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Abstract—Determining the structure and size of a retinal 

ganglion cell’s receptive field is critically important when 

formulating a computational model to describe the relationship 

between stimulus and response. This is commonly achieved 

using a process of reverse correlation through stimulation of the 

retinal ganglion cell with artificial stimuli (for example bars or 

gratings) in a controlled environment. It has been argued 

however, that artificial stimuli are generally not complex 

enough to encapsulate the full complexity of a visual scene’s 

stimuli and thus any model formulated under these conditions 

can only be considered to emulate a subset of the biological 

model. In this paper, we present an investigation into the use of 

natural images to refine the size of the receptive fields, where 

their initial location and shape have been pre-determined 

through reverse correlation. We present findings that show the 

use of natural images to determine the receptive field size 

provides a significant improvement over the standard approach 

for determining the receptive field. 

Keywords- receptive field; retinal ganglion cell; retina; vision 

system; natural images. 

I.  INTRODUCTION 

Vision begins when light is projected onto the retina at the 

back of the eye. It filters down through a complex layered 

organisation of cells consisting of photoreceptors, horizontal 

cells, bipolar-cells, amacrine cells and finally retinal ganglion 

cells. The Retinal Ganglion Cell (RGC) is the last point of 

contact within the retina before information is transferred to the 

visual cortex for higher processing. This makes the retina an 

ideal biological system to model, as visual stimuli that impact 

on the brain’s signal processing   may be controlled while 

physiological information can be recorded simultaneously 

from multiple ganglion cells through the use of a multi-

electrode array [1]. 

Each RGC has a Receptive Field (RF) that is defined as the 

area of sensory space (photo-receptors), which when 

stimulated, elicits a response. In reality, the general shape of a 

RF is irregular [2] though it is commonly approximated to be 

either circular [3] or elliptical with a 2D Gaussian spatial 

profile [4][5].  

Identifying a RF in terms of its shape, size and location is 

critical in retinal modelling, as it is the first step in formulating 

a model that describes the relationship between stimulus and 

response. Mapping the RF is commonly carried out using a 

technique known as reverse correlation [5]–[9]. This method 

determines the size, location and shape of the RF by 

stimulating the retina with artificial stimuli and analysing the 

correlation between the stimulus and output response. For 

instance, in [3], spot, annulus, and grating patterns are used to 

determine the size and location of the receptive field while 

other techniques use spatio-temporal checkerboard data [10], 

[11].  

The drawback of determining the receptive field in this way 

is that artificial stimuli are generally not complex enough to 

describe natural visual scenes [12]–[15]. As the RGC cells are 

accustomed to the natural environment, natural images may be 

a more effective source of stimulation for characterising the RF 

[12]. The use of natural images has arguably become more 

popular within the last decade and has been shown to 

emphasize responses that were not as noticeable when using 

artificial stimuli [12]. In other work, it has been demonstrated 

that RFs derived from natural image stimuli are more robust in 

generalising novel stimuli not used in their estimation [9], as 

compared to RFs derived from artificial checkerboard and 

sparsely structured short bars. 

In this paper, we present an investigation into the use of 

natural images to refine the size of a receptive field where the 

initial location and shape have been pre-determined through 

reverse correlation. The work presented uses the method 

detailed in [13], which investigates the responses of RGCs, in 

terms of their centres and surrounds, to natural images within 

rabbit RGCs. Here, we apply this method to salamander retinas 

and measure its performance with the popular Linear-

Nonlinear (LN) cascade approach. We report on the effect of 

the determined surround area and provide supporting 

quantitative evidence of the benefits of using natural images as 

opposed to artificial stimuli.  

Section II provides an overview of the experimental 

procedure used for the physiological experiments for both the 

artificial and natural image presentations. The receptive field 

estimation following data collection is outlined in Section III 

with an overview of how the spatial size is determined for the 

centre and surround. Results stemming from the use of this 

method are presented in Section IV with a conclusion and 

future work in Section V.  

II. PHYSIOLOGICAL EXPERIMENT OVERVIEW 

Retinas were isolated from dark adapted adult axolotl tiger 

salamanders similar to the approach in [1][16], where the retina 
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is cut in half, with each half placed, cell-side down, onto a 

multi-electrode array to record cell activations in response to 

presentation of varying stimulus inputs. The stimulus was 

projected onto the isolated retina using a miniature display 

coupled with a lens that de-magnifies the image and focuses it 

onto the photoreceptor layer. Sampled at 10 KHz, the recorded 

spikes were sorted off-line and spike times were measured 

relative to the beginning of the stimulus presentation. 

Both artificial and natural image stimulation were utilised in 

these experiments. The artificial stimuli consisted of spatially 

arranged checkerboard patterns with no spatial or temporal 

order. The stimulus display ran at 60Hz whilst each 

checkerboard was updated at half this rate (30Hz) meaning a 

new checkerboard pattern was presented at approximately 

33
1

3
ms intervals. The dataset contained a large set of non-

repeated stimuli (258,000 samples) that are suitable to 

ascertain characteristics, such as the Spike-Triggered Average 

(STA, see below) and to ensure that a sufficient number of 

varied stimuli are presented in order to evoke cell responses. 
Natural image stimuli were obtained from the McGill 

Calibrated Colour Image Database, which includes a wide 
range of visual scenes, each with a resolution of 256 x 256 
pixels. Three hundred images were selected and arranged in a 
pseudo-random sequence and presented to the retina for 
200ms, with an inter-stimulus interval of 800ms to allow each 
cell to recover from the previous stimulus update. A total of 13 
presentations per image were carried out, with the mean 
response (per image) used for further calculations in this work. 

III. RECEPTIVE FIELD ESTIMATION 

In all, recordings for 49 RGCs were considered for 

determining the size and location of the receptive field (RF) for 

each RGC. Of these, 5 were classified as ON type cells by 

examining the shape of their temporal profiles [8][17][18], 

whilst the remaining exhibited temporal profiles similar to 

OFF type cells. Typically, the standard approach to estimating 

the size, shape and location of the RF is carried out using 

artificial checkerboard stimuli through a process of reverse 

correlation which is unsuitable for use with natural images 

[13][15].  

A. Receptive-Field Estimation using Checkerboard Stimuli 

Reverse correlation (also known as spike-triggered 

averaging) is the process of determining how cell activation is 

elicited through the study of how a sensory neuron sums 

stimuli that it receives at different times. The retina is 

stimulated with the spatio-temporal checkerboard stimuli; cell 

activations are recorded and used to calculate the average 

stimulus preceding a spike known as the STA [8]. Singular 

Value Decomposition (SVD) is then used to isolate the spatial 

component of the STA across time [19]. The process of 

defining the centre, size and shape of the RF is then 

accomplished by fitting a two-dimensional Gaussian function 

to the separated spatial component. 

B. Refining RF Estimation using Natural Images 

The use of natural images to determine the size of the RF 
is based on a technique detailed in [13] as the physiological 
experiments are similar to the experimental procedure outlined 
in Section II. Alternative methods involve data manipulation 
during the experimental procedure [9][14], which doesn’t align 
well with the presented approach. The aim is to utilise this 
approach to refine the predefined size of the 2D fitted Gaussian 
function. The method outlines a two-stage process that first 
determines the centre of the RF followed by the estimation of 
the surround with natural image stimuli.  

1) Centre Estimation 

In [13], centre estimation is performed through a series of 

estimated centre sizes and their cross-correlation with the cell’s 

response. Here, a range of assumed centre sizes are projected 

while retaining the original shape of the 2D Gaussian fitted 

function. 

 
Figure 1. Series of guessed centre sizes for the RF. 

Figure 1 depicts this process where a small subsample of 

estimates is demonstrated. In this example, the white disc 

represents the estimated centre size whilst the grey disc (in 

respect to this work) represents the original determined size of 

the RF through the reverse correlation technique. The black 

disc relates to the actual surround size, which will be further 

explained in the next section. For each estimated centre size, 

the mean contrast is calculated as: 

 

 
(1) 

where 𝑀𝑐 is the mean intensity of the centre region and 𝑀𝑔𝑟𝑎𝑦 

is the mean intensity of the entire image. A cross-correlation 

coefficient for each centre size is determined by: 

 

 

(2) 

where 𝐶𝑐 and  are the centre mean contrast for an individual 

image and mean of centre mean contrasts for all images 

respectively. A cell’s response to an image is denoted by 𝑟 

(which is the cell’s recorded neural response as defined in the 

experimental setup, Section II) whilst  is the mean of a cell’s 

response to all images. The cross-correlation coefficient 

essentially looks for a relationship between the centre mean 

contrast and the output response. As ON type cells respond to 

high contrast values [20] this coefficient should rise in 

proportion to the increase in the estimated centre size, until a 

point where the centre starts to be influenced by what should 

be the beginning of the surround area that adds inhibition. 

Conversely, OFF type cells are influenced by low contrast. 

This defines an inverse relationship between the cross-

correlation coefficient and centre mean contrast. 
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Consequently, the resulting shape of the curves can be a U or 

inverted U shape for OFF and ON cells respectively as shown 

in Figure 2. The three coefficients plotted (for both OFF and 

ON type cells) represent the calculated values for the example 

three centre sizes estimated depicted in Figure 1. The estimated 

centre size is determined as the size that provides the maximum 

correlation for the ON-cell and maximum inverse correlation 

for the OFF-cell. 

 
Figure 2. Example plot of the cross-correlation coefficient against the assumed 

centre size for both an a) ON and b) OFF cell.  

2) Surround Estimation 

Similarly to calculating the centre size, the approach to 

calculating the surround size begins with a series of estimated 

surrounds in the form of annuluses. The first estimate begins at 

the edge of the calculated centre size from the previous 

example as shown in Figure 3 where the grey disc represents 

the newly defined centre size, the black disc represents the 

perceived surround size whilst the white annulus represents a 

positional estimate for the surround architecture. 

 
Figure 3. Example of positional estimates for the surround architecture starting 
closest to the newly defined centre region (A) and expanding to the perceived 

outer region (C). 

The surround mean contrast is calculated as in Eq.1 with one 

amendment that replaces the mean centre intensity (𝑀𝑐) with 

the surround mean intensity (𝑀𝑠). Given that the response for 

a cell is predominantly attributed to the stimulation of the 

centre region [8][19][21], a different approach is required to 

determine the effect of each surround annulus. Computing the 

effect of each annulus requires that a selection of images is 

found that contain very similar centre mean contrast values. 

For this selection, it can be assumed that the variance in 

response, upon subtracting the mean, can be attributed to the 

surround. Fitting this response as a function of the surround 

mean contrast and taking the slope of the best fit line is 

considered to represent the effect of the annulus. Upon 

calculating the effect for several different annuluses, it is 

plotted and fitted against the position of the surround annulus. 

Figure 4 indicates the type of curves evident for a well behaved 

ON type cell and OFF type cell, respectively. 

Not all cells conform to this characteristic curve and in 

such cases, this technique in determining the size of the 

surround annulus cannot be performed with confidence. For 

cells that do conform, the first position that shows weak 

inhibition (A) determines where the surround begins. A 

further increase in inhibition is then perceived for every 

concurrent estimated annulus until it reaches a turning point 

(B) where maximum inhibition is evident. Inhibition to the 

cell’s response is then gradually decreased for further 

positional estimations until it reaches the point of providing 

no inhibition to the cell’s response (C). 

 
Figure 4. Characteristic curve fitted through the estimated annulus positions for 

an a) ON type cell and b) OFF type cell. The size of the annulus is determined 

by the distance from A to C.  

As the effect of the surround has no longer any contribution, 

this is considered the end of the surround. Thus, the size of 

the surround is determined by the distance from position A – 

C. Where there is a differential between the end of the centre 

region and the beginning of the surround (as happens in some 

cases), the stimuli in this area are not considered to be 

contributory to either the cell’s activation or inhibition and 

are ignored. 

IV. RESULTS 

To benchmark each model’s performance, a standard LN 

cascade model is implemented, which uses stimulus values 

from each approach in turn. The LN model is a popular method 

of estimating the output firing rate of a neuron by applying the 

input to a linear temporal filter followed by a static non-linear 

transformation [8][22]. For the results presented in this section, 

we perform a number of different experiments that first 

determine the effect of the surround (if any) followed by a 

comparison between the newly defined centres and the 

predefined centres (using reverse correlation) considering the 

effectiveness of the model fit. In the case of the predefined 

centres, a Gaussian smoothing function is also applied to the 

input stimulus, which accentuates the contrast levels within the 

visual scene [23] representing the processing that occurs 

between photo-receptors and RGCs. The specific parameters 

for this method are obtained through the reverse correlation 

technique thus they are dependent on the predefined centre 

size. As a result, this technique was not directly transferable to 

the natural image method.  

A. Estimated Centres 

The pre-defined size and shape is estimated as a 2D Gaussian 

distribution and given by: 

 

 

 
          (3) 

where 𝐳 is the 2D spatial coordinates,   is the centre of the RF  

and is the covariance matrix that defines the RF [7]. 

Manipulating this function allowed scaling of the RF while 

79Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-462-6

COGNITIVE 2016 : The Eighth International Conference on Advanced Cognitive Technologies and Applications



retaining the centre and shape. For this study, RGCs close to 

the edge of the image whose predefined RF area extended past 

the 256 x 256 confines of the visual scene were ignored.  

Figure 5 shows a subsample of the resulting curves for two 

OFF and ON type cells. We found that just over half of all cells 

conformed to this characteristic ‘U’ shape. Cells that did not 

exhibit this irregular bell shaped description of the effect of the 

centre were considered unclassifiable as the correct centre size 

could not be determined with certainty. 

 
Figure 5. Subsample of characteristic curves for both ON and OFF type cells 

where the cross correlation coefficient is plotted vs. the assumed centre size for 
four different cells. 

B. Estimated Surrounds 

For the calculated centres of each cell considered, a number 

of annuluses of defined widths were formed for the surround 

estimation. We found that in most cases, the surround extended 

far beyond what we had initially estimated with a good 

proportion of the expected sizes extending beyond the visual 

scene. An example curve fit (3rd order polynomial), shown for 

cell 43, is displayed in Figure 6 where the maximum positional 

estimation failed to cross the zero threshold again. In these 

cases, we extrapolated the point at which the surround ends by 

computing the roots of the fitted polynomial.  

To illustrate the extent by which the surround occupies the 

visual scene, consider Figure 7 where both the centre and 

surround are indicated for both techniques. It is noticeable that 

the RF centre calculated via the reverse correlation method (red 

ellipse) is smaller than the defined centre using natural images. 

The surround (enclosed by blue ellipses) is quite large and 

expands close to the border of the visual scene. In many cases, 

the surround extended past the border and as a result, cells of 

this nature were excluded from the investigation.  

C. Effect of Surround 

In the literature, the surround is considered to have a weak 

to non-existent effect on a cell’s response [13][21]. Testing this 

theory for the axolotl tiger salamander RGC involved the use 

of the LN model with an input stimulus consisting of a 

combination of the centre values and varying contributions of 

the surround. We also evaluated the model with both the mean 

intensity and mean contrast values. Table 1 shows results for 

the RF presented in Figure 7 displaying the Root Mean 

Squared Error (RMSE) evaluation of the model fit. It is evident 

from these results that the RGC takes no contribution from the 

surround area given the proportional relationship between the 

RMSE and surround contribution, as is noted in the literature. 

Also apparent is the improvement in RMSE using the mean 

contrast values over the mean intensity. We found this to be the 

case for all cells evaluated with respect to the surround 

contribution. 

 
Figure 6. Characteristic curve of the effect of the surround for cell 43. 

 
Figure 7. Depiction of newly defined centre and surround for cell 43. Original 
spatial RF is enclosed with red ellipse whilst the newly defined surround is 

denoted with two blue ellipses. 

TABLE 1. EFFECT OF SURROUND FOR CELL 43 

Surround 

Contribution 

% 

Mean 

Intensity 

Mean 

Contrast 

RMSE RMSE 

0 2.40 2.37 

20 2.41 2.39 

40 2.43 2.41 

60 2.45 2.41 

D. Natural Image vs. Artificial Stimuli 

Given that the surround makes a very limited contribution 

to the modelling process, only the calculated centres using the 

mean contrast values were used as a direct comparison to those 

RFs calculated through reverse correlation. In contrast to the 

results already shown for the example cell (cell 43), two cells 

that respond frequently to stimulus presentation are shown in 

Figure 8. Here, the difference is illustrated between the 

calculated and predefined centres of these two cells that were 

previously omitted due to the surround areas expanding past 

the limits of the visual scene. 
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Figure 8. Calculated centres for cells 7 (left) and 14 (right). Red ellipse 

represents original spatial RF that is almost double in size of their calculated 
counterparts. 

Encircled in red, the predefined RF in both cases is almost 

twice the size of the newly calculated centres via natural image 

stimulation. In Table 2, MC represents the stimulus associated 

with the mean contrast values determined through the natural 

image approach whilst GW denotes the Gaussian weighted 

pixels associated with RFs determined through reverse 

correlation using artificial stimulus. Using MC values of newly 

defined RFs demonstrates a considerable improvement in 

terms of both the R2 and RMSE compared with the standard 

approach (GW).    

TABLE 2. RESULTS FOR LN ESTIMATES VS. REAL RESPONSE  

Cell Method R2 RMSE 

7 
MC 0.90 0.88 

GW 0.80 1.23 

14 
MC 0.72 0.96 

GW 0.68 1.04 

41 
MC 0.01 2.46 

GW 0.00 2.58 

43 
MC 0.20 2.40 

GW 0.20 2.41 

The method used for the standard approach utilised a Gaussian 

smoothing function to pre-process the pixel values as it 

simulates the processing that occurs between the 

photoreceptors and RGC by accentuating the contrast levels of 

the visual scene. Applying this method improved the results 

somewhat for the RFs determined through artificial stimulus, 

although still not enough to have better performance than the 

newly defined centres via natural images. Cell 7, in particular, 

shows a significant increase in performance for the newly 

defined centres (MC) over the standard approach (GW). To 

this end, Figure 9 shows the error between the LN estimate and 

the real response where a discernible difference can be visually 

identified between the newly estimated RFs in Figure 9(a) and 

the standard approach Figure 9(b). Further to this, Figure 10(a) 

shows the predicted vs actual spike count for the estimated 

centres whilst Figure 10(b) refers to the original RF centres. 

The newly defined centres (Figure 10(a)) show tighter 

clustered alignment along the line of expected fit that show a 

better correlation between the real and predicted response. This 

is specifically evident for a predicted spike counts greater than 

4 when comparing both plots. 

 
Figure 9. Error plot of the difference between the LN estimate and real response 
for cell 7 that compares a) the natural image approach to refining the RF to b) 

the originally defined spatial RF determined through artificial stimuli. 

 
Figure 10. Plot showing the predicted vs. actual response for cell 7 that 

compares a) the natural image approach to refining the RF to b) the originally 

defined spatial RF determined through artificial stimuli. 
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V. CONCLUSION AND FUTURE WORK 

In this work, an investigation into the use of natural 

images to refine the size of a RF has been presented, where 

their initial location and shape have been pre-estimated 

through reverse correlation. The precision of newly estimated 

centres is quantified by analysing a standard LN cascade 

model’s ability to describe the relationship between stimulus 

and response using the newly extracted stimulus as input. 

Results from this investigation provide supporting evidence to 

preliminary results in the literature that show the use of natural 

images, to improve the estimated size, provides a significant 

improvement over spatial profiles of RFs that have been 

derived entirely from artificial stimuli. An analysis of the effect 

of the calculated surround area was performed and found to 

have little to no contribution to the overall effect on the centre 

in terms of a cell’s response. 

Due to the significant performance increase through 

modification of only the size of the RF, further study is merited 

to extend this investigation into the shape and location of the 

RF. In terms of the shape, recent studies have shown that 

focusing on sub-receptive fields (bipolar cell RFs [24]) 

provides a more accurate description of a cell’s response to 

stimulus by improving the ability to define with greater 

precision the actual shape of the  RGC RFs and this will form 

the basis of our future research. 
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