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Abstract—Given a lexicon, can we build a strategy for learning
specialized vocabulary? If so, how to minimize its cost while
maximizing its efficiency? We provide elements of answers to
these questions, by using graph theory. A lexicon is represented
by a directed graph of the defining relation between words and
a strategy is an ordered sequence of vertices. We focus on two
graphs properties, acyclicity which helps us to avoid words with
cyclic definitions and induced to consider all the arcs between
chosen words. We are interested in the induced and acyclic
subgraphs of a directed graph containing a fixed set of vertices.
To model cost minimization, we consider an optimization criteria
based on the difference between the number of sinks and the
number of sources of the subgraph, which represents words
which appear in several definitions. We start with a study of
the complexity of finding these subgraphs and we prove that it
is a Non-deterministic Polynomial-time hard (NP-hard) problem.
This observation leads us to provide two approximate solutions: a
greedy heuristic and a local search enriched with tabu restrictions.
Finally, we evaluate the efficiency of this graph based strategy
comparing with psycholinguistic based strategies, on three digital
dictionaries.

Keywords–Directed graphs; learning strategies; computational
linguistics.

I. INTRODUCTION

Acquiring specialized vocabulary, as well as learning a new
language, often involves different types of learning approaches
[1]. One such strategy is dictionary look-up, i.e., learning
new words by reading definitions from a dictionary or having
someone explain, describe, characterize the new words with
already known other words. Another complementary strategy
is direct sensorimotor experience, i.e., learning by seeing,
hearing, smelling, tasting, touching, or interacting in any other
way with the object referenced by the words. The effort of
learning a word directly seems more costly than the one of
learning a word by definition, since it involves trial and error
[2]. Therefore, it is important to carefully choose the words to
be learned directly to reduce the effort required to assimilate
their meaning. In particular, psycholinguistic and pedagogical
provide some criteria to determine these words [3]–[7].

In this paper, we are interested in a better approach based
on computational linguistics to extract these subsets of words
for different specialized vocabularies. The relation between the
words in a lexicon or a dictionary definition and the meaning
of the defined word, is modeled by a directed graph or digraph.
So, it is quite natural that we turn to graph theory and the study
of subgraphs, which has attracted constant interest and lead to
several applications [8]–[11].

A lexicon can be described as a digraph, where a vertex is
a node containing a word and the directed “defining” relation

between words is represented by arcs. A strategy is an ordered
sequence of vertices [2] [12]. We focus our attention on
induced and acyclic subgraphs of digraphs, and we consider
an optimization criterion based of the difference between the
number of sinks vertices and the number of sources vertices.
In [13], we produced a brief study of the subgraphs satisfying
the constraints above and proved that finding these subgraphs is
an NP-hard problem. In this paper, we expand this problem and
add the constraint that the subgraphs must contain a fixed and
arbitrary set of vertices from the digraph. This supplementary
constraint provides a larger and more interesting family of
problems. We believe that the subgraphs under investigation
here are optimal learning strategies, according to the strategy
cost defined in [2]. Indeed, the acyclicity constraint models
the absence of circular definitions between words and the
induced constraint mean that all links between selected words
in the dictionary are to be considered. Beyond these natural
interpretations, the choice of a fixed set of vertices allow to
focus learning on a specific set of words or jargon. Therefore,
unlike a complete learning strategy [2], a grounding kernel [14]
or psycholinguistic strategies [3] [5], which aims at learning
an entire dictionary, our subgraphs lead to targeted learning
strategy. Indeed, through the constraint of a set of fixed words
that we add, we can restrict and direct the learning strategy
towards a specialized jargon. This will therefore reduce the
learning of superfluous words. Which leads to effective and
low cost learning strategies.

This paper is divided as follows. In Section II, we introduce
definitions and notation about directed graphs. In Section III,
we prove that the problem of finding subgraphs under the
constraints described above is NP-hard. In Section IV, we
present two metaheuristics to solve this problem: a greedy
heuristic and a local search enriched with tabu restrictions.
In Section V, we describe an experiment that supports the
conjecture on learning strategies formulated above that gives
affirmative and encouraging results. In Subsection V-B, we
implement and test these algorithms on sets of digraphs. The
performance of these algorithms is discussed and analyzed.
Concluding remarks are presented in Section VI.

II. PRELIMINARIES

We recall some definitions from graph theory. See [15] for
more details.

A digraph is an ordered pair D = (V,A), where V
is its set of vertices and A ⊆ V × V is its set of arcs.
Given a vertex u ∈ V , its set of predecessors is defined by
N−(u) = {v ∈ V | (v, u) ∈ A} and its set of successors
is N+(u) = {v ∈ V | (u, v) ∈ A}. The indegree of
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Figure 1. (a) In orange, a subgraph with a circuit P = (0, 5, 1, 0). This
subgraph is not induced because it does not contain the dashed arcs (11, 5)
and (12, 7), despite that vertices 11, 5, 12, 7 are contained in the subgraph.
(b) In blue, a disconnected induced acyclic subgraph with an indirected path
P = (4, 3, 8, 13). Vertices 3 and 11 are sources, 6 and 13 are sinks. (c) In

red, an independent set of size 7.

u is defined by deg−D(u) = |N−(u)| and its outegree by
deg+

D(u) = |N+(u)}|, where |.| denotes set cardinality. An
(undirected) path p from a vertex u0 to a vertex uk in D
is a sequence of vertices p = (u0, u1, . . . , uk) such that, for
0 ≤ i ≤ k − 1, (ui, ui+1) ∈ A or (ui+1, ui) ∈ A. The path
p is directed if (ui, ui+1) ∈ A, for every 0 ≤ i ≤ k − 1. We
say that a directed path p = (u0, u1, . . . , uk) is a circuit or
a cycle, if u0 = uk. A digraph D is called acyclic if it does
not contain any circuit, and it is called connected (or weakly
connected) if there exists an undirected path between every
pair of its vertices. A digraph I = (VI , AI) is a subgraph
of D, if VI ⊆ V and AI ⊆ (VI × VI) ∩ A. For U ⊆ V , the
subgraph of D induced by U is the subgraph D[U ] = (U,AU ),
where AU = (U × U) ∩ A. In words, for all vertices u and
v in U , if we have an arc (u, v) ∈ A then we must have
(u, v) ∈ AU . A vertex u is called a source of a subgraph I
if deg−I (u) = 0. Similarly, if deg+

I (u) = 0 then u is called
a sink of I . We denote by s(I) the number of sources in I
and t(I) its number of sinks. Finally, a set of vertices S of a
digraph D = (V,A) is called an independent set, if the induced
subgraph D[S] = (S,AS) has AS = ∅. In other words, for
each u ∈ S, we have deg+

D[S](u) = deg−D[S](u) = 0. Examples
of induced and non-induced subgraphs appear in Figure 1, as
well as an example of an independent set.

For the purposes of the next section, we state the following
well-known NP-complete independent set problem,

Problem 1 ( [16]): Given a specific digraph D = (V,A)
and a specific positive integer i ≤ |V |, is there an independent
set S ⊂ V such that |S| = i ?

III. DECISION PROBLEM AND NP-COMPLETENESS

As mentioned before, we are interested in induced and
acyclic subgraphs of digraphs. In order to identify these
subgraphs, we define the following optimization criteria.

Definition 1: Given a digraph D = (V,A) and a subset
M ⊆ V , let P(V ) be the set of all subsets of V and ID(M, i)
the family of all induced and acyclic subgraphs of D of size

i containing M . We define the function ∆D, with domain
{0, 1, 2, . . . , |D|}, by

∆D(M, i) = max{t(I)− s(I) | I ∈ ID(M, i)} (1)

with the convention max ∅ = −∞. Given I ∈ ID(M, i) we
say that I has optimized endpoints, if ∆D(M, i) = t(I)−s(I).
We are interested in induced and acyclic subgraphs with
optimized endpoints of D.

Remark 1: The case M = ∅ is a specialization of the
problem introduced in [13].
Now, we consider the following decision problem.

Problem 2: Given a digraph D = (V,A), a set of vertices
M ⊂ V and two integers i and δ, does there exist an induced
and acyclic subgraph of D of size i containing M , such that
t(I)− s(I) = δ?
We naturally associate with Problem 2 the following optimiza-
tion problem.

Problem 3: Given a digraph D = (V,A) and a set M ⊂ V
of vertices, what is the maximal value ∆D(M, i) that can be
realized by an induced and acyclic subgraph I of D of size i
and containing M , for i ∈ {|M |, |M |+ 1, . . . , |D|}?

Before we go further, it is worth discussing the dual
problem of maximizing the difference s(I) − t(I). Consider
the following optimization function:

ΛD(M, i) = max{s(I)− t(I) | I ∈ ID(M, i)}

It turns out that this optimization criterion is equivalent to that
of Definition 1 under a slightly modified digraph. Proposition 1
formalizes the relationship between the functions ΛD(M, i)
and ∆D(M, i). We omit the proof because it is quite simple.

Proposition 1: Given a digraph D = (V,A), for any subset
M ⊂ V and i ∈ {0, 1, . . . , |D|}, we have

ΛD(M, i) = ∆D′(M, i)

where D′ = (V,A′) and A′ = {(v, u) | (u, v) ∈ A}.
Now, we illustrate Problem 2 with an example. Let D be the di-
graph of size 14 illustrated in Figure 2 and let M = {1, 3, 11},
a subset of vertices of D depicted in gray. Positive instances
of Problem 2 appear in (a) and (b) for respectively i = 10,
δ = 4 and i = 11, δ = 4. It is not hard to prove that
∆D(M, 10) = ∆D(M, 11) = 4 so that (10, δ1) and (11, δ2)
are negative instances of Problem 2 for δ1, δ2 > 4. Because
of the two circuits P1 = (0, 5, 1, 0) and P2 = (4, 10, 4), the
maximum size of an induced acyclic subgraph is i = 12.
Therefore, there are only two solutions. Figure 2 (c) shows
the first positive instances of Problem 2 with i = 12 and
δ1 = 2. The second is obtained by replacing vertex 10 by
vertex 4. Observe that ∆D(∅, 10) = 5 > ∆D(M, 10). This
situation is depicted by the subgraph in blue in Figure 2 (d).
It is easy to see that ∆D(M, i) ≤ ∆D(∅, i) for any M and
i. Exhaustive inspection shows that the function ∆D of the
graph in Figure 2 is given by Table I. Obviously, for i < |M |
we have ID(M, i) = ∅, thus, ∆D(M, i) = −∞.

A. NP-completeness
Now, we state and prove the following theorem.
Theorem 1: Problem 2 is NP-complete.
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Figure 2. Induced acyclic subgraphs answering Problems 3 (a-c) with the set
M = {1, 3, 11} and (d) with the set M = ∅.

TABLE I. THE FUNCTION ∆D(M, i) FOR THE DIGRAPH IN
FIGURE 2 WITH M = {1, 3, 11}.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
∆D(M, i) −∞ −∞ −∞ 0 0 1 2 2 3 3 4 4 2 −∞ −∞

Proof: It is clear that Problem 2 is in the class NP. To
show that it is NP-complete, we reduce Problem 1 to it.

We represent an instance of Problem 1 by the tuple (D, i)
where D = (V,A) is a digraph and 1 ≤ i < |V | is an
integer. An instance of Problem 2 is represented by the tuple
(D,M, i, δ) where D = (V,A) is a digraph, M is a set of m
fixed vertices of D, i is the number of vertices parameter and
δ is the sinks−sources difference parameter.

Consider the map f that associates with an instance (D, i)
of Problem 1, the instance (D′,M, i+m, i−m) of Problem 2,
where the digraph D′ = (V ′, A′) is defined by

V ′ = V ∪M and A′ = A ∪ (M × V )

Clearly, the map f is computable in polynomial time. Fig-
ure 3(a) and Figure 3(b) show an example of construction,
using the map f , of the digraph D′ = (V ′, A′) for a digraph
D = (V,A) and a set M = {m1,m2}.

For a positive instance (D, i) of Problem 1, there is a
set S ⊂ V with |S| = i such that D[S] contains no arcs.
We consider the subgraph I = D′[S ∪ M ] = (VI , AI) of
D′ induced by vertices of S ∪M . Obviously, I contains M
and all vertices of M are sources, which makes all vertices
of S sinks in I . Because there is no arc between vertices in
M and also no arcs between vertices of S in I , therefore I
is acyclic. Finally, s(I) = m and t(I) = i, which makes
(D′,M, i+m, i−m) a positive instance of Problem 2. Now,
let (D′,M, i+m, i−m) be a positive instance of Problem 2.
There is an induced and acyclic subgraph I = (VI , AI) of D′,
such that M ⊂ VI with |I| = i+m and t(I)− s(I) = i−m.
It is easy to see that s(I) > 0 and t(I) > 0. Since I contains
M , it is clear that only vertices from M can be sources, so,
s(I) = m. Otherwise, there exists v ∈ VI − M such that
deg−I (v) = 0, which is impossible. Indeed, by construction, we
have arcs from M towards v in D′ and since I is induced and
contains both M and v, these arcs are in I and so deg−I (v) > 0.

Therefore, the remaining i vertices are necessarily sinks in I
and are contained in V . Indeed, since t(I)−s(I) = i−m and
s(I) = m, then t(I) = i. So, we construct an independent set
S of size i by considering only sinks of I and so S = VI−M .
Indeed, we are sure that there is no arc between vertices of S.
Otherwise, if there exist u, v ∈ S with (u, v) ∈ A′, that is mean
that u is not a sink (deg+

I (u) > 0 and deg−I (u) > 0 because
u /∈M ). Which leads to a contradiction t(I)− s(I) < i−m.
Finally, S is an independent set of size i in D = (V,A),
which makes (D, i) a positive instance of Problem 1. See
Figure 3(c) and Figure 3(d) for the construction of positive
instances between Problem 1 and Problem 2.

Therefore, Problem 1 ≤ Problem 2 and Problem 2 is NP-
complete.

Remark 2: In virtue of Proposition 1 and the fact that
the construction of D′ from D takes a polynomial time
(exactly, Θ(|A|)), if we replace the optimization criterion by
the difference between the number of sources and the number
of sinks, the problem remains NP-complete.

IV. ALGORITHMS

Now that we have proved that Problem 2 is NP-complete,
we conclude that Problem 3 is NP-hard and a polynomial
algorithm to solve it is unlikely to exist. This motivates the use
of approximate approaches among other resolution techniques.
Thus we consider a greedy algorithm and a tabu search [17],
two metaheuristics, to solve Problem 3.

In the following, let D = (V,A) be a digraph, with |V | =
n, |A| = m, and M ⊂ V a subset of vertices of V . Let I =
(VI , AI) be an induced acyclic subgraph of D with M ⊆ VI
and let i = |VI |. Before presenting the algorithms, we assume
that the following functions are implemented:
• DELTA(I) returns t(I) − s(I), whose complexity is
O(i+ |AI |).

• INDUCEDSUBGRAPH(D,E) returns the subgraph of
D induced by the vertices of set E and has complexity
O(n+m).

• NEIGHBORSVERTICES(D, I) returns all vertices u
such that u ∈ D − I and there exists v ∈ VI such
that (u, v) ∈ A or (v, u) ∈ A. This can be done in
O(n+m).

• NEIGHBORHOOD(D, I,M, u) returns a set of induced
and acyclic subgraphs by replacing, in turn, each
vertex of VI −M by u. The complexity in that case
is O((n+m)× (i− |M |)× (i+ |AI |)).

The greedy strategy adopted is to add the most inter-
esting vertices. Starting with the subgraph induced by M ,
I = D[M ] until we reach the desired size |I| = i. The
function RANKVERTICES(D, I) assigns a score to each vertex
u ∈ D−I according to the variation they bring to the function
DELTA(I) if we add them to I . Thus, the greater the value
of DELTA(I) a vertex brings, the greater its interest. If two
vertices bring the same variation, we choose the one with the
greatest outdegree, which provides greater potential to generate
sinks. Due to lack of space, we don’t present the pseudo-
code of algorithm, but we provide a full implementation of
the greedy approach in [18].

For the tabu search algorithm, the main idea is to browse
neighborhoods of an induced and acyclic subgraph I contain-
ing M , to increase the value DELTA(I). A neighbor of I is
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Figure 3. (a) A digraph D = (V,A). (b) Construction of digraph D′ = (V ′, A′) through the map f . (c) In red, a set S which makes (D, 5) a positive
instance of Problem 1. (d) In blue, an induced and acyclic subgraph which makes (D′,M, 7, 3) a positive instance of Problem 2. To build the digraph

D′ = (V ′, A′), we add vertices of M = {m1,m2} to V to have V ′. To build A′, we add all possible arcs (u, v) to A, where u ∈ M and v ∈ V . It’s easy
to see how we can build a positive instance of Problem 2 from a positive instance of Problem 1 and vice-versa.
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Figure 4. Let D = (V,A) be the digraph represented above and M = {1, 3} a subset of V . (a) In blue, an induced and acyclic subgraph I = (VI , AI) of D
containing M . Note that DELTA(I) = 3. (b) In yellow, vertices returned by NEIGHBORSVERTICES(D, I). The call to NEIGHBORHOOD(D, I,M, 5) for
example, will return I′ the blue subgraph in (c) by switching vertices 5 and 0. Switching 5 and 2 results in the induced subgraph (d) which is rejected

because it contains the circuit P = (0, 5, 1, 0) so that NEIGHBORHOOD(D, I,M, 5) will not consider this case. The remaining subgraphs built by replacement
of vertices 6, 8 and 9 by 5 are all rejected because of the circuit P = (0, 5, 1, 0).

an induced and acyclic subgraph I ′, such that M ⊂ VI′ , with
|I| = |I ′| = i and a symmetric difference between VI and VI′

of exactly 2 vertices.
To generate some of these neighbors, we start by

finding the neighboring vertices of I . The function
NEIGHBORSVERTICES(D, I) finds these vertices. See Fig-
ure 4(b) for an example. For each neighbor u, we call
NEIGHBORHOOD(D, I,M, u), which returns a set of in-
duced and acyclic subgraphs by replacing each vertex v ∈
VI − M by u. In other words, it returns the subgraph
INDUCEDSUBGRAPH(D, (VI−{v})∪{u}) when it is acyclic.

See Algorithm 1 for the pseudo-code of this approach. Note
that vertex returned by NEIGHBORSVERTICES(D, I) and the
one inverted by the function NEIGHBORHOOD(D, I,M, u), are
considered as our tabu restriction. We limit the number of pro-
hibited vertices to two, thus this restriction does not penalize
in the search for a better solution. It’s implemented in Algo-
rithm 1 by the queue T and lines 7 and 11. Note that, lines 12-
15 are for the aspiration criteria. See Figure 4 for an illustrated
example with a single call to NEIGHBORHOOD(D, I,M, u).

The complexity of Algorithm 1 is basically the complexity
of the three functions DELTA(I), NEIGHBORSVERTICES(D, I)
and NEIGHBORHOOD(D, I,M, u), which is O(n×(i−|M |)×
(n+m)2 × (i+ |AI |)2). The parameter max iterations is the
maximum number of loop laps allowed, and is an arbitrary
multiple of n.

V. APPLICATIONS

We now turn back to our initial motivation in computational
linguistics, by showing that the resulting structure drives a

Algorithm 1 Tabu Search

1: function TABUSEARCH(D, I : graph, M : set) : integer
2: B, I ′ ← I let T be a queue with capacity 2
3: repeat
4: for u ∈ NEIGHBORSVERTICES(D,VI′)− T do
5: for I ′′ ∈ NEIGHBORHOOD(D, I ′,M, u) do
6: if DELTA(I ′) < DELTA(I ′′) then
7: I ′ ← I ′′ add the removed vertex to T
8: if DELTA(B) < DELTA(I ′′) then
9: B ← I ′′

10: Exit from loop in line 5

11: Add u to T
12: v ← T.HEAD()
13: for I ′′ ∈ NEIGHBORHOOD(D, I ′,M, v) do
14: if DELTA(B) < DELTA(I ′′) then
15: B ← I ′′

16: until B 6= I ′ and max iterations is reached
17: return DELTA(B)

learning strategy in comparison with other psycholinguistic
strategies. Then we evaluate the quality of the metaheuristics
in terms of error, compared to an exact solution.

Note that we use algorithms with M = ∅ because the
primary goal is to measure the correlation between cost
of a strategy and our optimization criterion ∆D. Also, the
psycholinguistic strategies below are designed for learning an
entire language, which differs from a targeted learning strategy
when M 6= ∅.
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A. Computational linguistics
To reinforce the hypothesis stated in Section I, we con-

ducted an experiment to compare costs of learning strategies.
We consider three digital dictionaries from the Wordsmyth
linguistical educational project [19]. The Wordsmyth Learner’s
Dictionary-Thesaurus (WLDT), the Wordsmyth Illustrated
Learner’s Dictionary (WILD) and the Wordsmyth Children’s
Dictionary-Thesaurus (WCDT). And we use some computa-
tional linguistics definitions taken from [2] [20]. We construct a
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Figure 5. A partial subgraph of a digraph representing a dictionary [2].

digraph from a dictionary by considering each word as a vertex
and we have an arc from word w1 to word w2 if and only if w1

appears in the definition of w2. Figure 5 depicts a subgraph of
a digraph representing a dictionary. On a given dictionary D,
we define a learning strategy of D as any ordered sequence
S of words from D. We consider two ways of learning a new
word,

• Learning by definition. We suppose that, if we already
know the meaning of all the words occurring in the
definition of word w, then we can learn the meaning
of w simply by reading its definition. We consider the
cost of such learning process to be 0.

• Direct learning. On the other hand, if we do not know
the meaning of some words in the definition, we have
the possibility to learn it directly with a cost of 1.
For example, by seeing, hearing, smelling, tasting,
touching, or interacting in any other way with the
object referenced by the word.

In other words, the effort of learning a word directly, is more
costly than the one of learning a word by definition.

Finally, we make the assumption that learning a dictionary
efficiently amounts to learn its complete set of words at a
minimal cost. This implies that a learning strategy is efficient if
its associated cost is minimal, which is realized exactly when
the number of words learned directly is minimal. Which is
represented by the following two parameters in the Table II,

• cost : the total number of words learned directly.
• effic. : the efficiency, which is the ratio of the total

number of words learned over the number of words
learned through direct learning.

TABLE II. THE LEARNING COST AND EFFICIENCY OF STRATEGIES.

Dictionary Subgraph
strategy

Childes
AOA

Freq.
NGSL

Brysbaert
AOA Concret. Freq.

WILD
size 50 1981 1169 1369 2417 1188
cost 3013 3174 3079 3079 3207 3059
effic. 1.40 1.33 1.37 1.37 1.32 1.38

WLDT
size 200 1580 697 1277 2366 957
cost 917 1803 1088 1530 2485 1296
effic. 6.58 3.34 5.54 3.94 2.42 4.65

WCDT
size 300 3316 1122 2879 5974 1995
cost 2431 4366 2777 4016 6616 3315
effic. 12.23 6.81 10.70 7.40 4.49 8.96

Under those definitions and assumptions, we implemented
the algorithm cost of a complete learning strategy from [2]
to compare strategies. We represented WILD dictionary by a
graph with 4244 vertices and 59478 arcs, WLDT dictionary
with 6036 vertices and 29735 arcs and WCDT dictionary with
20128 vertices and 107079 arcs. We focus our comparison
on psycholinguistic strategies, from a database made available
by Brysbaert [5] and the Child Language Data Exchange
System (CHILDES) project [3]. Strategies are constructed [3]–
[6] according to the following psycholinguistic criteria:

• Brysbaert-AOA: a set of words ordered according to
the age of their acquisition.

• Brysbaert-Concreteness: a set of words ordered fol-
lowing their concreteness, from the most concrete to
the most abstract.

• Brysbaert-Frequency: a set of words ordered by their
rate of occurrence in a given corpus.

• Childes-AOA: a set of words from Child Language
Data Exchange System (CHILDES) project are ordred
following the age of their acquisition.

A last strategy that we considered, called NGSL/Frequency, is
obtained from the NGSL [7],

• Frequency-NGSL: a set of words that are designed and
ordered to help students learning English as a second
language.

We compute some induced acyclic subgraphs with optimized
endpoints on the three digital dictionaries. We consider vertices
from the resulting subgraphs as a strategy. We order those
vertices according to their outgoing degree, from the highest to
the lowest to maximize the potential number of words learned
by definition.

Since the size of the dictionary digraphs is important, it
takes more computing time to obtain exact solutions. There-
fore, to get as close as possible to the exact solution, we
use algorithms above with the greedy solution as an initial
subgraph input to tabu search.

Table II gives the results of cost computation. It is clear
that the subgraphs strategies are better (values in bold) in terms
of low cost and high efficiency. Moreover, the initial number
of words (strategy size) required to learned in subgraphs
based strategies are significantly smaller than the words in
psycholinguistic strategies. Note that the acyclic constraint
ensure that there is no cyclic words definition and so, no
word appears in the definitions of the words that define it.
The low cost and high efficiency support our assumption that
our induced acyclic subgraphs with optimized endpoints are
minimal directed learning strategies in a lexicon.
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Figure 6. Average error for the greedy algorithm (in green) and the tabu
search (in blue) for M1 (left) and M2 (right). X-axis is for digraphs sizes
and Y-axis is for average error. The error is computed by subtracting the

value of ∆D(M, .) given by greedy or tabu algorithm from the exact value
given by the naive algorithm. See [18] for more details.

B. Metaheuristics evaluation
Obviously, since Problem 2 is NP-complete, it is probable

that all exact solutions to the associated optimization problem
take at least an exponential time to be obtained. That being
said, it is necessary to have an exact solution in order to
calculate the error of metaheuristics and it is always interesting
to observe the execution times of an exact solution. Therefore,
we have implemented an exact algorithm based on a naive
approach. Namely, we enumerate all possible subsets of V ,
then we construct the corresponding induced subgraphs and
finally we verify the acyclicity. For each subgraph of size
|M | ≤ i ≤ |V |, we choose the ones with the largest DELTA().

For sizes 10 ≤ n ≤ 30 we generated 3 weakly connected
digraphs. For each graph size n we generated two random sets
M1 and M2 of sizes n/3 and 2n/3 respectively.

Unsurprisingly, the heuristics are faster than the naı̈ve
algorithm, especially for small sets M . When the size of M
is close to the size of D, the difference between the ∆D(., .)
values given by the heuristics and the exact values is small.
We explain this observation by the fact that a large part of the
vertices is fixed by M , restricting the remaining choices and
the error made by the heuristics.

Figure 6 (a) shows the average error for two random sets
M1 and M2, with sizes 1/3×|D| and 2/3×|D| respectively.

For more details and a full Python implementation of the
previous two algorithms, with benchmarks, see the GitLab
repository [18]. Due to lack of space, these implementations
are not included here.

VI. CONCLUSION

The problem studied in this paper is new. It is therefore
difficult to compare our results to similar work in the literature.
The results of linguistics experiment in Subsection V-A, show
that, even if solutions given by tabu algorithm are approximate,
they are best and lowest cost learning strategies. This result
encourages us to further investigate linguistic applications.
Mainly to push the experimentation on other digital dictionar-
ies to establish the effectiveness of induced acyclic subgraphs
with optimized endpoints as a learning strategy. Thereafter,
extract targeted strategies with subsets M of vocabularies
specialized in different fields. From graph theory point of
view, we will also be interested in specializing to digraphs
that satisfy one of our constraints: acyclicity. We believe that

the solution to Problem 2 then becomes polynomial. It is also
natural to investigate other optimization functions based on
the number of sources and sinks, such as the ratio t(I)/s(I)
which provides additional information to those obtained from
the difference t()− s(). We strongly suspect, in that case, that
the problem remains NP-complete.
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