
Netty: A Prover’s Assistant
Eric Hehner and Lev Naiman
Department of Computer Science

University of Toronto
40 St. George Street, Toronto, Canada

Email: naiman@cs.toronto.edu

Abstract—Netty is a prover’s assistant. It supports a calcula-
tional style of proof, and allows the creation of proofs that are
correct by construction. It provides an intuitive interface that
allows direct manipulation of expressions. The key idea is that
instead of tactics for proof the user only needs to select the next
step of the proof from a list of suggestions. These suggestions are
usually the result of unification. Netty provides mechanisms to
facilitate proving, such as making use of local assumptions and
the use of monotonicity in subproofs. Program refinement from
specification can be done in Netty similarly to any other kind of
proof.

Index Terms—proof; calculation; tool

I. INTRODUCTION

Proof assistants have been created with various purposes.
One such purpose is complete automation; this is useful when
we need a proof and we care about the result rather than
the process. Such provers have been successful, although the
theories they can reason about are limited. Some add freedom
of theory by being only partially automatic, requiring some
user guidance to produce a proof, and are known as interactive
theorem provers. Examples of such provers include HOL,
PVS, and Coq [3][10][4]. Some tools have specific modes
for program verification. Other tools are specific to program
verification or refinement, and hence are restrictive to the
theories allowed [8]. Tools like Isabelle [9] require the user
to use tactics for proving, which requires the user to learn
another meta language. The most similar existing tool to Netty
is KeY [2], since it allows users to pick a rule to apply from
a list of applicable rules. In contrast, Netty allows users to
pick the result of applying rules. KeY does not support the
use of local assumptions or monotonicity, and is restricted to
the theories it allows.

Despite their usefulness, these tools present a difficulty
when used to teach logic. There are often complicated tactics
for proof, and perhaps some meta-language for performing
certain operations, or a scripting language for creating user-
defined tactics. This means that a user must learn a concept
that is almost as complicated as programming before being
able to prove any expression, regardless of how simple it is.

Netty [7] is a prover’s assistant named for Antonetta van
Gasteren (1952-2002), a pioneer of calculational proof. It
is based on work by Robert Will [11]. Its main purpose is
pedagogical; it aims to foster understanding about how a proof
is constructed and why each step is allowed. It supports a cal-
culational type of proof, that is similar to the successfully used

Structured Derivations [1]. It allows the direct manipulation of
expressions and subexpressions to advance a proof. Advancing
a proof is usually done by picking an expression from a list
of suggestions that Netty provides to be the next line. The
importance of this is that it allows a user to concentrate on
the proof itself rather than learning how to use the tool.

The paper is organized as follows: Section II discusses the
use and structure of calculational proof. Section III shows
how the main parts of Netty are integrated. Section IV shows
the structure, display and navigation of proofs in Netty.
Section V-E is about advancing a proof; it discusses how
Netty generates suggestions to proceed with proofs and how
the user interacts with the tool to advance the proof. This
section also discusses the special mechanisms in proof, and
how suggestions are filtered. Section VI shows how a program
refinement is performed (identical to any other proof).

II. CALCULATIONAL PROOF

Calculational proof is a fixed and structured format for
presenting proofs. It makes proofs and calculations equivalent
in that each step has an explicit justification, usually a law.
A human prover may have a reason for constructing a proof,
and they may have a proof strategy in mind, but these are
not our concerns; our concern is to provide a tool that makes
proof construction easy and fully formal. The advantage of a
fully formal proof is that its correctness is machine checkable.
It has been adopted by several researchers in formal methods
and used effectively for teaching mathematics at a high-school
level [1]. A calculational proof is a bunch of expressions with
connective operators between them, whose transitive relation
allows us to conclude something about the first and last
expression of the proof.

For example, a calculational proof that there is no smallest
integer might look like this:

¬∃〈n : int→ ∀〈m : int→ n ≤ m〉〉 Specialization
⇐ ¬∃〈n : int→ 〈m : int→ n ≤ m〉 (n− 1)〉 Function Apply
= ¬∃〈n : int→ n ≤ n− 1〉 Identity Law
= ¬∃〈n : int→ n− 0 ≤ n− 1〉 Cancellation
= ¬∃〈n : int→ 0 ≤ −1〉 Ordering
= ¬∃〈n : int→ ⊥〉 Quantifier Identity
= >

The top line of this proof can be read “there does not
exists n of type integer, such that for all m of type integer,

1

COMPUTATION TOOLS 2011 : The Second International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-159-5

n is less than or equal to m”, and the bottom line can be
read as “true”. The angle brackets serve as the scope of a
function and as the scope of a quantified variable (discussed
in Section V-C). Notational peculiarities are not the point here;
any reader interested in the notational details is referred to [6].
We say that a proof proves an expression ‘expn’ if we show
that expn = > or > ⇒ expn, and we say that it proves ¬expn
if expn = ⊥ or expn ⇒ ⊥. Hence in this example we say
we proved ¬∃〈n : int → ∀〈m : int → n ≤ m〉〉. Each line
in the proof has a hint to its right telling how the next line is
created. For example, the line ¬∃〈n : int → n ≤ n − 1〉 has
the hint ‘Identity Law’ saying that n is replaced by n− 0 in
the next line.

III. OVERVIEW

Fig. 1. Backbone

This flowchart illustrates the basic components of Netty.
Once a user starts a proof, next steps are generated and
filtered as described in Section V. The user can then accept a
suggestion, directly enter the next expression, or navigate the
proof as described in Section IV.

IV. PROOF DISPLAY AND NAVIGATION

Figure 2 is a screenshot of Netty’s calculation window.
It is divided into three parts: the proof pane (top left), the
suggestions pane (bottom left), and the context pane (right).

The proof pane contains the proof that has been built so
far, in the format described in the examples to follow. The
suggestion pane contains valid possible next steps in the proof.
The context pane displays the laws that are local to the current
context. In addition, there is one line selected by the user from
which to continue the proof, and it will be referred to as the
‘focus’. The box contains the direction in which the proof
is allowed to proceed, and hence limits the suggestions that
Netty provides for advancing the proof. The proof in Figure 3
serves to explicitly show every step of a Netty proof. Without
the boxed directions and vertical lines, we would have a proof

Fig. 2. Calculation Window

that very closely resembles a Structured Derivation that has
a main proof and several nested subproofs. The purpose of
the vertical lines is structural; they serve to mark the extent
of a proof (or subproof). The low corner brackets mark the
subexpression that is used in the following subproof, and the
high corner brackets mark the result of the subproof.

Fig. 3. Detailed Proof

A. Directions and Connectives

The idea of the direction is that in order to conclude some
relationship between the first and last line of a proof the
connectives for each line must have a transitive relation. For
example, the direction ⇐ in line 0 allows lines 13 and 14
to use either the = or ⇐ connective; the direction ⇒ in line
3 allows lines 4, 5, 8, 9, and 10 to use either the = or ⇒
connective; the direction ≥ in line 6 allows line 7 to use any
of the connectives =, ≥ or > . A direction of = allows only the
= connective. Notice that the direction symbol must have the

2

COMPUTATION TOOLS 2011 : The Second International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-159-5

Fig. 4. Compressed Proof

same type as the expression in the proof. In such a way Netty
can combine several theories, such as booleans, numbers, and
sets.

The direction remains constant throughout a single level of
proof, but can change as we zoom into or out of a subproof.
In line 0 the direction is ⇐ but we zoom past the ¬ sign
changing the direction in line 1 to ⇒.

The line in a parent proof directly after a subproof must also
have a connective. Without the subproof it is just a regular
line of proof, except that the justification for it is what the
subproof proves. It is as if the subproof was a lemma about
a subexpression of an expression in the main proof, which is
used just like any law, preserving any monotonic properties.
This is shown in line 7 of the example in Figure 4. The
connective for the subsequent line is determined as follows:
1. If the subproof proves equality, the new leading connective

is =
2. Otherwise the new leading connective is the direction of

the line we zoomed in from
The subsequent line is the same as the line before the

subproof, except that the subexpression that was considered
in the subproof is replaced with the last line of the subproof.

Such support for monotonicity is not strictly necessary in
order to produce proofs. However, it saves many unnecessary
steps, and is especially useful for program refinement where
a specification is strengthened to a program.

B. Zoom

The suggestions that are created for each line are depen-
dent on the whole expression, mostly because laws involve
unification. It would be terribly inefficient and cluttered if
we were to produce suggestions that included manipulations
on each subexpression. This is why unlike Fitch-style natural
deductions [5] we allow subexpression selection. By selecting
a subexpression of the focus we say we zoom-in, and hence
create a subproof. We can also return one level higher to the
parent proof by pushing a key, and we call this zooming out.
Only the direct subexpressions of the focus are available for
zoom. For example, while doing the proof in Figure 3, on line
5 we have the expression n ≤ n − 1. The parts that can be
zoomed into to create a subproof are n on the left and n− 1
on the right.

Zooming is done one level at a time, and getting to a
deeper subexpression is simply several zoom actions. The idea
is to make selection gestures simple, and not to require a
high degree of accuracy in clicking. It might appear useful
to be able to select a deeper subexpression directly in order
to proceed faster in the proof. However, this is actually
not faster. Selecting the right expression takes longer, and
navigating to other subexpressions also takes longer. Finally,
the presentation layer removes any unnecessary lines, as shown
in figure 4.

In Netty expressions are stored in a tree structure with four
main classes: literals, variables, scopes, and (function) applica-
tions. Literals represent values like 1, >, or 3.14. Variables are
not bound to any specific value, but they can be instantiated
during unification. Both variables and literals never have any
child nodes. Scopes are used to formally introduce variables,
give variables types, and to serve as functions. A scope is
of the form 〈var : domain → body〉. Applications have
an operator (of arbitrary fixity and number of keywords)
as the root, and operands as children. The reason that the
internal expression structure does not use curried functions
for all operators is to allow easy manipulation and use of
associativity in the presentation layer. The zoom mechanism
then works simply by making a sub-proof initially contain the
sub-expression that was selected by the user.

V. ADVANCING A PROOF

A. Unification

The most used algorithm to generate next steps for a proof
is unification. The standard unification algorithm is used, with
the exception that only the law will have variables that can
be unified with sub-expressions of the focus. We differentiate
variables and constants by universally quantifying variables.
For example, having the law ∀〈x : int → x ≥ 4 ⇒ x > pi〉
the unifier would attempt to unify x ≥ 4 ⇒ x > pi with the
focus, treating only x as a variable but pi as a constant. This
both provides a form for laws that is fully formal, and allows
Netty to distinguish variables from constants. In addition, if
an expression matches a law completely, then one of the
suggestions given is>. Similarly, if the focus is> then all laws
match. In addition, variables that are introduced in local scopes
differ from each other even if they have the same identifier. In
the one-point law ∃〈v : D → v = a ∧ fv〉 = 〈v : D → fv〉 a
the v on the left side is a different variable than the v on the
right side, and can hence be unified with different expressions.

Several law files can be used in Netty; these are plain-
text files which are read and parsed by Netty. They can be
created, deleted and modified by using any text editor. The
laws themselves are simply expressions.

Every line in a proof has some justification at its right
hand side (or between lines if more space is needed). This
justification is usually the application of some law, and hence it
is the name of the law that was applied. In addition, sometimes
there are steps that were not justified by a law, or where the
type checker could not determine if the focus was of the right

3

COMPUTATION TOOLS 2011 : The Second International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-159-5

type for the law. In these cases, we have a warning symbol,
indicating that a certain step is unchecked.

We have the Law Query display mechanism to show a user
how the next expression came about (that is, to demonstrate
unification). It can also be used to illustrate how the unification
algorithm works; for example, suppose somewhere in a proof,
we have the two lines:

x ∧ y ⇒ (y ∨ z ⇒ (z ⇒ x)) portation
= x ∧ y ∧ (y ∨ z)⇒ (z ⇒ x)

A click and hold will replace those lines in place by:

a ⇒ (b ⇒ c) portation
= a ∧ b ⇒ c

The fully formal law is:

∀〈a, b, c : bool→ (a ∧ b⇒ c) = (a⇒ (b⇒ c))〉

The Law Query shows the correspondence (unification) be-
tween the variables of the law body and subexpression in the
proof.

Occasionally one side of a law matches the focus, and the
other side of the law has unconstrained variables. Suppose
we have 0 as the focus. Then the right side of the law
x − x = 0 would match it, and the resulting suggestion
would be = x − x, leaving x unconstrained [7]. We can
have an arbitrary expression placed instead of x, and we
cannot generate all possible suggestions for it. Instead, for
each unconstrained variable Netty has a dialog box in which
a user can type. What is typed in one box for a given variable
is inserted into all boxes for that variable, so that the user only
has to type it in once.

B. Context

Context is a bunch of local laws in a proof. The idea of
context is to be able to make use of local assumptions and
to allow the user to only worry about the current expression.
At the top-level proof we have no local laws except for the
ones the user loaded from law files (discussed in Section V-E).
Zooming into subexpressions adds context, and zooming out
removes them. This implies that subproofs inherit context from
their parent proofs. Context expressions are used exactly like
laws, and hence suggestions are generated from them in the
exact same manner. The mechanism of context removes the
need for any explicit declaration of assumptions, since they can
simply be added as an antecedent to the top-level expression.
Here are some examples of context rules [6]:
• From a ∧ b , if we zoom in on a , we gain context b .
• From a ∨ b , if we zoom in on a , we gain context ¬b .
• From a⇒ b , if we zoom in on a , we gain context ¬b .
• From a⇒ b , if we zoom in on b , we gain context a .
• From if a then b else c fi , if we zoom in on a , we

gain context b 6= c .

• From if a then b else c fi , if we zoom in on b , we
gain context a .

• From if a then b else c fi , if we zoom in on c , we
gain context ¬a .

• From 〈var : domain → body〉, if we zoom in on body,
we gain context var : domain

To understand the context rules, consider the first one. If
we assume b when we zoom into a and b turns out to be true,
then we made the right choice. However, if b turns out to be
false, there is no harm done in any change to a that assumed
b, since the value of the entire expression remains the same
(false). Similarly, in the body of a function we can assume
var:domain, since a function must be applied to an element
of its domain.

Internally there is a stack of lists that keeps track of context;
we add a list of expressions to the context pane on a zoom-in
if a context rule is satisfied, and we pop a list on a zoom-out.
A zoom-in can add more than one expression to the current
context, since t he context expressions are then broken down;
each conjunct is gained as a separate law, and if the expression
gained is a negation, we push it down the expression tree and
perform a deep negation.

C. Scope

Expressions can contain functions, which declare variables.
A function has the form 〈var : domain → body〉. A user
can zoom into the body similarly to a zoom on any other
expression. Any mention of var within the function scope
refers to the locally declared var, which is different than
any other variable outside the scope with the same name.
When we zoom into the scope we might already have in the
current context expressions that include var. However, since
it is really not the same variable, such expressions cannot be
used inside the scope. Netty displays such unusable context
expressions at the bottom of the context list in grey. This is to
indicate that although we have not lost the context, it cannot
be used at present.

The type of variables is gained from their declaration within
a scope. If for example we want to prove ¬a⇒ (¬b⇒ ¬a),
we need to start with 〈a, b : bool→ ¬a⇒ (¬b⇒ ¬a)〉, which
gives the context of a : bool and b : bool when we zoom into
the function body. This way we maintain full formality and
give information to the type-checker.

D. Type Checking

The type checker is currently very basic. Literals are given
types when the expression is parsed, and variables are given
a type if they are declared through a function scope to have
a certain type. In addition, the type checker can be invoked
with a list of context expressions. In that case the type checker
attempts to find the type for any variables whose type has not
yet been determined. Functions can have multiple operands
and resulting types, which are read in through a configuration
file. For example, the type of ∧ might be bool→ bool→ bool.
If both operands are of type bool, then the type checker con-
cludes that the type of the expression is bool. The reason that

4

COMPUTATION TOOLS 2011 : The Second International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-159-5

functions can have many types is both to allow overloading of
functions and to allow greater freedom of theory; this method
allows users to define a theory simply through its axioms.

E. Custom Suggestions

The most common way to proceed with a proof is to pick a
suggestion by clicking on one from the suggestion pane. Most
of the suggestions there are a result of unification with a law.
In addition to laws, we use programs to generate suggestions.
For example, it would be rather tedious to prove that 5+4 = 9
using only the construction axiom of natural numbers. Instead
we use a program that performs addition and outputs = 9 as a
suggestion to 5+ 4. From the user’s perspective there is little
difference, since the suggestions and justifications appear in
the exact same way.

Custom programs can make use of the available context, law
and current expression to generate suggestions. For example,
an assignment statement such as x:=e means that x is assigned
e, but every other variable in the state space remains the same.
If x and y are state variables, x:=e = x′=e ∧ y′=y. However,
in this theory the state space is not explicitly stated in the
assignment, but would be available in the context since state
variables need to be declared. The custom suggestion generator
searches the context and laws for all state variable declarations
and outputs a suggestion. In a sense, custom programs are the
equivalent of tactics in other provers, since they provide a
means other than unification to proceed with a proof.

There is one type of suggestion that is special: function
application. If we have 〈v : d → b〉 x as the focus, the
suggestion given is the result of applying the function to its
argument. Function application is not done by unification but
by a program, and hence it appears in the same manner as
a suggestion for addition. The difference is that in order to
apply a function to an argument it must be in the domain of
the function. For trivial checks, such as 1 : nat or a : nat
where we have the type of a in context, we have a simple
type checker to perform that check. However, in Netty the
concept of type is more general: the type of a variable is just
some bunch that the variable is an element or sub-bunch of [6].
This means that with the added power of this theory comes
the burden of non-trivial type checking. This is resolved in the
Logical Gaps and Direct Entry section.

F. Logical Gaps and Direct Entry

Direct entry is provided through a dialog box below the
current line which allows a user to type the next line of the
proof. This allows a proof to proceed when a part of it is still
unknown or there is no law for it yet. Proofs in Netty are
not required to be completely formal at all stages, and steps
without formal justification are marked with a warning sign to
indicate a possible logical gap in the proof. A user can return
to the unsafe line at any time to complete the proof.

Another method of introducing a logical gap is where the
type-checker for function application cannot determine if the
operands are of the right type. In that case we have a subproof
between the previous line and the focus that requires the user

to prove the operands are of the right type. For example, if
the function application in figure 5 was done somewhere in a
proof, the three dots indicate the need to complete a subproof.

Fig. 5. Type Proof

This kind of subproof is different in that it does not result
from zooming into a subexpression. It can be viewed as a
lemma proved in context. A similar gap in the proof would
happen if we were to apply a law where the type of the
operands is unclear. For the standard types, such as bool and
nat the type checker resolves almost all such problems. It is
only for complex types like lists where such a burden of proof
is necessary, as it might be non-trivial.

VI. PROGRAM REFINEMENT

Program refinement is done in the exact same manner as
any other proof using the program theory described in [6].
In the following example the task is to write a program that
cubes a number n using only addition, subtraction, and test
for zero. We will use two additional state variable x and y.
The initial specification is x′ = n3.

Fig. 6. Refinement

In Figure 6, we see an example of steps that are not fully
formal. Netty allows hiding lines, which might be used when
certain lines are deemed obvious in the proof. Lines 3 and 5 are
the results of either direct entry, line hiding, or a combination
of the two. If any line in the hidden or directly entered lines
is unsafe, the resulting line will have a warning symbol as
a justification. Allowing unsafe lines allows the user to take
larger steps in refinement and then return to fill in the gaps.
The resulting program without the proof, which we call cube,
is:

5

COMPUTATION TOOLS 2011 : The Second International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-159-5

procedure cube is

if x = 0 then x := 0. y := 0

else n := n− 1. cube. n := n+ 1.

x := x+ y + y + y − n− n− n− 2.

y := y + n+ n− 1

fi

As in the first example, the only necessary actions are a
combination of applying laws to change the focus and zooming
in on a subexpression to refine. Once all subexpressions have
been refined to a program the user will have refined the entire
program. The benefit that the zoom mechanism provides is that
it allows a user to safely ignore any other subexpression, while
having full use of all the local laws in the current context. For
example, in order to perform assignments Netty must know
all of the state variables. This information is obtained simply
by examining the context laws; if we have in context x : nat
and x′ : nat, Netty will conclude that x is a state variable of
type nat.

VII. CONCLUSION AND FUTURE WORK

Netty has been designed to make proving in the cal-
culational style easy, and we incorporate programming by
refinement smoothly as a special case. A lot of attention
has been paid to the user interface and ease of use. All
methods of proceeding with a proof have been delegated to
the generation of next step suggestions, while providing the
user with a convenient method of utilizing local assumptions
and monotonicity.

Netty has been implemented in Java, using standard GUI
libraries such as swing. We have not yet done any empirical
studies to test the usability and effectiveness of Netty. We plan
to test the effectiveness of the tool in a fourth-year course in
formal methods and in a circuit design course.

Netty is powerful enough to include program theory such
as the one in [6]. Instead of having to translate the code
into another language, it would be desirable to execute it
directly. We currently intend to use Scheme to implement the
execution of expressions that have been refined to a program.
It would also be desirable to advance the capabilities of the
type-checker. Improvements would include the accommoda-
tion of union-types, and checking some non-trivial expression
equality. Currently Netty has a concrete grammar that restricts
the available theories. It would be desirable to allow the
user complete freedom of theory, including how operators are
defined.

Currently, Netty presents suggestions simply in the order
that laws are entered in a law file. Ideally, suggestions should
be ordered with the most likely steps at the top of the list.
In addition, suggestions can be extended to patterns of steps.
There are several benefits to this such as allowing faster
proving and a more intuitive progression through the proof
while maintaining full formality. This could be absolutely in-
valuable to learning. The implementation of this sort of pattern

detection will likely involve a machine learning algorithm.
Currently the most suitable kinds of techniques appear to be
reinforcement learning techniques. We would need to use data
from our empirical studies as training data for the algorithm.

ACKNOWLEDGMENT

We would like to thank Robert Will for laying the ground-
work for the tool and initial discussion. We would also like
to thank David Kordalewski for discussing ideas and for
assistance in implementing Netty. We would also like to thank
the referees for helpful suggestions that have improved the
paper.

REFERENCES

[1] R. Back. Structured derivations: a unified proof style for teaching
mathematics. Formal Aspects of Computing, vol. 22, no. 5, pp. 629-661,
Sep 2010.

[2] B. Beckert, R. Hähnle, and Peter H. Schmitt Verification of Object-
Oriented Software. The KeY Approach. Springer-Verlang, Berlin, 2007.

[3] A.D. Brucker, L. Brügger, M.P. Krieger, and B. Wolff. HOL-TestGen 1.5.0
User Guide. ETH Zurich, Technical Report 670, 2010.

[4] The Coq Development Team. The Coq Proof Assistant Reference Manual.
Version 8.2, July 2009. ¡http://coq.inria.fr/refman/¿ 31.08.2011.

[5] F.B. Fitch. Symbolic Logic. The Ronald Press Company, New York, 1952.
[6] E.C.R. Hehner. a Practical Theory of Programming. Springer, New York,

1993. ¡http://www.cs.utoronto.ca/∼hehner/aPToP¿ 31.08.2011.
[7] E.C.R. Hehner, R.J. Will, L. Naiman, and D. Ko-

rdalewski. The Netty Project. University of Toronto, 2011.
¡http://www.cs.utoronto.ca/∼hehner/Netty¿ 31.08.2011.

[8] A.Y.C. Lai. A Tool for A Formal Refinement Method. MSc Thesis,
University of Toronto, January 2000.

[9] L.C. Paulson. Isabelle: A generic theorem prover. Springer-Verlag, Berlin,
1994.

[10] N. Shankar, S. Owre, J.M. Rushby, and D.W.J. Stringer-Calvert. PVS
Prover Guide. Version 2.4, November 2001.

[11] R.J. Will. Constructing Calculations from Consecutive Choices: a Tool
to Make Proofs More Transparent. MSc Thesis, University of Toronto,
January 2010.

6

COMPUTATION TOOLS 2011 : The Second International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-159-5

