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Abstract—This paper deals with the rules of good classification 
and comparison, as well as matching the representation of the 
results with what has actually been accomplished. The 
emphasis in machine learning classifications, as well as, 
sometimes, outside of that paradigm, is almost exclusively on 
the precision of separating classes from each other, and hardly 
any effort is made to assess the nature of the classes with 
regard to their grain size. This results in a considerable 
disparity between the claimed results and what is really 
demonstrated, leading in turn to crude solutions to issues and 
poorly functioning applications. We propose an ontological 
solution, following the explicit tracing of a conceptual 
hierarchy underlying the classes. This approach may lead to a 
variety of solutions that can be compared after classification 
and similarity studies mature enough to face the issue. 

Keywords-comparison; classification; hierarchy; propert;, 
similarity; ontology; concept. 

I.  INTRODUCTION: SLOPPY CLASSIFICATIONS 
Research, cognition, reasoning all involve some 

comparison, classification, similarity. Decisions on the bi-, 
tri- or multifurcation of a concept are common and 
inevitable. Statistical methods discover and refine unknown 
classifiers to divide a large bunch of samples into in- and 
outliers. Rule-based systems use rules to compare and 
classify. Are we doing it right? Do we know how to do it 
right? Is it useful to do it right? 

The problem addressed in this paper is the status and 
(mis)interpretation of classifications and classifiers. Do the 
researchers have a clear picture of what they actually 
compare as opposed to what they want or purport to 
compare?. It addresses primarily the lack of attention and 
direct research effort in clarifying and codifying this 
problem—actually, an amazing lack of awareness that  
exists. Yet, grain size misclassification can have devastating 
effects on understanding the phenomena and question and 
the issues with them, as well as recommending precise 
solutions, pretty universally across research, from political 
and military solutions to treating bad cells in a patient.  

The research question, then, that we are posing here, 
quite possibly for the first time so explicitly, is how to clarify 
and raise the precision of a proposed classification in just 
about any area of research. We will propose that the solution 
requires an ontological framework and a clear notion of grain 

size. The paper is not meant as a critique of the status quo 
with regard to the treatment of classification but rather to 
inform the diverse communities of scholars of a primising 
framework for improving that treatment. But first, a couple 
of examples of classification inexactitude, with 
consequences. Both come from areas of research where 
extensive scholarship has been done, including our own, but 
other than that, all they have in common is something they 
share with virtually any other area of research, namely, that 
they do classification and interpret their results. 

Recently, we were asked to review a paper (not yet 
published, it may become officially citable soon) that used a 
machine-learning approach to separate serious text from 
satirical one. Not surprisingly, the results were statistically 
significant. Moreover, one could look at the features that 
were used to make the classification. A question to be asked 
is whether one should look at such features to shed light on 
the properties of satire. A simplified schema of humor 
classification in Figure 1 helps to see why it is not desirable 
(see Raskin et al. [1] for a discussion of the state of the art in 
humor theory and computational humor and for multiple 
references; cf. Raskin [2]).. 

 
Figure 1. Simplified humor classification. 

The question to be asked when one looks at the features 
is: was the distinction that was caught really the one between 
non-humorous text and satire? From the figure above, which 
most humor researchers will consider simplistic perhaps but 
plausible, satire is not just humorous but also containing a 
message that is targeted. It is also distinct somehow from 
irony and sarcasm. None of these features is mirrored on the 
non-humorous side, and there is a very serious risk of 
misinterpreting the results of the experiments. In all 
likelihood, what the classification captures is the distinction, 
at a much coarser grain size, between humorous and non-
humorous text, the latter being a remote ancestor 
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(hyperonym) of satire and impervious to the targeted-
message nature of satire. 

Similarly, in our own recent work on phishing (see Park 
et al. [3], Stuart et al. [4], and Park and Taylor [5], we 
compared bona-fide, legitimate email in the Enron corpus 
with a bunch of known phishing emails. We invested a 
considerable theoretical and methodological effort in the 
work and got reportable results. But, we dealt with a 
situation that is similar to satire, with phishing being the 
counterpart of satire (see Figure 2). 

 

 
Figure 2. Simplified email classification. 

The notions in Figure 2 are better definable than those in 
Figure 1; so in order to identify phishing, we needed first to 
have a corpus containing both bona-fide email from non-
bona-fide emails. After separating those out, we needed to 
focus on the non-bona-fide corpus and separate malware-
inserting emails from non-inserting; and then on, to a still 
narrower corpus and separating click requesting from non-
click requesting. If the only click-requesting kind is phishing 
we are home, right? No, actually, there still exists bona-fide 
email that is click-requesting because our graph is actually 
not a tree but rather a lattice. In any case, we did not provide 
for any such complications, so we did just the first 
separation, and we failed to separate phishing from any other 
kind and sub-kind of non-bona-fide email. Our excuse, if 
any, is that we did not have enough corpora for the lower 
divisions. It is the same excuse as in the case of satire above. 
One does depend heavily on the availability of sufficient 
corpora but this is not a sufficient excuse for misidentifying 
the results. 

The two examples above are sloppy classifications, and 
those are ubiquitous. Section II seeks help from adjacent 
disciplines, namely, the philosophy of science for theory 
building and research hygiene: as well as from psychology 
for similarity studies. Section III introduces the Ontological 
Semantic Technology (OST) whose property-rich ontology 
is a suitable base for rendering classification more rigorous 
and precise. We believe that more approaches will be 
developed to handle various meaning-based data- and text-
processing applications, and that will be the time to compare 
OST to competition. We are not sure, however, that without 
a similar proper ontological base, a solution is possible. 
Section IV formalizes the OST approach, with a focus on 
ontological concepts and properties. The conclusion of 
Section V puts forth the down-to-earth application of the 
principle of rigorous comparison and application: where 
sole-property comparison is impossible or impractical, just 
explicating the property-set comparison may be a path to 
success. Given the paucity of effort in ensuring the grain size 
rigor of classifications and comparisons, the main 
contribution of this paper is drawing the wide community’s 
attention to the issue of sloppy classifications, especially 

when the features are used to understand the nature of the 
crucial role of ontologies as remedy. 

II. STATE OF THE ART 
All research requires definitions, distinctions, 

comparisons, and classifications. The need to introduce 
categories and sub-categories is universal. Surprisingly, the 
state of the art on the precision of classification is minimal: 
there is no precision metric nor evaluation procedure for 
doing it right, and there is a definite, if not desperate need in 
both for virtually any area of research. In this section, we 
overview research on the philosophy of science that is 
supposed to contribute to theory building and psychology, 
mostly, cognitive psychology, on similarity (see references 
below). We briefly look for help in heuristics as well 

A. Philosophy of Science 
A brief look at the index pages of a couple of new 

readers in the field (Curd and Cover [6], Balashov and 
Rosenberg [7]) discovers a shared lack of any mentions of 
classification, comparison, distinction, separation, or 
hierarchy as worthy items of discussion. Hardly anything 
comes up on web and library searches. The last item does 
emerge in the context of biological classifications, and this 
should be expected: Linnaean classifications of the animal 
world, yet another unrelated domain of classifying, along 
with humor research and phishing mentioned above, have 
traditionally provided poster-child examples of 
straightforward sub-classifications, such as shown in Figure 
3: 

 
Figure 3. Simplified animal classification. 

What Ereshefsky [8] states on the very inside cover, 
however, is as follows: 

“The question of whether biologists should continue 
to use the Linnaean hierarchy is a hotly debated 
issue.Invented before the introduction of evolutionary 
theory, Linnaeus’s system of classifying organisms is 
based on outdated theoretical assumptions and is 
thought to be unable to provide accurate biological 
classifications.  

Marc Ereshefsky argues that biologists should 
abandon the Linnaean system and adopt an alternative 
that is more in line with evolutionary theory.” 

The customary advantage of the ancient classification is 
what was introduced and studied in the 20th-century 
mathematics as inheritance (Touretzky [9]): mammals inherit 
all properties of animals and add a few extra properties of 
their own; canines and felines inherit all of those, and each 
adds an extra set of additional properties; cats and dogs add 
another set of properties as well. As a result, a dog collects 
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all the properties from animal (and its superclass, if any) to 
canine, as well as adding its own properties that other 
canines do not have. 

Perhaps, one explanation of classifications and 
hierarchies not being actively discussed and researched is 
that, as per Potochnik and McGill [10],  

"The concept of hierarchical organization is 
commonplace in science and philosophical treatments of 
science. Though there are different applications of the 
concept of hierarchy, our primary focus here is the idea 
that material composition is hierarchical. Subatomic 
particles compose atoms, which compose molecules; 
cells compose tissues, which compose organs, which 
compose organisms; interbreeding organisms compose 
populations, which compose communities, which 
compose ecosystems; and so on. The basic idea is that 
higher-level entities are composed of (and only of) 
lower-level entities, but the prevalent concept of 
hierarchical organization involves stronger claims as 
well. The compositional hierarchy is often taken to 
involve stratification into discrete and universal levels of 
organization. It is also often assumed that levels are 
nested, that is, that an entity at any level is composed of 
aggregated entities at the next lower level.” 

The few references that are there to classifications, 
hierarchies, and levels in the contemporary philosophy of 
science seem to be all derived from an almost forgotten 
classic [Feibleman {11], p. 59], where the very first of the 
many rules establishing the hierarchy of “integrated levels” 
states that 

“[e]ach level organises the level or levels below it 
plus one emergent quality. Thus the integrative levels 
are cumulative upward. This proposition implies that 
everything has at least the physical properties and has 
led to the position of supreme importance of the 
physical world in science and philosophy.” 

Very characteristically to this strand, the whole 
philosophy of levels and hierarchies is limited to the physical 
world: the last sentence of the quote above limits it to 
physical objects, typically starting from bottom up with 
atoms and molecules. Potochnik and McGill [10] follows the 
same route, even though the paper applies this philosophy to 
ecology. Ereshefsky [8] is all about biology. So, Attardo and 
Raskin [12], an additional useful source on humor theory, 
had to do its own philosophy of science when it needed to 
establish a hierarchy of abstract levels of representation for a 
verbal joke in the General Theory of Verbal Humor on the 
principle of each higher level adding a restriction on the 
lower level, thus narrowing that latter’s scope of included 
phenomena, as per Figure 4. 

The integrative levels theory was, apparently, running 
high and ambitious in the mid-third of last century (see 
Bertalanffy and Woodger [13], Novikoff [14], and 
Bertalanffy [15]0, prompting Feibleman to hope, after 
Bertalanffy [15], for “a sort of super-science which shall 
have as its subject-matter the relations between the sciences. 
The philosophy of science may yet be the source for the 
development of an empirical field itself consisting of the 
integrative levels, a sort of meta-empirical field, with its own 

entities and processes and laws” (Feibleman [11], p. 59]. 
This has never happened, and this paper is suffering from the 
lack of helpful pertinent wisdom. 

 

 
Figure 4. Levels of hierarchy of GTHV. 

B. Formal Ontology 
Some of what the philosophy of science could have 

delivered was contributed in formal ontology (see, for 
instance, Guarino and Poli [16]): a rigorous notion of 
hierarchy and inheritance, with a detailed study of 
subsumption. Never directly allied with the philosophy of 
science, it has been a blend of philosophy and logic, not 
focusing on the building nor application of actual ontologies 
and thus not involving itself in comparisons and 
classifications—just contributiung to a solid theoretical 
foundation for doing it right. 

C. Cognitive Psychology 
The main contribution that cognitive psychology has 

made for classification and hierarchy is a bit indirect: 
distinction and classification is closely related to the notion 
of similarity: note that, in any hierarchy, the subclasses of the 
same class share all the inherited properties and differ only in 
those extras that they add, and it was a high-powered strand 
of research on similarity and properties that flourished in 
cognitive psychology in several previous decades. 

It was, apparently, Gregson [17] that put the 
measurement of (perceived) similarity on the map of 
psychological research. His thorough survey of similarity 
models, spatial and otherwise, did not focus, however, on the 
foundational notion of property that similarity must be based 
on, and it was the seminal Tversky [18: p. 330] that did. It 
proposed the general format for a property-based 
measurement function of similarity as “s(a,b) = F(A∩B, A - 
B, B - A),” where “[t]he similarity of a to b is expressed as a 
function F of three arguments: A∩B, the features that are 
common to both a and b; A — B, the features that belong to 
a but not to b; B — A, the features that belong to b but not to 
a.” 

In subsequent usage, the formula above has been often 
traded for a cruder but simpler measure as A∩B/A∪B, i.e., 
the intersection of the feature sets of a and b, divided by the 
union of these sets, standardly normalized to the [0,1] 
interval. 

It is, however, Osherson et al. [19][20] that built a series 
of similarity models on a couple of subsets of a small animal 
dataset underlaid by a somewhat greater set of their 
properties, 48 and 85, respectfully for the latter paper. First 
having calculated the similarity measurements among the 
animals from the data set, using the simplified metric above, 

SO	   • Script	  Opposition	  

LM	   • Logical	  Mechanism	  

SI	   • Situation	  

TA	   • Target	  

NS	   • Narrative	  Strategy	  

LA	   • Language	  
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they conducted an experiment with 10 human subjects and 
compared their similarity judgments with those predicted by 
their model. 

There are two aspects of this research that are of a 
particular interest to us here. First, the origin of the 
properties used as the foundation of the similarity model: 
they were compiled by the researchers “empirically” and 
offered to the 10 subjects with the instruction to detect and 
suggest the addition of any new property other than the 
sounds the animals made. An additional property would only 
be taken into consideration if proposed by more than one 
subject. We proposed an ontological foundation for our   
(Taylor and Raskin[19]).  

Second, none of Osherson’s and his associates’ papers 
over almost two decades, directly based on the animal 
dataset or following from earlier research on it, had the 
similarity model as the goal. In fact, the models were 
obtained to be used as tools in research on human reasoning, 
such as inductive judgments (Osherson et al. [19]), default 
probabilities (Osherson et al. [20]), the conjunction fallacy 
(Tentori et al. [22]). Later related work (Perfors et al. [23], 
Kemp et al. [24]), using their own variations of animal 
datasets and properties, applied their models to research the 
way children learn “domains” and “theories of the world,” 
respectively. We are also interested not so much in similarity 
models as in the nature of properties that are out there in the 
world and that people reason with, thus necessitating the 
need to computerize those properties for the purpose of 
constructing a meaning-based structure from text and other 
data. 

D. Heuristics 
Our best help should have probably come from this step-

daughter (hopefully, Cinderella) of mathematics, pretty 
much completely ignored by other disciplines. The insights 
in the old classic Polya [25] and the newer classic Pearl [26] 
should inform theory-building significantly. In fact, 
heuristics should be the basis of any graduate course or 
seminar on research methods on top, if not even instead, pure 
statistics that most universities offer exclusively. 
Unfortunately, heuristic ideas are hard to pack in off-the-
shelf software, and abduction, on which much heuristics 
rests, has not been able to compete with deduction and 
induction, instead of its ubiquity and scope, for the minds of 
scientists and other scholars. 

III. ONTOLOGY, HIERARCHY, AND GOOD 
CLASSIFICATION 

A. Ontology 
The ontology comes from our particular approach to 

computational semantics the Ontological Semantic 
Technology (OST). The theory-cum-technology is a radical 
revision and improvement of Nirenburg and Raskin [27];see 
Raskin et al. [28], Taylor et al. [29], Taylor and Raskin [30], 
Hempelmann et al. [31], Taylor et al. [32][33]. The 
centerpiece is indeed the language-independent semi-
automatically constructed engineering ontology, as per 
Gruber [34], consisting of concepts (OBJECTs and EVENTs) 

linked with a rich system of PROPERTYs. Each supported 
natural language, e.g., English and Russian shown on Figure 
5, has a lexicon with supporting morphological, and 
syntactic rules, supplemented with phonological rules (not 
shown), when required by an optional speech recognition 
functionality. 

 
Figure 5. OST Architecture.  

A lexicon contains all the lexical entries for the language, 
each entry with all of its senses. The central components in 
an entry are the partial syntactic information (SYN-STRUC) 
and full semantic information (SEM-STRUC). The latter 
typically “anchors” the sense of a lexical item in the 
appropriate ontological concept, restricts some of its property 
fillers if necessary, and binds the variables introduced in the 
sense’s SYN-STRUC. The ontology captures much information 
about how things are in the single or multi-domain world it 
serves. The ontology is supplemented by the previously 
processed information from the InfoBase and by dynamically 
collected shortcut and commonsense rules on which the 
machine and a human ontology engineer collaborate. 

The OST various processors operate on the anchoring 
results. When a sentence arrives at its input, the analyzer 
looks up every word in the lexicon, checks that its usage 
conforms to the SYN-STRUC, selects the corresponding SEM-
STRUC, identifies the event in each clause, and then attempts 
to match all the other concepts evoked by the words and 
phrasals as the fillers of the event’s properties. The result, the 
Text Meaning Representation (TMR) of the input sentence is 
stored in the InfoBase for further usage, including possible 
correction or challenge by the later arriving text. 

B. Hierarchy 
The OST ontology, like most real and pseudo-ontologies, 

is based on subsumption, which means that its IS-A property 
is privileged to pass on properties from higher-level (parent) 
nodes to low-level (child) nodes, as shown in Figure 3. The 
ontology is not a tree, however: rather, it is a lattice. This 
means occasional complications to inheritance. Also, very 
rarely, a property to be inherited have to be blocked as, for 
instance, continuing with the convenient animal world, 
ostriches and chickens should inherit all properties of birds 
except the ability to fly. 

C. Good Classification 
A good classification is a minimal, carefully controlled 

deviation from the ideal classification, a deviation which 
occurs only when necessary. The ideal classification is 
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achieved by a hierarchy, in which each child adds one simple 
ontological property to the ones it inherits from its parent 
and, thus, from its entire ancestry. In reality, what is added is 
most often a set of properties. An ontological approach 
allows us to be fully aware of what the set consists of and, if 
necessary, to entice us to separate its property elements out 
in additional computer experiments. Our ongoing work on 
composable properties (Taylor and Raskin [35]) promises 
further progress in this direction. 

IV. A BIT OF FORMALISM 
For the purposes of this discussion, let us assume that 

each concept C can be defined as a combination of properties 
P1, P2, …, Pn.  Each of these properties can be further 
restricted by specifying a particular argument to a property.  
For example, a concept HUMAN (see Figure 6) can have a 
property GENDER, and for the sake of simplicity, let us 
assume that the range of this property can be either MALE or 
FEMALE.  In order to define the concept WOMAN, one would 
need to restrict the property GENDER from its most generic 
case to that of only FEMALE.  

Now, let us consider a more general case. Suppose a 
concept C1 can have a property P1. Each of its children, C2.i 
will also have a property P1, restricted by a particular filler -- 
let us say filler ai -- as well as inheriting the rest of the 
properties that C1 inherited, each with the restrictions done 
for the parent (see Figure 7). Children of C2.i will also have 
some property, lets call it P2.i, that will be restricted by some 
fillers, thus introducing a new layer of descendent concepts, 
all of which will still inherit P1(ai).  Eventually, we will run 
into a situation where a concept Cj,k is composed by j-1 
properties, each of which is restricted by at least once when 
passed from a ancestor to a descendant. It is possible that 
concept Cn.i (see Figure 7), which inherited a property P2.3 
with filler a8 needs to have a more specific filler than that of 
a8. Then, the property Pn.i will be the same as property P2.3, 
but the filler of the property for the children of Cn.i will be 
have to be children of a8. 

 
Figure 6. Hierarchy example. 

 

 
Figure 7. Hierarchy based on properties. 

Within such a structure, the concept C3.1 differs from 
the concept C3.5 by a filler of property P1, as well as by 
properties uniquely introduced for these concepts, namely, 
P2.1 and P2.3.  Perhaps, it will be clearer in a more concrete 
example, outlined in Figure 6. The concept MOTHER	  differs 
from the concept BOY by a filler of the property GENDER, as 
well as by the properties that lead to the concept MOTHER, 
and those that lead to concept BOY. In Figure 6, the only 
ones that are visible are AGE and AGENT-OF.  It is possible 
that some of these properties are the same – we can use our 
common sense here—both MOTHER and BOY do have some 
AGE, and both are likely to be AGENT-OF something.  In that 
case, we will say that property Px and Py are the same.	  	  

It is also possible that P1 is entirely inherited by the 
child concept, without any restriction, but then there will be 
another property Pi that the child will restrict, otherwise the 
child and parent concept run the danger of being identical.  

If we are not dealing with a tree, but with a lattice, there 
is more flexibility in building a graph that would absorb the 
common properties within their parents, whether it would 
result in multiple parenting scenarios or not.  There are 
many formalisms that allow such lattice to be build and 
construct it automatically.  

Two concepts Ci and Cj, then, can be looked at in terms 
of 3 sets of properties: one set that is shared between them, 
one set that Ci has, but not Cj and one set that Cj has but not 
Ci. To complicate matters, the shared set is likely to have 
different fillers of the properties, and thus we have to 
subdivide this set into properties that have identical fillers 
between Cj and Cj and properties that have different fillers.  
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Figure 8. A sample structure to lead to apple and cottage concepts. 

As an example, lets us compare apples and orange 
cottages, as highlighted in Figure 8. The overlapping 
property set between orange cottage and apple (also 
orange?) is {AGENT-OF, COLOR}. The other two sets are 
{PART-OF-OBJECT, PRODUCT-OF} and {THEME-OF, 
LOCATION-OF, SIZE}. If we are not paying attention, it could 
be said that a differentiating feature between apples and 
orange cottages is the fact that one of them is part of a tree, 
and the other one is not. While that is definitely true, any 
dwelling is not part of a tree, and neither is any artifact. This 
happens because the PART-OF-OBJECT property is in the set 
of properties that only one of the compared concepts has. 
On the other hand, we could compare orange cottages and 
apples on the property COLOR (e.g., the color of this apple is 
exactly like the color of my cottage). 

Notice also that the closer the concepts are in their 
hierarchy, the easier it is to compare them – because, again, 
the overlapping property set is large.  Thus, we can compare 
apples and oranges on many more parameters than apples 
and cottages (orange or not).  Of course, comparing apples 
and apples is even better – we can just count the properties 
in the overlapping set.  

If we can rely on such sets of properties and hierarchies, 
it is easy to see why a whale can be both compared to 
mammals and fish, even if we (as young children?) may not 
know where exactly it belongs in the hierarchy.  

V. CONCLUSION: CUI BONO? 
In this paper, we discussed the hygiene of good 

classification and comparison and suggested that an 
ontological foundation would considerably clarify the issue. 
Even if comparison on one sole property is not attainable or 
even desirable, and subclasses have to differ from their 
ontological parents by a set of features, it is useful to be fully 
aware of it and be prepared to un-bunch them if necessary. It 
is also crucially important not to misstate nor to misrepresent 
the result by a hierarchical confusion. Let us not compare 

apples with orange cottages without figuring out explicitly 
what properties separate them and their grain size 
correspondence. 
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