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Abstract—Dynamic changes of pupil dilation represent an estab-
lished indicator of cognitive load in cognitive sciences Exploitation
of these insights regarding pupil dilation as an indicator of cog-
nitive load for attention-aware Information and Communication
(ICT) systems has been impeded due to restrictions of pupil
analysis to a posteriori processing and exclusion of disturbing en-
vironmental factors. To overcome these issues, this paper proposes
an algorithm based on Hoeks’s pupil response model, enabling
online analysis of pupil dilation for the dynamic interpretation
of cognitive load as an input for interactive, attention-aware
systems, which outperforms state-of-the-art approaches regarding
complexity, accuracy, flexibility and computation time. Beyond
mathematical pupil modeling, this paper identifies Environment
Illumination compensation (IC), Blink Compensation (BC), Ref-
erence Baseline computation (RB) and Onset/Offset detection
(OO) as crucial fields of research for the transfer of pupillometry
from the laboratory into real-life application scenarios.

Keywords–attention-aware; behavior analysis; public displays;
implicit interaction

I. INTRODUCTION

The ever increasing digitalization of our society via om-
nipresent, interconnected services (e.g. big data, internet of
things) and devices (e.g. smartphones, wearable computers,
digital cameras, etc.) has increased data production dramat-
ically. People are flooded with amounts of information that
neither are relevant nor processable, causing a constant transi-
tion of humans from actively searching, to nowadays merely
defending and filtering human beings. Information overload re-
portedly affects humans in well-being [1][2], decision making
[3] and work productivity [4][5] as well as technical systems
(recommendation systems [6], information systems [7]). This
widening gap between data demand and supply emphasizes
the need for a new design paradigm of an attention-aware ICT
that is fundamentally oriented at the respectful handling of
people’s cognitive resources, supplying information depending
on current perception capabilities and interests.

Such an attention-aware ICT design requires the sensorial
assessment and computational interpretation of individual at-
tention mechanisms and processes as input for dynamic inter-
action control. Such systems could e.g. analyze the cognitive
load (amount of usage of existing attention resources) of sys-
tem operators in safety-relevant applications to avoid attention
failures which might cause fatal consequences, be it automotive
applications, healthcare or air traffic control. On the other hand,
an attention-aware ICT system could measure current location
of attention and level of cognitive load in alignment with task

difficulty to adapt interaction modalities and information flow
to current information perception capabilities, or even redirect
attention to critical situations which have not been consciously
perceived. The call for attention-aware ICT has been expressed
several times in recent years [8][9], but today we are ap-
proaching a time in which sensory technologies and modeling
capabilities might be sufficiently advanced to enable such truly
user-oriented, cognition-compliant interaction designs.

This work tries to contribute the next step towards integra-
tion of cognitive parameters into dynamic interaction design
via enabling an online interpretation of cognitive load (total
amount of effort being used in working memory [10]) from
pupil dilation on both algorithmic and system design levels.

A. Related Work
Modeling and exploiting human attention for optimization

of interaction design requires the reliable and immediate as-
sessment of current cognitive state. In the last decades, several
observable expressions of individual attention and cognitive
load have been identified that may serve as sensorial input,
including eye gaze behavior, over overt behavior analysis,
and various somatic indicators of attention. In this spectrum
of multi-modal attention indicators, pupil dilation has been
established in the literature as an expressive, reliable and
quantifiable indicator of attention which shows promising
potential to serve as an input parameter in the development
of future attention-aware ICT systems [11][12].

Besides light incidence control, the pupil is also sensitive to
psychological and cognitive activities and mechanisms, as the
musculus dilatator pupillae is directly connected to the limbic
system in via sympathetic control [13]. Since the 1960s and
70s, pupil dilation has been investigated as an indicator of
cognitive activities, emotion and decision making in academic
research. These research activities triggered the start of the
so-called cognitive pupillometry focused on these small but
ubiquitous pupillary fluctuations providing a unique psy-
chophysiological index of dynamic brain activity in cognition
[14].

As the pupil diameter is not under voluntary control, it
represents a promising indicator and psychological reporter
variable of internal cognitive processes. Pomplun and Sunkara
[15] identified pupil dilation as a highly relevant indicator
of occupied workload capacity and apply a neural-network
based calibration interface and comparison of effects from
cognitive workload and display brightness on pupil dilation.
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Figure 1. (a) left: Task-evoked pupil impulse response h[t] (2) [19], (b) right: Modeling of pupil curve via task-evoked pupillary response (TEPR) via a linear
combination of scaled and positioned attention impulse responses Rk resulting in modeling curveZ[t]. The impulse responses are the result of a convolution

operation of instantiated impulses Ik with the impulse response h (2).

Bijleveld et al. [16] explored pupil dilation regarding strategic
resource recruitment adjacent to subliminal reward cues and
found that resources recruitment is independent from conscious
or unconscious perception of the respective reward cue. Kang
et al. [17] continued Smallwood’s research [18] regarding pupil
dilation as an index of overall attentional effort by controlling
luminance changes, thus ruling out disturbing influences of
brightness on the study results. Kang et al. successfully ver-
ified synchronized behavior in conscious versus unconscious
perception of stimuli.

Besides Cognitive workload and attentional effort, the so-
called task-evoked pupil response (TEPR) has found appli-
cation in various other cognitive disciplines: (i) emotion &
arousal [13][20][21][22][23] (ii) task switching: Katidioti et
al. [24] and (iii) decision making [25][26].

This work is substantially based on two previous publi-
cations. Hoeks et al. [19] created a computational model of
cognition-related pupillary behavior by modeling the TEPR
as a linear input/output system whereas attentional input is
represented as a sequence of attentional impulses (Figure 1),
which are associated to pupillary output via a characteristic
pupil impulse response h[t] (Figure 1). Hoeks empirically
identified the pupil impulse response h[t] (Figure 1.a) to
reversely compute the initial attention impulses that trigger
the detected pupillary output. The position and scale of the
calculated impulses represent temporal onset and amount of
cognitive load whereas the distribution of the pupil dilation
curve represents the respective temporal course. Mathemati-
cally, the relation between i ≤ j input impulses Ii = si · δ[ki]
with scale si, onset time ki and modeled pupillary output
Z[t] is represented via the time-discrete convolution operation,
which, due to the impulse character of the input, modeling can
be simplified to the following:

Z[t] =

j∑
i=1

(Ii ∗ h)[t] =
j∑

i=1

si · h[ki − t] (1)

h[t] = t10.1 · e− 10.1t
930ms (2)

Whereas Hoeks et al. proposed a frequency-domain-based
deconvolution process to analytically deduce attention impulse
input from pupillary output, Wierda et al. [27] employed
a time-domain-based curve matching algorithm to compute
optimal impulse and impulse response distributions. Following
their empirical study, Wierda employed a fixed distribution
of attention impulses every 100ms which then were scaled
in a brute-force approach to best possible model measured
pupillary input.

Note that Wierda added a so-called ’drift component’ to his
model, assuming a general decrease of pupil dilation over time
to enable modeling of active pupil size reduction. Focusing on
pure TEPR influences, we altered the proposed code by Wierda
in the data evaluation by removing the drift component without
changing any other modeling settings.

B. In this paper
In Section II, this work will propose an algorithmic ap-

proach towards the assessment of cognitive load from pupil
dilation, which performance results go beyond state-of-the-art
in the following key aspects (Section III):
• Online Computation Capability - Whereas current

approaches rely on complete sets of pupil data and
are only capable of a posteriori processing, this work
presents an algorithm which is capable of analyzing
continuous input from an eye-tracking device in real-
time, enabling the immediate exploitation of pupil
dilation as a fast and reliable attention indicator for
a variety of devices and applications.
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• Speed - Compared to the related work by Wierda et al.
[27] the proposed approach outperforms current state-
of-the-art regarding computation time.

• Flexibility - In contrast to comparable approaches, the
proposed algorithm does not rely on fixed number and
position of attention events, increasing flexibility and
reducing complexity.

• Accuracy - While being faster and more flexible than
comparable implementations, the presented approach
performs at similar or not slight better levels of
accuracy, based on test and training data provided by
Wierda et al [27].

Furthermore, in Section IV, this paper identifies four main
challenges towards the transfer of established pupillometric
analysis approaches from the laboratory into real world, real-
time applications employing pupil dilation as an indicator for
cognitive load and input for attention-aware systems, that will
be further discussed in Section V:

• Pupillary Light Reflex - Pupil dilation requires a very
cautious analysis due to its sensitivity to environmen-
tal illumination. However, pupillary effects may be
separable by their physical nature.

• Blink Compensation - In stable lighting conditions
and fixed head settings, blinks can be erased via
linear interpolation of pupil data. Yet, as blinks are
often correlated to head movements (and relocations
of attention) the pupil baseline may shift due to
illumination changes in free movement scenarios.

• Baseline Computation & Onset/Offset Detection -
Usual a posteriori analysis allows qualified definitions
of reference baseline scores due to interpretation of
the complete data set, allowing identification of onset
and offset of cognitive activity. A real-time approach
needs to select suitable onsets of cognitive activity
without further knowledge regarding future data.

II. METHODOLOGY

The goal of the proposed developments is an iterative
(frame-wise) optimization algorithm which is capable of
modeling continuous data-streams of pupil dilation for online
analysis of cognitive load.

Similar to Wierda’s approach, we propose a curve matching
optimization algorithm in the time domain in contrast to the
analytic deconvolution process, as deconvolution is restricted
to a posteriori processing. Yet, the proposed approach is not
based on fixed numbers and locations of attention impulses,
but dynamically detects the position and scale of attention
impulses, optimized to best possibly match the measured pupil
curve.

A. Triggering Impulses
Following Hoeks’s model, the optimization algorithm is

based on a list of j attention impulses Ij(sj , tj) with scales
si and time stamps ki (i ≤ j) which are set and scaled
to minimize the error between the measured pupil data and
the modeled pupil response. In each iteration, the error E[t]
between the pupil dilation signal Y [t] and the current modeled
curve Z[t] is evaluated as to whether it exceeds a certain trigger
threshold τ (see Figure 2). Such a trigger event adds an impulse

Ij+1(sj+1, kj+1) of yet undefined scale sj+1 at time kj+1. As
the literature reports a delay between attention impulse and
respective impulse response onset of 300 − 500ms, impulse
onset was set to kj+1 = t − 500ms, which showed optimal
modeling performance on the applied training data.

-y[t]

Z[t]

Impulse
Optimization

Add
Impulse [t-500]

Z[t-1] E[t]

>

<

Figure 2. Pupil Modeling Algorithm

The suitable scaling of the detected attention impulses rep-
resents the most crucial challenge in the proposed algorithm.
This especially covers optimization range and handling of
multiple overlapping impulse responses.

B. Isolated Impulse Optimization
Hoeks’s impulse response shows its biggest impacts in

the range from [ki; ki + 3000ms]. Due to this behavior we
define neighboring impulses as non-overlapping if ki+1− ti >
3000ms. In the basic case of a single, isolated impulse
i = j = 1, the optimization algorithm needs to minimize
the squared error ε[k1, t] of the accumulated error function
(3) in the time range from t ∈ [k1, kmax,1] whereas kmax,1

represents the maximum peak of the impulse response curve
at k1 + 930ms. This limitation has been introduced, as a
further extension of the optimization range tends to cause
overcompensations of errors in the dropping slope of the
impulse response which can better balanced via new attention
impulses.

ε[k1; t] =

t∑
t=k1

E[t] (3)

ε[k1; t] =

t∑
t=ki

(Y [t]− s1 · h[k1 − t])2 (4)

In each iteration, the scale s1 of the attention impulse is
computed to minimize the error ( d

dsε = 0) and thus provides
the optimal modeling of the observed pupil dilation curve.
As soon as t exceeds the optimization window (t > kmax,1),
the scale of the impulse is fixed to the last computed score,
hence only current impulses (t−k1 < 930ms) take part in the
modeling process. Note that the computation of the parameters
can be optimized as only the parameters of the current time-
frame t needs to be computed iteratively.

d

ds1
ε[k1, t] = 2[s1

t∑
t=k1

h2[k1 − t]−
t∑

t=k1

(h[k1 − t] · Z[t])] = 0

(10)

s1 =

t∑
t=k1

(h[k1 − t] · Z[t])

t∑
t=k1

h2[k1 − t]
, t ∈ [k1, kmax,1] (11)
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ε(si−1, si) =

ki∑
t=ki−1

(Z[t]− si−1 · h[ki−1 − t])2 +
t∑

t=ki

(Z[t]− si · h[ki − t]− si−1 · h[ki−1 − t])2 (5)

∂

∂si−1
ε() = si−1

t∑
t=ki−1

h2[ki−1 − t] + si

t∑
t=ki

(h[ki−1 − t] · h[ki − t])−
t∑

t=ki−1

(h[ki−1 − t]Z[t]) = 0 (6)

∂

∂si
ε() = si−1

t∑
t=ki

h[ki−1 − t] · h[ki − t] + si

t∑
t=ki

h2[ki − t]−
t∑

t=ki

(h[ki − t] · Z[t]) = 0 (7)

K1 =

t∑
t=ki−1

h2[ki−1 − t] K2 =

t∑
t=ki

h[ki−1 − t] · h[ki − t] K3 =

t∑
t=ki

h2[ki − t] (8)

K4 =

t∑
t=ki−1

h[ki−1 − t] · Z[t] K5 =

t∑
t=ti

h[ki − t] · Z[t] (9)

C. Multiple Impulse Optimization Approaches
The complexity of the optimization problem increases

significantly as soon as multiple attention impulse responses
overlap (see Figure 1.b). There are several possible approaches
to this issue, which we will discuss in more detail.

The first approach handles overlapping impulse responses
consecutively, in chronological order of appearance. It op-
timizes the scale of the first impulse, and then iteratively
computes the remaining error for optimization of overlapping
impulses and impulse responses. Again, as soon as t > tmax,i,
the scale si is fixed and impulse i is no longer part of the
optimization process. This represents a very straightforward
approach which allows a direct, iterative application of the
principles developed for Isolated Impulse Optimization (11).
However, this approach tends to create systematic errors due to
the distinct independent optimization processes which manifest
as continuous overestimations of the to-be-modeled curve. Due
to these systematic issues, this approach has been rejected at an
early stage and has not been subject to the detailed evaluations
presented in the following.

The second approach avoids the problem of systematic
errors caused by independent optimization processes via only
optimizing the current, latest impulse response. As soon as
a new impulse is added to the system, the previous impulse
is fixated to the current score. This procedure also allows
the direct application of the Isolated Impulse Optimization on
the remaining error function, is less complex, computationally
less expensive and provides significantly better results than the
first approach. In the following evaluation, this model will be
referenced as Single Impulse Optimization (SIO).

The third approach considers not only one but two consec-
utive impulses at a time, allowing a combined optimization
of overlapping attention impulse responses. This approach
represents a more elaborate process regarding improved mod-
eling accuracy but also causes an increase in computation and
implementation complexity.

In this case, the optimization is executed at two consecutive
scale variables sk−1 and sk at the same time via partial
deviations of the new error function (5). Solving the partial
deviations (6), (7) results in a linear equation system (7), (8)
with the substitutions K1−K5 (13 - 14). This linear equation
system can be solved as visualized in (9) and (10). This

optimization approach will be referred to as Double Impulse
Optimization (DIO).

K1 · si−1 +K2 · si = K4 (12)
K2 · si−1 +K3 · si = K5 (13)

si =
K2K4 −K1K5

K2
2 −K1K3

(14)

si−1 =
K4

K1
− K2

K1
· si (15)

Again, the respective parameters can be iteratively com-
puted for the current time-frame, thus increasing computation
performance.

III. RESULTS

We employ Wierda’s approach as ground truth based on
the code and empirical data provided in [27] to evaluate the
developed SIO and DIO algorithms.

In Wierda’s empirical study, visual stimulus sequences
were presented to 20 subjects at 100ms intervals and nor-
malized pupil data is used for impulse and pupil response
modeling. As some of the subject data sets did not provide
any positive pupil dilation that could be modeled by the
optimization approaches without the removed drift component,
5 subject data sets were removed from the dataset resulting
in a final dataset of 15 subjects. The proposed algorithms
were implemented in parallel to Wierda’s code to evaluate
our approaches regarding modeling accuracy, result complexity
and computation time.

A. Accuracy
The mean squared error averaged per person for Wierda’s

approach as well as SIO and DIO are displayed in Table
I. It can be observed that the performance of the different
approaches are almost identical with slight advantages for
the newly proposed methods, visualized in Figure 3. It is
noteworthy, that these results were obtained employing a less
complex (smaller) set of attention impulses.

Surprisingly, the more elaborate DIO approach did not
provide substantial benefits in modeling accuracy, a result
which was confirmed in further evaluations on continuous test
and training data. This indicates that the effort for complex
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Figure 3. Comparison of modeling performance, averaged over 15 subjects.
The three modeling approaches show very similar accuracy with light

deviations in the range of 800− 1200ms.

TABLE I. ACCURACY

Model MSE average # impulses
Wierda 0.0120891 34.00

SIO 0.0118583 4.66
DIO 0.0118421 3.73

modeling of several parallel impulses is not reasonable, espe-
cially with the nonlinear increase of the associated complexity
level.

B. Speed
With computation time representing a crucial aspect to-

wards online applications, the average performance for model-
ing the 15 subject data sets was computed as displayed in Table
II. It can be observed that the dynamic modeling approaches
clearly outperform the brute-force approach by Wierda et al.
without being fine-tuned towards performance optimization
(iterative computation of required parameters) by a factor of 6
to 7.

TABLE II. AVERAGE COMPUTATION TIME

Model average time [s]
Wierda 3.008

SIO 0.441
DIO 0.487

Note, that the computation times are average results for
data sets of 208 instances per subject, resulting in an average
computation time of 2−3ms per iteration, indicating real-time
capability.

IV. CHALLENGES TOWARDS AN ONLINE,
NON-LABORATORY SYSTEM

To evaluate the developed algorithms in a real-world
scenario, we employed long duration pupil data from an
interaction field study executed at the Institute for Pervasive
Computing at the Johannes Kepler University Linz. Twelve
subjects wore eye tracker glasses in a half hour experiment

Figure 4. top: Setting of field study execution. bottom: long time scale
example of curve modeling based on SIO modeling approach, showing

measured pupil data, modeled pupil curve and resulting impulse positions
and scales;

providing long-scale pupillary tracking data (Figure 4). The
gathered pupil data was low-pass filtered to eliminate sensor
noise, no further filter processes were applied.

Aiming at an online analysis of pupil dilation as a measure
of cognitive load for interactive system control in real life
applications poses several challenges besides the described im-
pulse modeling. In the following, we will present four central
challenges that have been identified in the research literature
as well as first approaches towards the implementation of an
online analysis system of cognitive load for non-laboratory
environments based on a wearable eye tracker:

A. Illumination Compensation (IC)
As established in the literature, the stability of current

environment illumination is the key prerequisite of pupillomet-
ric analysis, especially in non-laboratory settings. We propose
to evaluate the average illumination in the subject’s field of
view based on a brightness analysis of the first person cam-
era footage integrated into established wearable eye tracking
sensors. For this purpose, we propose the application of the
average perceived luminance [28], and thereupon interpretation
of the luminance difference between consecutive frames.

As soon as detected changes in illumination brightness
exceed a defined threshold, pupil analysis will be suspended
until the environmental conditions have stabilized again. Per-
haps in the future, the functional relation between illumination
and pupil size baseline will allow the direct modeling of the
reference baseline.

B. Blink Compensation (BC)
In laboratory pupillometric research, the occurrence of

blinks represents less of a problem than free head movement
environments. Laboratory settings usually control illumination,
head orientation as well as stimuli brightness, which reduces
blinks to simple interruptions of the continuous course of
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Figure 5. left: Activity and environment dependent changes of reference baseline levels; Established interpolation of missing pupil data during blinks will
cause false positive modeling of cognitive activity. right: potential interpretation of period lengths and amplitudes of cognitive activity; the detection of onset

and especially offset triggers allows highly different interpretations of the same data.

pupil dilation, and allow the widely established procedure of
erasing blink disruptions from pupil dilation data via linear
interpolation.

When analyzing empirical training data from a free head
movement environment, blinks need to be considered in more
detail as blinks are often correlated to head movements, thus
changing the perceived field of view and exposed illumination.
These changes in illumination manifest in significant baseline
shifts before and after blink activities (see Figure 5), requiring
a reset of reference baseline adjacent to every single blink
event. Hence, we propose employing blink event detection to
trigger a restart of reference baseline computation.

C. Onset/Offset detection (OO) & Reference Baseline (RB)
The issue of online computation capability is based on

the ability of handling continuous data input streams and
thus mainly in association with marking start and exit events
of attention-related pupillary activity. Whereas a posteriori
data processing allows the selection of adequate initiation and
termination criteria of pupillary activity, continuous data pro-
cessing requires qualified estimations on periods of pupillary
activity.

In the proposed approach, activity onset is triggered as soon
as the error between measured pupil dilation and calculated
reference baseline exceeds the defined trigger threshold τ . The
cognitive activity is terminated as soon as the pupil dilation
falls below the onset score again. The computed averaged score
at activity onset is retained as a reference baseline throughout
pupillary activity. The respective reference score is averaged
over the last 500ms or if situated close after a detected blink,
pupil reference calculation starts right after the last blink event:

b[t] =
1

imax

imax∑
i=0

Z[t− i] (16)

imax =

{
500ms
fps if t− tblink > 500ms

t−tblink

fps if t− tblink <= 500ms
(17)

Yet, this procedure is prone to general increases of pupil
dilation during an active period, which may prevent the pupil to
return to its initial diameter, causing long duration mis-scalings
of derived attention impulses (see Figure 5).
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ReferencezBaselinezvRBF

BlinkzCompensationzvBCF
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ImpulsezOptimization
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AddzImpulsevtL500zmsF
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CognitiveLoadz[t]

Figure 6. Structure of proposed algorithm for online analysis of pupil
dilation for dynamic input for interactive systems.

D. Proposed Process Loop
In summary, we propose a processing loop as visualized in

Figure 6, extending Figure 1. In each iteration, the captured
gaze data passes the described pre-processing modules of
(i) ensuring constant illumination (ii) blink detection, (iii)
reference baseline computation (iv) onset/offset detection as
well as the actual described curve matching algorithm.

V. CONCLUSION AND FUTURE WORK

In this work, we have presented an algorithm for online
analysis of cognitive load information from (wearable) eye
tracker devices, applicable as input for online, dynamic in-
teraction adaption to the current cognitive state of the user.
This opens the door for innovative, non-laboratory attention-
aware system designs and applications which are capable of
adapting to current user abilities and requirements.

This work contributes a pupil modeling algorithm which
exceeds current approaches in (i) online computation ca-
pability, (ii) computation performance, (iii) flexibility, (iv)
result complexity and (v) has proven competitive regarding
accuracy in comparison to a current state-of-the-art approach.
Furthermore, this work identifies four main challenges and
gives first primitive approaches towards the realization of an
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online, non-laboratory pupil analysis system, applicable for use
with current wearable eye trackers and provides a means to
overcome the most crucial disturbances of environment illumi-
nation, blink events as well as issues of online interpretation
of cognitive pupillary activities.
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