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Abstract—Given a particular lexicon, what would be the best
strategy to learn all of its lexemes? By using elementary graph
theory, we propose a simple formal model that answers this
question. We also study several learning strategies by comparing
their efficiency on eight digital English dictionaries. It turns
out that a simple strategy based purely on the degree of the
vertices associated with the lexemes could improve significantly
the learning process with respect to other psycholinguistical
strategies.
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I. INTRODUCTION

When learning a new language, the effort to develop a
sufficient vocabulary basis plays an important role. Notwith-
standing the fact that various cognitive skills are required,
being able to associate a word with its meaning, its definition,
is an essential part of the learning process. According to
Schmitt [1], the "form-meaning link is the first and most
essential lexical aspect which must be acquired". But as Gu
and Johnson [2] mention, vocabulary acquisition is an intri-
cate task. Joyce identifies and compares two such strategies,
aimed at vocabulary improvement [3]: L1 traduction, from the
speaker’s native language, and L2 definition, in the language
being learned. Traduction is in itself a very different problem,
which we do not address here. As for the “L2 definition”
approach, it can be seen as the action of consulting a dictionary
to acquaint oneself with the definition of a word in the new
language, thus establishing this crucial “form-meaning link”.

But what if this definition contains unknown words? Shall
the reader examine in turn the definition of these unknown
words in the lexicon? And then the unknown words in the
definition of the unknown words, and so on? As discussed
by Blondin Massé et al. in [4], this can lead to an infinite
regression, the symbol grounding problem [5]. At some point
in time, it is necessary to learn some words in ways other
than dictionary perusal: either by sensorimotor experience,
or through some other external contribution. In particular, it
seems interesting to design a learning strategy to alleviate the
burden of these potentially expensive forms of learning.

Dansereau characterizes a learning strategy as a sequence
of "processes or steps that can facilitate the acquisition, storage
and/or utilization of information" [6]. And in the more specific
context of second language pedagogy, Bialystok defines it as
"activities in which the learner may engage for the purpose of
improving target language competence" [7]. One compelling
alternative to the expensive direct learning approach is to
identify a sequence of words, as small as possible, and ordered

so as to minimize the overall learning effort: an “efficient
learning strategy”.

There is a large amount of related work aiming to identify
small subsets of words from which one can learn all remaining
words of a given language. It has been for a long time of great
interest from psycholinguistic, pedagogical and computational
points of view. For instance, in 1936, Ogden proposed a
reduced list of 850 English words which would suffice to
express virtually any complex words or thought [8]. In 1953,
West [9] published the “General Service List” (GSL). Based
on a corpus of 5 million words and containing about 2000
words, it is oriented toward the needs of students learning
english as a second language. Despite having been criticized
numerous times for its shortcomings and its incompleteness,
it was considered until very recently as irreplaceable [10]. In
the last few years, two principal contenders have been vying
with one another to replace West’s GSL. At about the same
time in 2013, Brezina and Gablasova [11], and Browne [12]
both presented what they call their New General Service List
(NGSL), whose purpose is to restrict the attention to the most
basic English words that should be understood first by non
native speakers. A question remains open though: What is the
optimal way to establish those word lists in an automated way?

All the word lists discussed above were built using large
corpora. In a recent work, Nation [13] even describes a
detailed corpus-based appoach to word list building. Our main
contribution in this paper is to present a different, lexicon-
based technique. To our knowledge, there has never been
a fully computational, graph-based approach for identifying
efficient learning strategies of a complete lexicon. Although in
real life the process of learning words is clearly more intricate
than the method we present here, our results suggest that an
hybrid strategy, based both on cognitive observations and on
formal tools such as graphs, could enhance significantly the
way people improve their L2 vocabulary.

The manuscript is divided as follows. In Section II, we
introduce definitions and notation about lexicons, graphs and
grounding sets. In Section III, we discuss different lexicon-
based learning strategies. Section IV describes the data sets
used in our analyses. Section V is devoted to the comparison
of the efficiency of those different strategies. Finally, we briefly
conclude in Section VI.

II. LEXICONS, GRAPHS AND GROUNDING SETS

We now propose formal definitions and notation about
lexicons, when viewed as directed graphs. We believe that
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this rather formal representation simplifies the discussion when
comparing the efficiency of several lexicon learning strategies.

Roughly speaking, a lexicon can be defined as a set of
lexical units, called lexemes enriched with definitions and
arbitrary additional information [14]. For our purposes, we
consider the following simplified representation of a lexicon.

Definition 1. A lexicon is a quadruple X = (A,P,L,D),
where

(i) A is a finite alphabet, whose elements are called letters.
(ii) P is a nonempty finite set whose elements are syntactic

categories, called parts-of-speech (POS). In particular,
it contains a special element denoted by STOP, which
identifies lexemes whose semantic value is ignored.

(iii) L is a finite set of triples ` = (w, i, p) called lexemes,
denoted by ` = wi

p, where w ∈ A∗ is a word form or
simply word, i ≥ 1 is an integer and p ∈ P . If p = STOP,
then ` is called a stop lexeme. We say that (w, i, p) is
the i-th sense of the pos-tagged word (w, p). To make the
numbering consistent, we also assume that if (w, i, p) ∈ L
and i > 1, then (w, i−1, p) ∈ L as well. Whenever there
exists (w, i, p) ∈ L with i > 1, we say that (w, p) and L
are polysemic.

(iv) D is a map associating, with each lexeme ` ∈ L, a finite
sequence D(`) = (d1, d2, . . . , dk), where di ∈ A∗ for
i = 1, 2, . . . , k, called the definition of `.

If we replace the condition di ∈ A∗ by di ∈ A∗ × P in
(iv), then D(`) is called a POS-tagged definition of ` and we
say that X is a POS-tagged lexicon. It is also convenient to
consider only the lemmatized, canonical form of words. If we
replace in (iv) the condition by di ∈ L, then D(`) is called a
disambiguated definition and we say that X is a disambiguated
lexicon. Finally, if D(`) is non empty whenever ` is a non-stop
lexeme, then we say that X is complete.

Example 1. Let X1 = (A,P,L,D) be the lexicon such that

A = {a, b, . . . , z},
P = {N, V, A, R, S},

where N, V, A, R, S stand for noun, verb, adjective, adverb,
STOP respectively, and L and D are both defined by Table I.
Then X1 is polysemic, lemmatized and disambiguated. More-
over, assuming that all words used in at least one definition
are defined as well, X1 is complete.

TABLE I. A DISAMBIGUATED LEXICON

Lexeme ` D(`)

fruit1N
(plant1N , part1N , that1S , have1V , seed1N , and1S , edible1A , flesh1N)

fruit2N
(the1S , result1N , of1S , work1N , or1S , action1N)

flesh1N
(the1S , edible1A , part1N , of1S , a1S , fruit1N , or1S , vegetable1N)

flesh2N
(the1S , part1N , of1S , an1S , animal1N , use1V , as1S , food1N)

seed1N
(the1S , small1A , part1N , of1S , a1S , plant1N , from1

S , which1S , a1S , new1
A ,

plant1N , can1S , develop1V)

plant1N
...

etc. ...

Lexicons are naturally converted to directed graphs. For a
complete introduction to graph theory, the reader is referred

to the classical book by Bondy and Murty [15], but for sake
of self-consistency, we briefly recall some definitions and
notation. The formal representation of lexicons is inspired from
the definition of dictionaries found in [4].

A directed graph is an ordered pair G = (V,A), where
V is a finite set whose elements are called vertices and A ⊆
V ×V is a finite set whose elements are called arcs. Directed
graphs are useful for representing the relation “lexeme ` defines
lexeme `′”: Given a disambiguated lexicon X = (A,P,L,D),
we define the graph G(X) of X as the directed graph whose
set of vertices is V = L and whose set of arcs A satisfies
(`, `′) ∈ A if and only if ` ∈ D(`′). In other words, the
lexemes are the vertices, and there is an arrow from ` to `′ if
and only if ` appears in the definition of `′. Figure 1 depicts
a subgraph of the graph G(X1) (see Example 1).

existence1N
substance1N

sustain1
V

consume1V

mouth1
N

safe1A

use1V

living1A
group1N thing1N

new1
A

small1A

develop1V

part1N

part2N

animal1N

work1N

result1N

action1
N

food1N

eat1V

edible1A

vegetable1N

plant1N seed1N

fruit1N

flesh1
N

flesh2
N

fruit2N

Rest of the Lexicon

Figure 1. Graph of a polysemic, lemmatized, disambiguated, complete lexicon

Let G = (V,A) be a directed graph. Given u, v ∈ V , we
say that u is a predecessor of v if (u, v) ∈ A. The set of
predecessors of v is denoted by N−(v) and the number of
predecessors of v is called its in-degree, denoted by deg−(v).
Similarly, we say that v is a successor of u if (u, v) ∈ A, we
denote by N+(u) the set of successors of u and we defined
the out-degree by deg+(u) = |N+(u)|. We define a map L on
the subsets U of V by

L(U) = U ∪ {v ∈ V | N−(v) ⊆ U}.

From a linguistic point of view, L(U) can be interpreted as
the set of lexemes that can be learned from U , assuming that
we can learn a new lexeme if and only if we already know it
or if we know all lexemes appearing in its definition. In other
words, L is a map associating with each set of lexemes U the
set of lexemes L(U) that can be learned directly from U . The
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set U is called a grounding set of G if there exists a positive
integer k such that Lk(U) = V, i.e., knowing U is sufficient
to learn all remaining lexemes by definition alone in a finite
number of steps.

We say that p = (v1, v2, . . . , vk) ∈ V k is a path of G if
(vi, vi+1) ∈ A for i = 1, 2, . . . , k − 1. If v1 = vk, then p is
called a circuit. A feedback vertex set of G is a subset U ⊆ V
of vertices such that for every circuit c of G, the set U ∩ c is
nonempty, i.e., U covers every circuit of G. It was proved in [4]
that grounding sets are the same as feedback vertex sets, a well-
known concept of graph theory. Unfortunately, the problem of
computing feedback vertex sets is NP-hard for general graph,
i.e., it is unlikely that one will ever find a general polynomial
time algorithm solving the problem, as it has been shown by
Karp [16]. Nevertheless, we were able to compute at least
one minimum grounding set for most of our digital lexicons
or find close approximations. According to Vincent-Lamarre
et al,. it turns out that these minimum grounding sets present
distinctive characteristics in comparison with other words: they
are learned earlier, are more frequent and are slightly more
concrete [17].

III. LEARNING STRATEGIES

For sake of simplicity, we assume that there are essentially
two complementary approaches for learning a new lexeme (see
Harnad [5]): (1) Directly, i.e., by seeing, hearing, smelling,
tasting, touching, or interacting in any other way with the
object referenced by the lexeme; (2) By definition, i.e., by
reading its definition or by having someone explain, describe,
characterize the object with other lexemes.

We also make the following, quite strong assumptions in
order to streamline the model: (i) Whenever the meaning of a
lexeme is learned, it is learned permanently, i.e., it will never
be forgotten; (ii) If we already know the meaning of all the
lexemes occurring in the definition of some lexeme `, then we
can learn the meaning of ` simply by reading its definition;
(iii) The effort of learning a lexeme directly, is more significant
than the one of learning a lexeme by definition. (iv) Learning
a lexicon efficiently amounts to learn its complete set of
lexemes at a minimal cost. Taking into account the preceding
assumptions, we define a learning strategy as follows.

Definition 2. Let X = (A,P,L,D) a disambiguated lexicon.
A learning strategy of X is any ordered sequence S whose
elements are in L. If X is a grounding set of X , then we say
that S is exhaustive, otherwise we say that it is partial.

Simply stated, a learning strategy is a list of lexemes,
ordered by decreasing priority. It is exhaustive if and only
if it allows one to learn the complete lexicon. Intuitively,
taking into account Assumption (iii), a learning strategy is
efficient if its associated cost is as low as possible, which is
realized exactly when the number of lexemes learned directly
is minimal. Therefore, without loss of generality, we assume
from now on that lexemes learned directly have cost 1, while
lexemes learned by verbal instruction (definition) have cost 0.

The cost of a learning strategy can be handily computed.
It is also easy to check if S is complete. In Algorithm 1,
COST(S,X) returns an ordered pair (cost, X ′), where cost is
the cost of the learning strategy S for the lexicon X , and X ′

is the remaining part of the lexicon that could not be learned.
Hence, S is complete if and only if X ′ is empty.

More precisely, Algorithm 1 proceeds as follows. First, it
selects the next available lexeme in the strategy S and “learns
it” with cost 1. Then, it learns all lexemes with no predecessor,
i.e., lexemes whose definition contains only references to
known lexemes, each at cost 0. This last step is repeated as
long as there are available lexemes that can be learned at cost
0. Finally, it selects the next lexeme available in S and repeats
the same process, until S is exhausted. The cost of using the
strategy S is thus simply computed as the sum of the learning
cost of all the lexemes in the lexicon.

Algorithm 1 Cost of a learning strategy

1: function COST(S : strategy, X : lexicon) : (cost, lexicon)
2: cost← 0
3: while S 6= ∅ and X 6= ∅ do
4: `← S.POP() . We extract the next lexeme
5: Remove ` from X . ` is learned at cost 1
6: cost← cost + 1
7: while there exists ` ∈ X with deg−(`) = 0 do
8: Remove ` from X . ` is learned at cost 0
9: end while

10: end while
11: return (cost, X)
12: end function

Any partial strategy S can easily be extended into a
complete strategy S′ by choosing a fallback strategy as soon
as the list S of lexemes is exhausted. For instance, we could
simply choose any random lexeme or choose a lexeme having
a particular property, and repeat this process as long as there
remain lexemes in the lexicon. Algorithm 2 presents such an
extension by choosing, at each step, a lexeme whose number
of occurrences in definitions is maximum.

Algorithm 2 Cost of a complete learning strategy

1: function COMPLETECOST(S : strategy, X : lexicon) : cost
2: (cost, X ′)← COST(S,X)
3: while X ′ 6= ∅ do
4: `← a lexeme of X ′ such that deg+(`) is maximal
5: Remove ` from X . ` is learned at cost 1
6: cost← cost + 1
7: while there exists ` ∈ X with deg−(`) = 0 do
8: Remove ` from X . ` is learned at cost 0
9: end while

10: end while
11: return cost
12: end function

Both Algorithms 1 and 2 are efficient and easy to imple-
ment. More precisely, let n and m be respectively the number
of vertices and arcs in the graph of the lexicon X . On one
hand, Algorithm 1 has O(n+m) time complexity and O(n)
space complexity, assuming that the removal of a single vertex
is done inO(1), and by considering only neighbors of removed
vertices when checking the condition in Line 7. On the other
hand, Algorithm 2 runs in O(m log n) time and O(n) space,
with the same assumptions as for Algorithm 1, and by storing
the candidate vertices in a priority queue. Indeed, in that case,
Line 4 is done inO(log n) time, and the time cost of all priority
updates is O(m log n), since each vertex v is updated in O(n)
at most O(deg(v)) times.
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It is obvious that some learning strategies are more efficient
than other ones, given that the cost of a strategy depends
strongly on the order in which the lexemes are organized.

IV. DATA SETS

We now briefly describe the digital dictionaries and the
psycholinguistic material for building the different learning
strategies compared later in Section V.

Digital dictionaries. In our research, we construct and
analyze 8 different digital lexicons, using dictionaries com-
ing from 5 different sources. Two of the dictionaries, the
Longman’s Dictionary of Contemporary English (LDOCE)
[18], and the Cambridge International Dictionary of English
(CIDE) [19], are described by their authors as being built
using a controlled vocabulary, using as few distinct words
as possible in the definitions. The LDOCE is an advanced
learner’s dictionary, originally published in 1978. The CIDE
is a dictionary originally developped in 1995 for advanced
learners of English using the Cambridge Corpus. The 11th edi-
tion of the Merriam-Webster’s Collegiate Dictionary (MWC)
was published in 2003 [20]. With over 250 000 entries, it
is by far the largest lexicon analyzed. Wordsmyth [21] is
a linguistical educational project. It provides four different
dictionaries: the Wordsmyth Educational Dictionary-Thesaurus
(WEDT) was first developed in 1980, followed later by
the Wordsmyth Learner’s Dictionary-Thesaurus (WLDT), the
Wordsmyth Children’s Dictionary-Thesaurus (WCDT) and the
Wordsmyth Illustrated Learner’s Dictionary (WILD). The first
two are targetted at adults, WEDT being for advanced learners
and WLDT for beginners, while the last two are aimed at
children. Finally, WordNet (WN) [22] is a well-known lexical
network, whose purpose is not only to provide definitions
of words, but also semantical relations between them, quasi-
synonymy, antonymy and hypernymy being the most impor-
tant. Table II presents statistics for the lexicons after pre-
processing and removal of stop lexemes:
• The number of lexemes in each dictionary (#Lexemes);
• The number of POS-tagged lemmas (#Lemmas);
• The average number of senses by lemma (Polysemy);
• The number of lemmas actually used in definitions

(#Lemmas used);
• The ratio of lemmas used over the total number of lemmas

(#Usage ratio).

TABLE II. BASIC STATISTICS.

#Lexemes #Lemmas Polysemy #Lemmas Used Usage ratio
Lexicon

WILD 4 244 3 081 1.377 2 995 0.972
WLDT 6 036 3 433 1.758 2 212 0.644
WCDT 20 128 9 303 2.164 6 597 0.709
CIDE 47 092 18 694 2.519 8 773 0.469
LDOCE 69 204 22 511 3.074 10 074 0.448
WEDT 73 091 28 986 2.522 18 197 0.628
WN 132 547 57 243 2.316 29 600 0.517
MWC 249 137 68 181 3.654 33 533 0.492

The eight lexicons were then converted to disambiguated,
graph-based lexicons, by using the Stanford’s POS-tagger [23]
and the “most frequent sense” heuristics, i.e., by choosing
the most frequent sense each time it appears in some given
definition. Graph structural statistics for the digital lexicons
are shown in Table III:

• The number of nodes in the directed graph (#Nodes);
• The number of arcs in the directed graph (#Arcs);
• The number of strongly connected components (#SCCs);
• The size of the largest SCC (<SCC);
• The diameter of the largest strongly connected component

(Diam.);
• The density of the graph (Density);
• The characteristic path length (CPL).

TABLE III. GRAPH STRUCTURAL STATISTICS.

#Nodes #Arcs #SCCs <SCC Diam. Density CPL
Lexicon

WILD 4 244 45 789 2 750 1 446 17 10.79 1.75
WLDT 6 036 28 623 5 088 858 25 4.74 1.10
WCDT 20 128 102 657 17 551 2 341 22 5.10 0.87
CIDE 47 092 334 888 45 306 1 702 16 7.11 0.21
LDOCE 69 204 415 052 67 224 1 770 16 6.00 0.16
WEDT 73 091 362 569 67 318 5 056 29 4.96 0.61
WN 132 547 694 067 124 589 7 079 30 5.24 0.50
MWC 249 137 1 155 085 239 478 8 842 29 4.64 0.31

Psycholinguistic variables. In order to build our learning
strategies, we considered three different psycholinguistic vari-
ables: the age of acquisition (AOA), the concreteness (Conc)
and the written and oral frequency (Freq). The age of acquisi-
tion variable indicates the age at which a word is first learned,
on average. As references, we used two different sources.
The first one is a database made available by Brysbaert. with
words learned between the ages 1 and 21, with their surface
forms and lemmas [24]. The second one comes from the Child
Language Data Exchange System (CHILDES) project [25].
It contains transcripts of children’s conversations with words
learned between the ages 1 and 11. The concreteness variable
indicates the level of materiality of a word, which varies from
1 (the less concrete/most abstract) to 5 (the most concrete).
It was collected by asking participants to classify words into
these categories [26]. For example: banana, apple and baby are
level 5, belief is level 1.19 and although is level 1.07. Finally,
the frequency variable corresponds to the rate of occurrence of
words in a given corpus, normalized to one million. Brysbaert
et al. used the SUBTLEXUS corpus, as described in [27].

Derivated learning strategies. The number of learning
strategies that one can design is huge. For a given dictionary
containing n distinct senses, there are as many as n!, which is
the number of permutations of the set {1, 2, . . . , n}. We can
distinguish two high-level categories:

1) Graph-based strategies are lists of lexemes built by
exploiting the graph structure of a given lexicon. For
instance, we could choose the next lexeme to learn by
always picking the one whose out-degree is maximal (i.e.,
it appears in many definitions). It is worth mentioning that
graph-based strategies are lexicon-dependent, i.e., they are
adapted to the data.

2) Psycholinguistic strategies are obtained by choosing a
lexeme according to its value with respect to a psycholin-
guistic variable. An example would be to pick first the
lexemes that have been learned younger on average, up
to the lexemes that have been learned later. Note that in
that case, the strategies are lexicon-independent and are
often incomplete, since psycholinguistic databases do not
list all possible lexemes. Therefore, we need to complete
the strategies by using a graph-based fallback strategy.
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We focus our attention on 11 learning strategies that we
now describe in more details. In the minimum grouding set
strategy, the sequence of lexemes is built by picking minimum
feedback vertex sets for each dictionary (see Section II). Al-
though the problem is NP-complete in general, we were able to
compute at least one optimal solution for 6 out of 8 dictionar-
ies, and close approximations for the 2 remaining dictionaries.
For the dynamic degree strategy, the list of lexemes is merely
obtained by picking, at each step, the lexeme whose out-degree
is maximal (since lexemes are “removed” at each step, the ver-
tices degrees are indeed dynamic). From an algorithmic point
of view, it corresponds to calling COMPLETECOST with S
being the empty list. Concerning the static degree strategy, the
list of lexemes is built beforehand in descending order of the
vertices out-degree. This corresponds exactly to ordering the
lexeme from the most frequently used in definitions to the less
frequently used. The Brysbaert/AOA, Brysbaert/Concreteness,
Brysbaert/Frequency and Childes/AOA are all “psycholinguis-
tic strategies” built from [24]-[27]. A last strategy that we
considered, called NGSL/Frequency, is obtained from the
NGSL, designed precisely to help students learning English
as a second language [12]. For the purpose of our analyses,
this last list was enriched with 3 other lists provided by the
same authors: the New Academic Word List (NAWL), the
Business Service List (BSL), and the Technical Service List
(TSL). In this last case, we also considered all the possible
lemmas combinations as part of the strategy. For example,
all the lemmas somethingNOUN, somethingVERB, somethingADJ,
somethingADV of the word something are included in the
strategy. Finally, the strategies labelled mixed (Grounding
Set/Mixed, Dynamic Degree/Mixed and Static Degree/Mixed)
are described in Section V, as they are mostly used for com-
paring graph-based strategies with psycholinguistic strategies.

V. RESULTS AND DISCUSSION

Table IV compares the efficiency of the learning strategies
against each one of the 8 digital dictionaries. The following
measures are shown:

• The total number of lexemes learned directly (Cost);
• The efficiency, which is the ratio of the total number

of lexemes learned over the number of lexemes learned
through direct learning (Effect). More precisely, if the
efficiency of a strategy S for a lexicon X is e, then,
on average, it costs 1 to learn e lexemes from X using
strategy S.

• In a few cases, we also include the coverage (Cover),
which is the percentage of lexemes that are learned before
resorting to the fallback strategy (see Algorithm 2). Only
those cases where the coverage is below 90% are shown.

The efficiency of the 8 English dictionaries is plotted in
Figure 2. Note that, in both figures, the strategies are ordered
in decreasing order of efficiency.

From Table IV and Figure 2, one can distinguish three
groups, which are characterized by the speed with which they
break “definition cycles”. The first group consists only of the
minimum grounding set strategy. Naturally, it is the most effi-
cient, since it has been optimized in this regard. We include it
mostly as a baseline for comparison with other strategies. The
second group is composed of the dynamic and static degree
strategies, plus the three mixed ones, are all graph-based, the

TABLE IV. LEARNING STRATEGIES EFFICIENCY. MGS: MINIMUM
GROUNDING SET, DD: DYNAMIC DEGREE, SD: STATIC DEGREE, MGM: MIN-
IMUM GROUNDING SET/MIXED, DDM: DYNAMIC DEGREE/MIXED, SDM:
STATIC DEGREE/MIXED, NF: NGSL/FREQ., BF: BRYSBAERT/FREQ., CA:
CHILDES/AOA, BA: BRYSBAERT/AOA, BC: BRYSBAERT/CONCRETENESS

CIDE LDOCE MWC WN WEDT WCDT WLDT WILD
Strat. Meas.

Lexemes 47 092 69 204 249 137 132 547 73 091 20 128 6 036 4 244
MGS Cost 349 484 1 544 1 251 1 365 570 231 340

Effic 134.93 142.98 161.36 105.95 53.55 35.31 26.13 12.48
DD Cost 684 843 3 095 2 566 2 389 897 394 574

Effic 68.85 82.09 80.50 51.66 30.59 22.44 15.32 7.39
SD Cost 687 838 3 081 2 558 2 386 899 394 577

Effic 68.55 82.58 80.86 51.82 30.63 22.39 15.32 7.36
MGM Cost 704 966 3 077 2 835 2 348 957 398 612

Effic 66.85 71.64 80.96 46.75 31.13 21.03 15.17 6.93
DDM Cost 768 963 3 466 3 002 2 574 987 448 645

Effic 61.32 71.82 71.88 44.15 28.39 20.39 13.47 6.57
SDM Cost 793 988 3 776 3 021 2 721 1 024 454 678

Effic 59.32 70.00 65.98 43.87 26.86 19.65 13.30 6.25
NF Cost 2 813 1 954 5 010 4 126 3 236 1 354 712 1 260

Effic 16.74 35.42 49.73 32.12 22.59 14.87 8.48 3.37
Cover. 71.3% 73.4% 67.6% 82.9%

BF Cost 6 751 2 170 8 217 7 204 6 555 1 999 960 1 193
Effic 6.98 31.89 30.32 18.40 11.15 10.07 6.29 3.56

CA Cost 4 971 5 010 7 729 7 284 5 586 3 409 1 585 2 016
Effic 9.47 13.81 32.23 18.20 13.08 5.90 3.81 2.11
Cover. 82.9% 86.3% 84.3%

BA Cost 7 105 4 851 10 119 10 340 8 278 2 950 1 284 1 430
Effic 6.63 14.27 24.62 12.82 8.83 6.82 4.70 2.97

BC Cost 8 900 11 669 16 580 17 037 12 792 6 042 2 373 2 477
Effic 5.29 5.93 15.03 7.78 5.71 3.33 2.54 1.71

dynamic degree strategy being slightly better on average. In
contrast, all strategies of the third group (NGSL/Frequency,
Brysbaert/Frequency, Childes/AOA, Brysbaert/AOA and Brys-
baert/Concreteness) can be qualified as “noisy”. Indeed, they
contain lexemes chosen and ordered based on some external
criteria or psycholinguistic variables. Because of this specific
ordering, many lexemes that could otherwise have been learned
by definition are learned through direct learning and therefore
increase the total cost. Hence, these strategies are not as
efficient for definition cycle breaking.

Figure 2. Dictionaries’s efficiency

If we focus on the psycholinguistic strategies in the third
group, it is worth mentioning that NGSL/Frequency turns out
to be quite efficient, followed by Brysbaert/Frequency, both
AOA-based strategies and, finally, Brysbaert/Concreteness.
The fact that Brysbaert/Concreteness performs poorly is not
very surprising. It seems quite natural to assume that one
cannot learn a complete lexicon using only concrete lexemes:
it is the combination of both concrete and abstract lexeme that
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conveys a complete understanding of a lexicon. Although the
AOA-based strategies do not perform well in comparison with
other strategies, it still shows that knowing less than 10% of the
lexemes is sufficient to learn all remaining ones by definition
alone. A plausible explanation for this observation is that learn-
ing new lexemes cannot be done only by reading definitions.
In other words, our model does not capture the whole learning
process, which is not surprising. Another possibility is that the
databases are not sufficiently complete and may contain errors
which impact significantly the efficiency of the strategy.

Since the best strategies seem to be lexicon-dependent, one
might wonder if an efficient lexicon-independent strategy could
be designed or if the NGSL/Frequency strategy is optimal. This
is not the case, as illustrated by three additional strategies
called Mixed MFVS, Mixed Dynamic and Mixed Static. These
lists have been obtained by merging strategies from the eight
dictionaries, which implies that the same list is used for each
dictionary. Although the performance decreases slightly when
the lists are mixed in comparison with the nonmixed versions,
they still all perform better than NGSL/Frequency.

VI. CONCLUDING REMARKS

In this paper, we introduced a new automated method for
the construction of lexeme learning strategies. Instead of using
a corpus or psycholinguistic variable, our approach is based
on the internal structure of lexicons related to the domain of
interest. We also described a formal model for representing
lexicons and learning strategies, as well as related algorithms
and metrics. These tools allowed us to quantitatively compare
the overall performance of various strategies for learning
complete lexicons.

In our experimentation with English language lexicons,
we discovered that the most efficient strategies are those that
quickly break definition circularity. In this regard, a simple
strategy ordering the words according to the number of times
they appear in other words definition turned out to be very
efficient. Although we do not pretend that the value of word
lists resides solely in their efficiency, we believe our approach
is of interest, especially in situations where neither public word
lists or large corpora in the domain of interest are available. In
this case, the use of a digital lexicon or specialized dictionary
would allow one to easily build a list of words or concepts
pertinent to that domain, and above all, the order in which
one should learn them.

We have many ideas to extend further our observations.
For instance, we would like to study other lexemes learning
strategies, either based on the graph structure of the lexicon or
from psycholinguistic variables. It would also be interesting to
apply our model to lexicons specialized for a particular field,
such as mathematics, medical care, computer sciences, etc.
Finally, it seems reasonable to expect that our observations
are language independent. However, this is harder to verify
since the databases available in languages other than English
are often less complete.
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