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Abstract—The most efficient architectures of associative memories
are based on binary neural networks. As example, Sparse
Clustered Networks (SCNs) are able to achieve almost optimal
memory efficiency while providing robust indexation of pieces
of information through cliques in a neural network. In the
canonical formulation of the associative memory problem, the
unique stored message matching a given input probe is to be
retrieved. In this paper, we focus on the more general problem
of finding all messages matching the given probe. We consider
real datasets from which many different messages can match
given probes, which cannot be done with uniformly distributed
messages due to their unlikelyhood of sharing large common parts
with one another. Namely, we implement a crossword dictionary
containing 8-letter english words, and a chess endgame dataset
using associative memories based on binary neural networks.
We explain how to adapt SCNs’ architecture to this challenging
dataset and introduce a backtracking procedure to retrieve all
completions of the given input. We stress the performance of
the proposed method using different measures and discuss the
importance of parameters.

Keywords–Neural Networks, Associative Memories, Sparse Cod-
ing, Iterative Information Processing

I. INTRODUCTION

Associative memories are devices in which stored content
may be addressed from part of it. Consider for instance a
melody which is brought back to memory from the first
music notes. Their functioning offer an alternative to clas-
sical indexed-based memories in which an absolute address
is required in order to access content. For this reason, they
are considered as a plausible model for human memory [1].
Associative memories are also very popular in electronics as
they are key components of many systems[2]-[8]

There are basically two ways to design associative mem-
ories. In errorless applications, the content of the memory is
typically indexed in such a way that it is possible to perform
a fully parallel search to find a match of a given request.
This is in particular the functioning of Content Addressable
Memories (CAMs) [2]. When errors are tolerable, the most
effective systems are based on recurrent neural networks [3].
These networks then split into two categories: binary systems
and weighted ones. It is well known that weighted systems
offer poorer performance than their binary counterpart [4].

Binary associative memories have been introduced in the
60s and popularized since thanks to their remarkable perfor-
mance. These systems have in common that they embody
pieces of information as patterns in binary graphs. For uni-
formly distributed messages and well scaled parameters, it
has been conjectured for a long time and proven recently [5]

that these systems are able to achieve very good performance
asymptotically. Experiments support that performance is also
very good for medium size neural networks (i.e., networks
containing a few thousands of units). Because they compare
favorably to other existing works [5], we decided to focus on
SCNs in this paper.

A key component to obtain good performance in binary
associative memories is the choice of the retrieval process.
There is a vast literature on the subject [6]. However, most
of the existing works focus on the scenario where there is
a unique match associated with the given probe (with the
noticeable exception of [7]). In this paper, we are interested
in finding all stored contents that are associated with the
given probe. This problem is of paramount importance when
targeting applications in artificial intelligence and cognitive
science [8].

In order to stress our proposed method on real datasets,
we decided to focus on the implementation of a crossword
dictionary able to retrieve any 8-letter english words from
a partially erased input, and a chess endgame database to
validate the genericity of the method. Mainly, our contributions
are twofold: we show a) how to design a binary associative
memory able to store then retrieve messages with almost zero
error probability. For this purpose, we propose a strategy
loosely based on “twin neurons” [9]. And b) we propose a
backtracking solution to find all completions of the given input
instead of a unique one. Our proposed solution is evaluated and
parameters influence is discussed thoroughly.

The outline of the paper is as follows. In Section II, we
introduce related work. In Section III, we present the proposed
methodology used to store nonuniform data and to retrieve all
matches associated with a given request. Mathematical analysis
is performed in Section IV. Experiments results are presented
in Section V. Finally, Section VI is a conclusion.

II. RELATED WORK

Solutions have been proposed in the literature in order to
handle nonuniform distributions in binary associative mem-
ories. It is in particular the case in [10] for the Willshaw
model. However, the lack of structure in this type of associative
memories makes it difficult to propose efficient strategies.

In the context of SCNs, interesting results have been ob-
tained using restricted models [11] inspired by the functioning
of restricted Boltzmann machines. In this work, the authors
propose to use a bipartite graph in which stored messages are
associated with i.i.d. uniform ones. They show that this strategy
allows for very efficient processing of visual signals.

A comparison of proposed approaches have been proposed
in [12] and then extended and applied to real datasets in [9].
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In their work, the authors show the interest of using data
driven approaches in which overused parts of the network
are scaled accordingly in order to counterbalance the effect
of nonuniformity on performance. Our proposed solution is in
the same vein.

In [13], the authors use a combination of twin neurons
and a “boosting” technique in order to retrieve messages in
adversarial scenarios. In [7], the authors propose for the first
time to adapt retrieval procedures of neural network based
associative memories in order to solve complex challenges,
including finding all matches associated with a given request.
In this work, the authors propose to use a simulated annealing
approach to solve this specific problem, leading to very good
performance at the cost of dramatically increased complexity.
The solution we propose obtain exactly the same output but
with reduced complexity.

III. METHODOLOGY

Our proposed solution is based on SCNs. In the next sub-
sections, we introduce SCNs using the notations of the initial
works [14][15]. We then explain how to manage nonuniformly
distributed messages. Finally, we propose a solution to obtain
all stored messages that are completions of the given input
(instead of only one in classical SCNs).

A. Sparse Clustered Networks
Consider a finite alphabet A made of ` symbols. We call

message a word over A containing c symbols exactly. We
denote by m such a message and by mi its i-th symbol.

SCNs are binary associative memories that are able to
store a set M of M messages and retrieve one of them
with a nonzero probability when part of its symbols are
missing. More precisely, it has been shown that for i.i.d.
uniform messages and for some parameters (e.g., c = log(`),
M < 2 log(log(`))`2), this probability tends to one [5].

The storage procedure is as follows: a neural network made
of c × ` units is considered. Units are split into c parts (we
term them “clusters”) of equal size indexed from 1 to c. Inside
each cluster, units are then indexed using symbols of A, i.e.,
each unit is associated one-to-one with a symbol in A. As
a result, each unit is uniquely determined by a couple (i, a),
where 1 ≤ i ≤ c and a ∈ A.

It is thus possible to associate a message with a set of c
units, through the function:

f : m 7→ {(i,mi), 1 ≤ i ≤ c}.

To store the messages contained in M, the procedure
consists in, starting from a neural network with no connection,
adding all connections between units in f(m) for each message
m ∈ M. Let us denote by W(i,a)(i′,a′) the adjacency matrix
of the neural network (W(i,a)(i′,a′) = 1 iff units (i, a) and
(i′, a′) are connected). This process is illustrated in Figure 1.
In Figure 1 the alphabet is A = {a1, a2, a3, a4} and c = 4.
The stored messages are m1 = [a1, a1, a3, a2] and m2 =
[a1, a4, a4, a3]. Connections added by the storage of m1 and
m2 have been depicted differently (dashed vs. dotted lines)
in order to ease reading, but connections in the network are
binary and thus not labelled.

Cluster 1

a1

a2

a3

a4

Cluster 2

a1

a2

a3

a4

Cluster 3

a1

a2

a3

a4

Cluster 4
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a2
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a4

Figure 1. Illustration of the storage procedure in SCNs.

Once a set of messages has been stored, an iterative
retrieval procedure is used to recall one of them from a
partially erased probe.

Consider a message m ∈ M, we introduce the erasure
function:

˜: m 7→ m̃ such that ∀i, m̃i = mi ∨ m̃i = ⊥,

where ⊥ 6∈ A denotes an erased symbol. Consider an indicator
function v : {1, 2, . . . , n}×A → {0, 1} which associates a unit
with its binary activation state (active or not).

Considering m̃ as an input, an optimized retrieval proce-
dure [6] consists in repeating the following two steps, starting
with v0 the indicator function of f(m̃):

1) Estimate a likelihood score for each unit in the
network to be activated, based on the connection
they share with other units in the network. To do
so, for each unit (i, a) is computed the score st+1

i,a =∑c
i′=1 maxa′∈A

[
W(i,a)(i′,a′)v

t
i′,a′

]
. In other words,

for each unit we count how many clusters of the
neural network contain an activated unit which they
are connected to.

2) Based on the previously computed score, select the
units to activate or not. Here, we simply activate the
units with the maximum score among their clusters.

It can easily be shown that this iterative procedure con-
verges as the set of activated units is nonincreasing with
iterations, starting at the second iteration [5].

The converged state v∞ corresponds to the output of the
neural network. In case a unique unit is activated in each
cluster, this state can be mapped to the corresponding message
m such that v∞ is the indicator function of f(m).

Obtaining mathematical proofs of performance can prove
to be challenging [5]. This is why many works make the
simplifying assumption that, when messages to store are i.i.d.
uniform, existence of connections in the neural network can be
considered independent. Numerous experimental works justify
this assumption [15]. In this context, it is possible to derive
probability of success in retrieving a stored message from a
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Figure 2. Histogram representing the frequency of apparition of each symbol
(’A’ to ’Z’) for each possible position (1 to 8).

partially erased probe containing ce erased symbols [15]:

Pe = 1−
(
1−

(
1−

(
1− `−2

)M)c−ce)(`−1)ce
.

B. Nonuniformity of Stored Messages

It is well known that nonuniformity of stored messages
can lead to dramatic loss in performance [10]. Many solutions
have been proposed [12]. All of them consist in adding
material, either units in each cluster or new clusters, in order
to counterbalance the effect of nonuniformity.

The technique known to offer best performance is called
“twin neurons” [9]. It consists in duplicating overconnected
units in the network. The method we propose in this paper, is
inspired by this mechanism.

First, let us introduce the first dataset used in this paper.
We decided to use english words made of 8 letters. We use a
database containing M = 28′557 such words [16]. Obviously
this database contains a nonuniform distribution of words, such
that some letters are more frequent than others. As an illus-
tration, Figure 2 depicts the frequency of apparition of each
symbol at each possible position. Using the classical method
– namely we assign the same number of units with each
symbol – some units are saturated with connections, leading to
dramatically low performance. To avoid this, we duplicate units
in the neural network corresponding to the overused symbols,
such that the connections are divided accordingly. This process
is depicted in Figure 3 and more precisely described in the
following paragraphs.

In our proposed method, words of 8 symbols are repre-
sented using 8 clusters (one per position in the word). But
contrary to classical SCNs, we use more than the required 26
units. Specifically, in order to represent a symbol at a given
position, we use possibly more than a single unit. Consider
symbol a at position i, and denote λ (here λ is no longer the
cardinality of A) the number of units in each cluster, W (i, a)
the number of eight symbol which i-th one is a, then the
number of units representing a in cluster i is

Classical:

Proposed:

a1 a2 a3 . . . aλ

a1 a1

a1

a2

a2 a3

. . .
aλ

aλ

Figure 3. Illustration of the proposed solution to duplicate units
corresponding to more frequent symbols.

N(i, a) =
W (i, a)

M
λ.

Said otherwise, units representing symbol a at position i are
proportional to the frequency of 8-letter words containing
symbol a at position i.

The storing process is then modified. As a matter of fact,
there is now multiple choices of units to activate in each
cluster. The idea is to choose one of them alternatively in
order to balance the number of connections per unit. This
is depicted in Figure 4. Depending on the frequency of each
symbol at each position, some units have been duplicated. The
first stored message is [a1, a1, a3, a3], as depicted in the first
step. Because there are two units representing symbol a1 in
cluster 1, an arbitrary choice has been performed. The second
message to store is [a1, a2, a2, a1], making use again of symbol
a1 in cluster 1. This time the other unit has been chosen to
balance connections in the neural network. The first added
message makes use of a unit representing symbol a1 in cluster
1 and the next message makes use of another unit representing
a1 in cluster 1.

C. Finding all Matches of a Given Request
Crosswords players are familiar with configurations where

a few characters erased can lead to many different combina-
tions. This is typically not expected with uniformly distributed
messages, as the probability λ−c0 two words share c0 common
given symbols vanishes exponentially fast to zero with c0.

When multiple stored messages are completions of the
input probe, the retrieval process is expected to converge to
a state where active units contain at least the union of the
units corresponding to the different possible outputs. Finding
which unit is associated with each other is a combinatorial
problem that may prove challenging in practice.

To illustrate the problem, consider that at the end of the
retrieval process, 10 units are activated in the 4 initially erased
clusters. A possible explanation is that there are 10 completions
of the initial probe, corresponding to the activation of its own
unit in each cluster. But, in terms of combinatorial possibilities,
there are 10′000 possibilities.

In practice, having to check every single possibility would
lead to considerable increase in complexity. This is why we
introduce a backtracking alternative solution.

Suppose we have a set of activated units si in the i-
th cluster. We propose to select one of them arbitrarily,
unactivate all others, and pursue the retrieval process. Once
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First step:
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Second step:
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Figure 4. Illustration of the updated storage procedure. Here the alphabet is
A = {a1, a2, a3} and c = 4.

it is completed, we unactivate the previously selected unit and
remove it from si, and select another unit arbitrarily in si to
start the process again. Once all units have been activated once
in si, the process is over. Such strategy is commonly known
as backtracking in computer science literature.

In ideal conditions, that is to say when solutions are
nonoverlapping over the initially erased clusters, this procedure
reaches a complexity that is linear with the number of solu-
tions. This is why it is expected to perform well in practice. On
the other hand, the complexity is upper bounded by the product
of cardinalities of si, which correspond to the combinatorial
factor previously introduced.

This backtracking solution offers another advantage when
combined with the twin neurons strategy described in the
previous subsection. As a matter of fact, selecting arbitrarily
a unit in each cluster when storing a message is a good
strategy to balance connections, but as a result this association
is lost and when a probe is given to the network, all units
corresponding to the given symbols should be activated. Said
otherwise, a lot of spurious units are likely to be activated at
the beginning of the retrieval process, due to the duplication
of some units in the neural network.

In order to avoid this added difficulty, we propose to

use the same backtracking solution previously described at
the beginning of the process also, in order to erase most of
spurious units at the beginning of the retrieval process.

We can illustrate this by a good example from the database.
For λ = 512, consider the words aardvark and aardwolf,
that could be addressed from the request aard****, where ’*’
denotes an erased symbol. For this scenario, we obtain 29 units
corresponding to the letter ’a’ in the first cluster, 75 to the
letter ’a’ in the second cluster, 48 to the letter ’r’ in the third
cluster and 21 to the letter ’d’ in the fourth cluster. Thus, there
are 2′192′400 possible combinations. Using the backtracking
algorithm to reduce this number, we obtain only 2 units active
in each of these clusters. Actually, these two active units in
each cluster are those corresponding to the two words aardvark
and aardwolf exactly.

IV. MATHEMATICAL ANALYSIS

The overall procedure corresponding to the retrieval of
the messages matching a given input probe is summarized in
Algorithm 1.

1. Activate all units corresponding to the nonerased
symbols of m̃

2. Use the backtracking algorithm to remove some of
the spurious units

3. Perform the decoding procedure
4. Use the backtracking algorithm to obtain guesses

Algorithm 1: Algorithm used to retrieve the stored messages
corresponding to an initially partially erased probe m̃.

A first result is that Algorithm 1 will output all of the
messages in M that match the probe m̃:

Proposition 1. Consider a binary associative memory in which
the messages in M have been stored. For any message m ∈
M, the output of Algorithm 1 given m̃ as input contains all
the messages in M that are completions of m̃.

Proof: The proof is a straightforward adaptation of the
proof for the classical SCNs in [5]. It is mainly based on the
fact a stored message which is a completion of the input will
always achieve the maximum scores in the retrieval process,
and therefore the corresponding units will remain activated.

Note that this result does not imply that the output mes-
sages given by Algorithm 1 is exactly the correct answer,
but only that it contains the correct answers. In practice, it
is expected that for some queries the output contains more
messages than it should.

Another interesting result is that, for large enough values
of λ, the obtained associative memory has vanishing error
probability:

Proposition 2. Consider a set of messages M. Then, the
probability the output messages given by Algorithm 1 for some
query m̃ with m ∈ M is exactly the set of messages in M
that are completions of m̃ tends to one as λ tends to infinity.

Proof: Indeed, consider the extreme case where messages
inM are stored in the binary neural network using completely
disjoint sets of units. Using very simple arguments of bino-
mials, this happens with probability that tends to one as λ
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tends to infinity. In such situation, step 2 of Algorithm 1 will
keep active only the units that correspond to the targeted set
of messages. Indeed, a unit can only remain active if sharing
connections with all initially active units, which happens by
definition only if part of a targeted message. For similar
reasons, a message retrieved after step 4 of Algorithm 1 is
such that all its units are interconnected, so it must correspond
to a stored message. Because it is in particular connected with
all the initially activated units, it is a targeted message.

Obviously, in practical applications, it is of paramount
importance to find a good tradeoff between precision and
complexity of the method, varying the value of λ. This will
be discussed in the next section.

V. EXPERIMENTS

In this section, we present an analysis of complexity and
error rates of the proposed method, in comparison with the one
described in [7]. We refer to complexity as the average number
of elementary operations, which are arithmetical operations or
memory accesses.

First, we examine the influence of cluster size λ on
complexity using the 8-letter words dataset. The number of
elementaru operations is 409 millions for λ = 256, 64 millions
for λ = 384 and 8.1 millions for λ = 512.

Interestingly, larger networks have dramatically lower com-
plexity than small networks. This phenomenon can be easily
explained by examining the influence of network size on error
rates results; as error decreases with increasing network size,
the size of the search space decreases because fewer units are
interconnected. As a consequence, the proposed backtracking
algorithm eliminates more cases, resulting in a reduction of
complexity.

We then compute the error rate of the proposed method.
We note N the number of examples in the dataset. The add
result error rate (ARER) is defined using the number P of
undesirable cases obtained (cases which do not figure on the
dataset). The forget result error rate (FRER) is defined using
the number F of cases which figure in the dataset, but are not
obtained by the method. These two error rates can be expressed
in the following way:

ARER =
P

P +N
FRER =

F

N

As stated in Proposition 1, the proposed method will always
output at least the actual matches in the dataset, so FRER is
equal to zero. Unless stated otherwise, we will refer to the
ARER when using the term ”error rate”.

We examine error rate as a function of a) the number of
stored messages and b) the size of the network, expressed as
the number of units λ in each cluster. To do so, we randomly
select a message m ∈M, and then erase randomly 4 symbols,
getting a partially erased probe m̃ as an input of Algorithm
1. We repeat this procedure to compute the average error over
the testset. Figure 5 shows simulation results for the 8-letter
words. A network containing 256 units cannot memorise more
than 7100 Messages, otherwise it retrieves them when they
are half erased with a low probability (Figure 5), so it cannot
handle the entire testset. A network with 384 units obtains a
3% error rate, while a network with 512 units retrieves half
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Figure 5. Error rate as a function of the number of stored messages and
network size λ for the 8-letter words dataset. In these experiments, the

retrieval procedure performs 4 iterations.
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Figure 6. Error rate as a function of network size λ in two different datasets.
Retrieval using 4 iterations.

erased messages with an error rate approaching the zero (blue
line in Figure 6).

We use a second dataset to validate the genericity of the
method. The chess endgame database [17] contains 7 attributes
which represent white King position (2 attributes), white Rook
position (2 attributes), black King position (2 attributes) and
the optimal depth-of-win for white (1 attribute). The test
protocol is the same as for the 8-letter words dataset, except
that we randomly erase 3 symbols instead of 4. Figure 6 depicts
for both datasets a decrease in error rate when increasing the
number of units in the cluster.

Importantly, we observe that a network with 512 units leads
to an optimal solution, in the sense that it minimizes both
error and complexity. We choose this network to perform a
comparison with the work in [7] which featured a network
with 8 clusters of 512 units. Table I compares the two methods
in terms of complexity and the two types of error rates.

The complexity of the proposed method is largely reduced.
The ARER is almost the same for both methods, while
FRER is 43% for [7] and 0% for the proposed method. This
demonstrates that the proposed method leads to substantial
enhancements both in terms of complexity and error rates
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TABLE I. Comparing the complexity and the errors of our method and the
method described in [14]

Elementary operations ARER FRER
Proposed solution 8.1 millions 0.045% 0%
(λ = 512)
Method described in [14] 878 millions 0.05% 43%

demonstrates that the proposed method leads to substantial
enhancements both in terms of complexity and error rates
compared to previous work.

VI. CONCLUSION AND FUTURE WORK

We introduced a method to store nonuniform messages
in networks of neural cliques and a method to find all
matches associated with a given query. The proposed method
involves the use of additional computational resources, but
offers asymptotically ideal precision.

We stressed the efficiency of our method on two challeng-
ing datasets, an 8-letters english words dataset and a chess
endgame dataset. We demonstrated the ability of our solution
to obtain very good precision while keeping computational
complexity largely reduced compared to previous work.

In future work, we will leverage the full potential of this
method by developing parallel hardware architectures derived
from the proposed algorithm. In addition, we plan to develop
methods to automatically select hyperparameters (in particular
the value of λ).
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