coor-
dination correspond to a discrete simulation of a continuous
process which was first described in [4].

9Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

If a current solution is requested, the system returns
the solution obtained from the current pheromones. This
enables an ant system to give a quick answer with a solution
corresponding to the current status of the dynamic system
and makes it suit well for the problem we have addressed
above.

For further information about ant systems, we refer to the
standard literature such as [4], [5], [13], [14].

V. HOW DYONISYS WORKS IN DETAIL

A request to the ant system is generated every time a
vehicle in operation needs the information about the next
target. Dyonisys then looks up which delivery is scheduled
next, passes this information to IDM and removes it from
the set of deliveries that are left to be performed. We have
decided to take this approach because it is much more
practical to inform a driver about his next target once he
needs to know this than to inform the driver continuously
about the best schedule found so far.

At the beginning of a day, Dyonisys starts with the
schedule produced by IcedG. As long as no dynamic event
occurs there is no need in running the ant optimizer because
the IcedG schedule achieved near optimality. Once an event
occurs, Dyonisys catches up with the current state of the real
world situation i.e., it modifies the graph’s cost function or
adds / removes vehicles or deliveries.

Dyonisys uses the following representation of the sce-
nario: For every delivery, load depot, and truck depot, the
underlying graph maintains a separate node. Since IDM
already provides a distance matrix between the locations
involved, Dyonisys need not perform the actual navigation
on street level.

According to the general principle described in the pre-
vious section, each ant to be generated will try to find
a solution for the total planning task, which is currently
in consideration. Each solution is evaluated according to a
quality function considering the overall time and the con-
sumption of resources. The solution is also compared with
the constraints currently valid. If a constraint is violated, a
penalty function is applied decreasing the evaluated quality
of the current solution. There are several penalties depending
on the different types of constraint violations.

In the initialization phase, Dyonisys creates the ants,
which will be used for solution construction and sets the
initial pheromones τ0 to all edges (i, j) from nodes i to
j (this is the way it is explained in [4]). For performance
reasons, we prefer to reuse the ants rather than to dispose
them and create new ones every iteration.

Right after that, the loop of construction and coordination
phase is started, and each ant produces a schedule. We chose
a greedy strategy for this step: An ant picks one of the
vehicles and creates a complete tour before proceeding with
the next one until all deliveries are assigned to a tour or there
is no capacity left among the vehicles. The benefits of this

technique are a good response time and quite satisfactory
results.

Note that there always exists the trivial solution where no
delivery is carried out. So we will always have an initial
solution. However, in nearly all cases we will get a better
one, because this trivial solution is associated with very high
penalties.

As mentioned before, the ants successively construct a
tour starting at the selected vehicle’s home depot. At any
point, they decide which node of the graph (i.e., which
delivery stop respectively, which supply depot) to visit next
depending on a value derived from the pheromone level and
heuristic value of the incident edges.

If an ant is located at node i, then the probability of
visiting node j next is obtained by evaluating term (1),
where τi,j denotes the pheromone level on the edge (i, j),
ηi,j the heuristic value of the same edge and α, respectively
β, are weighting parameters to control the contribution of
pheromones and heuristic. N (i) is the set of unvisited
neighbours of node i (cf. [4], [5]).

pj =
ταi,j · η

β
i,j∑

j∈N(i)

ταi,j · η
β
i,j

(1)

For reasons of efficiency, we only evaluate the numerator
of (1) and accumulate the values to obtain the denominator.
Instead of normalizing the probabilistic values according to
(1) and generating a random value r ∈ [0, 1], we introduce
the new approach to let them unchanged and take a random
value r′ ∈ [0,

∑
j pj]. Choosing this implementation we

were able to save a lot of runtime without altering the result.
Note that if α were set to 0, the ant system would act in
a completely deterministic way, and the pheromone values
would be ignored.

After that, the coordination phase is started:
First, evaporation takes place. A fraction ρ specifies the

amount, by which a pheromone value should evaporate, cf.
(2).

τi,j ← (1− ρ) τi,j (2)

Then, each ant increases the pheromone value on the
edges it used for constructing its individual solution. Ac-
cording to Dorigo et al. [4], if the cost of a solution of ant
a is ca, then the pheromone increase is 1

ca
. Dorigo et al.

also suggest to apply additional methods such as allowing
only the best ants to increase pheromone values at all or to
add so-called elite ants, which reinforce the best solutions
found so far (cf. [15]).

Since our solution had to be effective also for huge
networks which may occur in practice, we had to adapt the
pheromone update a little more sophisticated than previous
papers suggest:

10Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Since some overall cost values c of our scenarios were
rather high, the inverse 1

c (which should be the pheromone
update value) came close to 0. In these cases, the evaporation
rate of pheromone values would outnumber the increase
rate of pheromone values, which eventually would lead to
a pheromone value nearly 0. Subsequent ants would then
use the (static) heuristic function only, but not the dynamic
pheromone values, which makes our system less prone for
dynamic changes. This is why we use the update value
cbest
ca

instead of 1
ca

, where cbest denotes the value of the
best solution found so far and ca the costs of the solution
computed by and a. Then the update value for ants having
found a rather good solution is close to 1 (or even higher
if the ant found a better solution than before). This would
make the respective edge favourable for subsequent ants.
Only when an ant finds a very bad solution, this would still
decrease the update value as it did before our modification,
but a frequent occurrence of such solutions would indicate
that the link really deteriorated. This makes our system
reacting on dynamic changes just as desired.

We summarise the algorithmic improvements to the state-
of-the-art described in Section IV:

1) The probabilistic values of (1) are not normalized,
which saves a lot of time without altering the result.

2) Our evaporation update of the pheromones is done in
such a way that pheromone changes are also realised
in huge networks.

Considering the operational system, special attention
should be taken to handle dynamic events such that the
proper execution of the ant system is not too much disturbed
by the unexpected input of a new event. For this sake, we
make a distinction between events changing the structure of
the graph and events leaving the graph as it is.

Since we are only dealing with complete graphs, a cost
function change leaves its structure always unmodified.
Thus, an information about a traffic congestion would simply
result in an update of our cost function and let the ants
continue their work. The same argument holds for the
opposite case, i.e., when edge costs are reduced.

However, adding or deleting a node would be a change of
the graph structure. Such changes need a more sophisticated
treatment: The ant system has to be halted, the changes have
to be applied, and then the ant system may resume its work.

The following considers the tasks of such structure chang-
ing events in more detail:

New customer orders must be added to the set of deliver-
ies and marked as unplanned. Simultaneously, a new node
is added to the graph, connected to all other nodes, and
pheromones are put onto the new edges. Feasible values for
the new pheromones are the initial values for starting graphs
or the average of pheromone values computed so far.

A vehicle break down results in the deletion of a node
and its adjacent edges. But this requires a scan of all ants
and the removal of this vehicle from all partial solutions.

We implemented a proper data structure and method such
that this is still superior than deleting all ants and starting
from the scratch.

In detail, this is achieved by the following:
Note that we only need to consider ants that have already

finished constructing a solution or - at least - that have
already started constructing a solution. All other ants will
be supplied with the new situation before they start and,
thus, need not be bothered by the fact that in previous times
we had a different situation.

Our data structure allows an easy access to the tour be-
longing to the removed vehicle, which is possible in constant
time because there is a direct correspondance between a
vehicle and the tour it is used for.

This is why we wait until all ants having started, before
removal was announced, have finished their construction.
Then we delete the tour corresponding to the removed
vehicle and mark all deliveries from the deleted tour as
unplanned, which automatically leads to higher penalties in
the evaluation of the corresponding solution. Only then we
start the ants for the new situation. This can be expected
to happen very fast due to our greedy strategy for tour
construction.

VI. TEST RESULTS

We tested Dyonisys using typical real world scenarios
scanned by IDM in the past. We chose a standard config-
uration of 100 iterations, an evaporation rate of ρ = 0.1,
initial pheromones of τ0 = 25, α = 1 and β = 5 and ran
our tests on an Intel Core-i5 M560 with 8GB RAM. In our
tests we used different values for the parameters and studied
their effect on the runtime of the ant system and the quality
of the solutions.

Not surprisingly, we found that the runtime is directly
proportional to the amount of ants used for optimization, cf.
Table I and Fig. 3.

Interestingly, we did not get a corresponding result for the
quality of the solutions. In general, using more ants enlarges
the chance of finding a better solution, but the more ants are
used, the smaller is the benefit of using an additional ant.

We observed a similar result with respect to the number
of iterations: The solutions also get better as more iterations
are performed, cf. Table II and Fig. 4. But, if we have
already applied a high number of iterations, the benefit of
an additional iteration is rather low.

As expected, if the number of iterations is kept constant,
Dyonisys is able to find better solutions using more ants
and vice versa. Thus, a higher amount of ants used and a
higher number of iterations performed have a similar quality
enforcing effect.

Summarizing, we conclude that it is generally more
practical to perform a higher number of iterations keeping
the number of ants not too high. How many iterations and
ants should exactly be used depends on the actual scenario.

11Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

ants
0 10 20 30 40 50

0

900

1000

2800

2900

3000

0

2500

5000

7500

10000

12500costs

distance

runtime

Figure 3. Progression of runtime, total costs and total distance of a
schedule depending on the count of ants used for optimization.

ants costs distance time
1 2.951 978 395
2 2.932 968 604
5 2.910 954 1.343

10 2.877 933 2.501
15 2.871 934 3.856
20 2.871 930 4.918
30 2.856 924 7.468
50 2.846 921 12.529

Table I

In most cases, we were able to achieve satisfying results
using only 10 ants. In general, there is a trade-off between
runtime and quality.

The complete results dependent on the variation of several
parameters are elaborated in [16] (in German).

VII. CONCLUSION

We developed an ant system solving the VRP with time
windows for a special application scenario in practice. The
ant system was integrated into an operational SAP software
environment. The ant heuristics used were simple using a
greedy strategy, which resulted in a system with reasonable
run time and space consumption. Our intensive testing
revealed, which parameters to adjust in order to obtain
qualitatively best results in short time. We could thus obtain
a setting that fulfils all functional needs.

The improvements to the state-of-the-art are the following:

1) We proposed some algorithmic improvements con-
cerning runtime and applicability for huge networks
(cf. Section V). The feasibility is shown in Section VI
in examples and in [16] in detail.

2) We took special care for some implementation specific
details important to improve the usability in practice.
One example is the distinction between different types
of events (cf. Section V).

iterations
0 20 40 60 80 100

0

900

1000

2900

3000

3100

3200

0

2500

5000

7500costs, 10 ants

distance, 10 ants

costs, 31 ants

distance, 31 ants

runtime, 10ants

runtime, 31ants

Figure 4. Progression of runtime, total costs and total distance of a
schedule depending on the iterations performed by the ant system.

10 ants 31 ants
iterations costs distance time costs distance time

1 3.054 1.034 31 3.000 1.002 85
2 3.023 1.018 67 2.976 992 177
5 2.976 989 152 2.944 972 429

10 2.950 978 268 2.921 959 810
15 2.943 973 404 2.906 952 1.176
20 2.935 968 527 2.898 945 1.526
30 2.925 961 812 2.886 939 2.274
50 2.899 950 1.276 2.870 930 3.749

100 2.881 937 2.592 2.856 926 7.614

Table II

3) Our notion of dynamics is more general than that of
other papers. For example, compared to [6], we admit
the removal of vehicles and the removal of deliveries
from a certain tour.

4) A unique novelty of this paper is the combination with
other (standard) techniques for the VRP problem in an
integrated software environment (SAP), which makes
the novel technique of ant systems ready to be sold
in a software product. Previous papers dealing with
practical applications showed stand-alone field studies
and were not integrated into a software product.

A promising target of improvement would be a replace-
ment of the greedy strategy by a tabu search. Besides this
conceptional improvement our focus will be the further
product development fulfilling all needs of our customers.

The general message of this work is:
Operational logistics systems baring dynamic behaviour

profit from ant technology.
A question that may arise to the reader is: Would this

result also hold for other innovative approaches of soft
computing?

Our previous experience showed that theoretically suc-
cessful approaches cannot always be adapted straight for-
ward as this happened to our ant approach:

Before we applied the ant approach we tried to solve our

12Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

problem with a neural network approach. In particular, we
tried to apply self organizing maps (cf. [17]). In a quick
implementation we were able to achieve remarkable results
on the standard set of benchmarks for the traveling salesman
problem (cf. [18]), which were even better than our results
with ant systems.

But, we faced two main problems when we attempted
to design a neural network approach to solve our vehicle
routing problem as stated above.

First, we found no adequate way of readjusting the
learning parameters in case of a dynamic event.

Second and even more severe, in our application the
triangle inequality does not hold for all triples of nodes in
the graph, because we have to obey toll costs in the traffic
network. But, the validity of the triangle inequality is an
important prerequesite for readjusting the neurons’ positions
properly.

We do not claim that a neural network approach would
fail for our application in general, but at least our attempts
revealed that the development of a successful solution would
not be that easy as the one presented in this paper using ant
systems. Thus, a further value of this work is that it proved
the practical applicability of ant systems in a real world
setting which is not self understood as indicated with our
search for alternatives. This makes the future development
of ant systems for logistics applications more attractive even
if other approaches may prove superior in closed world
experiments.

REFERENCES

[1] A. Larsen. The Dynamic Vehicle Routing Problem. PhD
thesis, University of Denmark, 2000.

[2] P. Toth and D. Vigo. The vehicle routing problem, volume 9.
Society for Industrial and Applied Mathematics, 2002.

[3] O. Bräysy and M. Gendreau. Vehicle Routing Problem with
Time Windows, Part I: Route Construction and Local Search
Algorithms. Transportation Science, 39(1):104–118, 2005.

[4] M. Dorigo and T. Stützle. Ant colony optimization. The MIT
Press, 2004.

[5] M. Dorigo, M. Birattari, and T. Stützle. Ant Colony Op-
timization – Artificial Ants as a Computational Intelligence
Technique. IEEE Comput. Intell. Mag, 1:28–39, 2006.

[6] R. Montemanni, L. M. Gambardella, A. E. Rizzoli, and
A. V. Donati. Ant Colony System for a Dynamic Vehicle
Routing Problem. J. Comb. Optim, 10(4):327–343, 2005.

[7] O. Bräysy and M. Gendreau. Vehicle Routing Problem
with Time Windows, Part II: Metaheuristics. Transportation
Science, 39(1):119–139, 2005.

[8] M. Gendreau, F. Guertin, J. Potvin, and R. Seguin. Neigh-
borhood search heuristics for a dynamic vehicle dispatching
problem with pick-ups and deliveries. Transportation Re-
search Part C: Emerging Technologies, 14(3):157–174, June
2006.

[9] A. E. Rizzoli, F. Oliverio, R. Montemanni, and L. M. Gam-
bardella. Ant Colony Optimisation for vehicle routing prob-
lems: from theory to applications. Technical report, 2004.

[10] SAP online reference. http://www.sap.com/uk/solutions/
business-suite/erp/index.epx. [retrieved: 05, 2012].

[11] F. Glover and M. Laguna. Tabu Search. Kluwer Academic
Publishers, Norwell, MA, USA, 1997.

[12] P. Toth, and D. Vigo. The Granular Tabu Search and Its
Application to the Vehicle-Routing Problem. INFORMS J.
on Computing, 15(4):333–346, December 2003.

[13] M. Dorigo and L. M. Gambardella. Ant Colony System:
A cooperative learning approach to the traveling salesman
problem. IEEE Transactions on Evolutionary Computation,
1997.

[14] É. D. Taillard. Ant Systems. Kluwer, 2000:131–144, 1999.

[15] M. Dorigo, V. Maniezzo, and A. Colorni. The Ant System:
Optimization by a colony of cooperating agents. IEEE
Transactions on Systems, Man, and Cybernetics - Part B,
26(1):29–41, 1996.

[16] C. Blöcker. Entwurf und Implementierung zur dynamischen
Optimierung von Liefertouren mit einem Ameisen-System (in
German). Bachelor’s thesis, FH Wedel, 2011. http://www.
fh-wedel.de/mitarbeiter/iw/eng/r-d/done/bachelor/ [retrieved:
05, 2012].

[17] T. Kohonen, M. R. Schroeder, and T. S. Huang, editor. Self-
Organizing Maps. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 3rd edition, 2001.

[18] G. Reinelt. TSPLIB - A Traveling Salesman Problem Library.
INFORMS Journal on Computing, 3(4):376–384, 1991.

13Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

