
Handling Seasonality using Metacognition

Kenneth M’Balé, Darsana Josyula

Department of Computer Science

Bowie State University

Bowie, MD USA

kmbale@cs.umd.edu and darsana@cs.umd.edu

Abstract— This paper summarizes a work in progress in the

area of the metacognitive loop (MCL). The objective of MCL is

to provide a design approach supported by software to extend

an intelligent system’s ability to cope with perturbations. A

perturbation is any deviation from optimal performance for

the system. Many MCL implementations exist, each increasing

in sophistication. This paper describes an approach to produce

the next implementation of MCL, which we call the General

Purpose Metacognition Engine (GPME). The GPME evolves

the functionality of the current implementation developed at

the University of Maryland, MCL2, in particular, to handle

seasonality. Seasonality is a periodic or cyclic variation in

conditions that causes agents to re-learn when the length of the

seasonal cycle exceeds their ability to detect the cycle.

Keywords-Metacognition;Learning;Reasoning;Situated

Agents;Autonomous Agents.

I. INTRODUCTION

One of the objectives of Artificial Intelligence is to
impart upon systems the ability humans have for overcoming
the “brittleness problem.” The “brittleness problem” is the
characteristic of systems to fail when operating
circumstances exceed the designer’s expectations. The
Metacognitive Loop is a proposed solution for addressing
this problem [1].

Metacognition is cognition about cognition; reasoning
about one’s own reasoning. Conceptually, the solution
consists of one system, referred to as the host, which is
integrated with another system referred to as MCL. The host
supplies information to MCL about its actions and about the
expectations of the results of these actions. MCL monitors
the success of the host’s actions by comparing expectations
and outcomes. When an outcome does not match an
expectation, MCL notes the anomaly. It assesses the
anomaly using its internal knowledge such as significance,
priority, similarity to other anomalies and possible responses.
Finally, MCL guides the host by providing a suggestion to
address the anomaly. MCL applies a basic algorithm
composed of these steps; note, assess, guide, repeat [2].

Consider a robot trained to perform a certain function. Its
initial training occurs on a dry surface. After some time in
operation, it arrives at a wet surface. It needs to learn how to
function efficiently on this new surface. A slightly wet
surface might require minor adjustments such as tolerating
wheel slippage. A very wet surface requires major
adjustments that amount to relearning how to function.
Learning is a time-consuming and expensive operation. After
some time operating on the wet surface, the robot moves
again onto a dry surface. Ideally, it is not necessary for the

robot to once again invest the same level of effort for
learning how to function on a dry surface. A better option is
for the robot to note the change in the environment it is
situated in, to assess which of its learned procedures have the
best chance to work and to proceed efficiently. While this
example used a robot, MCL and GPME are intended to
integrate with cognitive robots or cognitive software agents.
We use the terms host, agent and robot interchangeably to
mean a cognitive host.

Several approaches have been researched to address
seasonality. For example, Zhang and Qi describe the inability
of artificial neural networks to handle seasonality [3]. Using
simulated and real trend time series data, their research
concludes that neural networks are not well suited to forecast
without substantial prior data processing. In another paper,
Taskaya-Temizel and Casey conclude that neural networks
model seasonality provided their architecture is properly
configured [4]. To address seasonality, the input layer size
should be equal to the longest cycle information. In this
paper, we discuss how seasonality, changes that repeat
periodically, can be handled using expectation violations.

In Section II, we describe the initial MCL implemented
using different strategies. In section III, we describe the
current implementation of MCL (MCL2). In Section IV, we
describe the design of the GPME, the successor to MCL2. In
Section V, we describe our testing approach. Finally, we
conclude.

II. MCL-ENHANCED Q-LEARNERS

Agents equipped with MCL have the ability to recover
from unanticipated failures. Several applications of MCL
exist that improve the performance of the underlying
cognitive agent. The earliest MCL implementations utilized
simple strategies to improve a host system that consisted of a
Q-Learner as the baseline [5]. The baseline Q-Learner
enhanced with MCL was capable of increasingly complex
responses to expectation violations (anomalies).

The Q-Learner was deployed in a basic 8x8 grid where
two grid locations contained rewards. After a set number of
cycles, the reward locations, magnitude and type were
changed to force an anomaly. The performance of the Q-
Learner to relearn the location of the rewards, by abandoning
the policy it had previously learned and restarting the
learning when needed, is the key measure used to compare
performance between several variations of MCL, as reported
in Table I.

In response to the anomaly, simple MCL purges the
policy that the Q-Learner has learned and restarts learning.
The simple MCL acted after the occurrence of three

205Copyright (c) IARIA, 2014. ISBN: 978-1-61208-340-7

COGNITIVE 2014 : The Sixth International Conference on Advanced Cognitive Technologies and Applications

anomalies. The sensitive MCL considered reward values,
time to reward and the expected reward per cycle. In
addition, it expanded the definition of anomalies to include
an unexpected reward, delays in finding rewards and the
actual value of the reward compared to the expectation. The
next two MCL added an effect on exploration by introducing
an exploration factor called ε. A Q-learner will take the
action recommended by its policy (the so-called ‘‘greedy
action’’) with probability (1 – ε), and will take a random
action with probability ε. This helps ensure that the agent
comprehensively and continuously explores its world,
learning the effect of all the actions it can take from all
possible states, rather than sticking to what it already knows
will bring rewards. In addition to purging, the ε value is
changed to encourage the Q-Learner to explore the grid. In
the steady case, the ε value is set to a fixed amount for a
fixed number of cycles and then returned to the baseline
value. In the decaying case, the ε value is set to the same
fixed amount but it decays linearly back to the baseline value
over the same number of cycles.

TABLE I. Q-LEARNER PERFORMANCE SUMMARY.

MCL type Performance

Baseline Q-Learner 0.530

Simple MCL 0.545

Sensitive MCL 0.546

Steady ε 0.510

Decaying ε 0.526

Sophisticated MCL 0.567

Finally, the sophisticated MCL carried out an analysis of

the anomaly and incorporated the results in its suggestion. It
measured the magnitude of the anomaly and used this
calculation to affect ε, and beyond a certain threshold, to
purge. It used a decision tree to classify the degree of
perturbation of the anomaly, to moderate its response.

In all these approaches, when the world has changed
considerably, MCL throws out the current policy and restarts
learning. Tsumori and Ozawa showed that in cyclical
environments, reinforcement learning performance could be
enhanced with a long-term memory and a ‘‘change
detector’’, which would recall stored policies when a given
known environment reappeared [6]. The different “throw-
out current policy and explore” MCLs discussed above act as
change detectors but they do not have a memory to store
policies associated with a given environment and to recall
policies when a known environment reappears (seasonality).

MCL has been applied to other systems to improve their
responses to anomalies. In the Air Traffic Controller (ATC)
[7] and the Natural Language Processor (Alfred) [8]
implementations, MCL is implemented as a component
within the host agent. In the Mars Rover [9] implementation,
MCL is an external component that controls the behavior of
the host agent.

An important consideration from the implementation of
MCL across these several domains is that a general purpose,
domain independent MCL could be possible and useful.

III. MCL2

MCL2 applies the note-assess-guide cycle for
metacognition using three ontologies organized as a Bayes
net shown in Figure 1. Indications nodes are connected to
fringe nodes associated with domain specific expectation
violations. Response nodes are connected to fringe nodes
associated with domain specific actions. Failure nodes
connect indications to responses. MCL2 tracks the success of
suggestions against anomalies classified by indications and
probable causes. The responses are statically defined at
initialization to ensure that the host can process them
appropriately.

Figure 1. MCL Ontology

MCL2 succeeds in separating the MCL function from the

host, as an independent process performing a general
purpose function. However, MCL2 cannot handle seasonal
changes efficiently since it does not have an episodic
memory. Without an episodic memory, the Bayes net
evolves continually without any note of time.

IV. GPME

The GPME squarely aims to remove brittleness from
MCL itself and to facilitate integration with applications
[10]. The communication between the host and the GPME is
fully asynchronous (Figure 2).

Figure 2. GPME and Host Integration

As a result, the burden is fully upon the GPME to detect

anomalies from the telemetry. Therefore, some of the
cognitive burden is alleviated from the host. Furthermore, the
GPME defines anomalies dynamically by learning
expectations from the telemetry. Consequently, the GPME
uses an episodic memory to store, process and analyze its
experiences.

A. Episodic Memory

The host supplies the GPME with a continuous telemetry
stream. For the purpose of analyzing and detecting patterns
in the telemetry, the GPME needs to break the telemetry into
parts. We can consider each part as its own stream.

206Copyright (c) IARIA, 2014. ISBN: 978-1-61208-340-7

COGNITIVE 2014 : The Sixth International Conference on Advanced Cognitive Technologies and Applications

1) Segments
 Each distinct observation and suggestion is captured in

an object we call a Segment (Figure 3).

Figure 3. GPME Segment

The Processed Data and Raw Data originate from the

host. Raw Data is actual sample data from the instrument.
Processed Data is produced by the host using the Raw Data.
For example, if the Raw Data contains a photograph, the
Processed Data might contain a list of recognized faces or
objects in the photograph. The α attribute is the A-distance;
the probability of occurrence of this segment and its values
within its own segment stream. To create the Fingerprint, the
GPME samples 256 words (2 bytes) at fixed positions in the
Raw Data. The fingerprint is an abbreviation of the Raw
Data created from a fixed positional filter. To create the ψ
attribute, the GPME measures the Hamming distance
between the fingerprint and a constant fingerprint called the
Prime Fingerprint. The Prime Fingerprint is randomly
generated at initialization and it never changes throughout
the life of the GPME.

2) Frames
We define a Frame (Figure 4) as the set of all segments

received during a given GPME moment.

Figure 4. GPME Frame

The GPME adds a unique moment identifier to the frame.

It then initializes the Damaru metric (decay value) to a
special constant value called β and records the GPME’s
current homeostasis and emotional state (described later).
The Damaru metric is a measure of the utility of the frame. It
is a function of the number of times the frame is referenced
in the episodic memory. The GPME generates the signature
of the frame. The signature of the frame is a vector that
identifies which instruments contributed segments to the
frame and the number of segments each instrument
contributed.

3) Links
Frames are interconnected using links. A link has a

direction. The types of links are temporal, causative,
attributive, spatial, order and composition. Temporal,
causative and attributive links are established between
adjacent frames when the frame is created. Causative and
attributive links decay while temporal links do not decay.
The temporal link reflects the order in which the frame
arrived over time. This ordering is immutable. The causative
link denotes that conditions in the successor frame are the
result of preconditions in the predecessor frame. The
attributive link denotes the inverse. Over time, incorrect
causative and attributive links decay and disappear from the
knowledge base. Spatial, order and composition links are
created in response to certain anomalies. Temporal links

connect successor and predecessor frames in order of arrival.
There can be one of each type of link between two frames.

4) Clusters
The GPME stores each frame internally and generates

additional data structures using sets of related frames. We
call such a structure a Cluster. The GPME has a hierarchical
knowledge base built using clusters (Figure 5). A cluster has
a fixed maximum number of member frames (a prime
number such as 13 or 17). The GMPE derives an artificial or
abstract member called a Centroid. The centroid member
contains the most significant information from each member,
where significance is a function of the segment’s α attributes.
The centroid inherits all the links of its members. We refer to
the abstract frame of a centroid as a Fragment because it is a
partial or incomplete frame. A mature cluster exhibits a very
tight grouping; the centroid is essentially equivalent to the
members. Recall that a frame consists of several segments.
The GPME uses the segments’ ψ attributes to place the
parent frame in a ψ cluster. The GPME uses the frame
signature to place the frame in a signature cluster. A cluster
can be understood as a super frame, where the member
frames are treated as equivalent to each other and all of their
links are available for traversal.

5) Decay and Moments
In order to keep the internal knowledge base manageable,

every object carries the Damaru decay attribute. When the
Damaru value reaches zero, the object is deleted. A GPME
moment is defined as the time required to decrement the
Damaru metric of every object by one. Therefore, each
moment results in one frame, and in each moment every
object decays.

6) Episodes
The GPME creates an episode in response to an anomaly.

An episode begins with the content of short-term memory
and includes all future frames, until the anomaly is no longer
detected or decays. Therefore, an episode is a set of
sequential frames. Episodes can overlap by sharing frames.
The anomaly is identified by its signature. The anomaly
signature consists of the attributes that caused the anomaly.

7) Cases
Episodes with similar anomaly signatures and similar

data patterns are clustered into a Case. A case is equivalent
to a cluster, but its members are episodes (sets of sequential
frames). Therefore, the case centroid is an artificial or
abstract episode that contains the most significant
information from each member, where significance is a
function of the anomaly signature.

Case-based reasoning is closely related to episodic
memory. A case describes a problem the system encountered
and the solution to the problem [11]. The system needs to
match a new problem to an existing case to arrive at a
previously successful solution.

The GPME uses a variant of case-based reasoning.
Traditionally, the cases result in well-known solutions.
However, the GPME creates its own cases from episodes and
refines them over time. As a result, each case provides
several overlapping solutions to the same problem. The cases
form an abstraction hierarchy above the detailed episodes.

207Copyright (c) IARIA, 2014. ISBN: 978-1-61208-340-7

COGNITIVE 2014 : The Sixth International Conference on Advanced Cognitive Technologies and Applications

Figure 5. GPME Knowledge Base

The GPME uses cases to determine when to adjust the

knowledge base by looking for cases that resemble the
current anomaly circumstances.

8) Homeostasis
The GPME is an intrinsic reinforcement learner. It uses

an internal reward that is a function of the number and types
of anomalies that currently exist and the projection of the
reward in the future. We refer to the result of this function as
the homeostasis. As a result, the GPME can react to an
anomaly caused by future unexpected homeostasis values.

9) Selective Imitation
In addition to being an intrinsic reinforcement learner,

the GPME learns by imitation. The formalization of the
knowledge base makes it possible for the GPME to share
parts of its knowledge base with other instances. The
recipient GPME can then select the portions of the model’s
knowledge base that it wants to incorporate within its own.
The GPME is able to learn new cases and reasoning
mechanisms from other GPME instances without needing to
experience the environment first hand.

B. Episodic Memory-Driven Projections

The GPME uses its episodic memory in two ways. First,
it matches the current frame to its experiences in order to
project the future. Second, it matches the current anomaly to
its experience to select a suggestion and project the future.
Refer to Figure 6 during the description of the projection
procedure.

1) Expectation Generation
The projection contains fragments and homeostasis. The

GPME matches the current frame to the projection to
determine whether anomalies are occurring. This approach
allows the GPME to define anomalies and expectations
dynamically.

2) Anomalies
The GPME creates an episode when it detects an

anomaly. There are four types of anomalies; reflex, rational,
context and emotional. The episode ends when the anomaly
is no longer detected or it has fully decayed. A rational
anomaly occurs when the projected homeostasis value is not
achieved when expected, either because the actual
homeostasis is over or under the projected homeostasis.

The other types of anomaly detection use the concept of
Bandwidth. A bandwidth is the projected range of a certain
value. The projection is based on historical value contained
in the short-term memory. The value is projected to occur
within an upper and lower bound. An anomaly occurs
whenever the value falls outside the band. The anomaly is
resolved when the value returns to its original projection.
Since the short-term memory changes over time, the
bandwidth also changes. Therefore, it is possible for the
bandwidth to catch up to the projected value. When this
situation occurs, the anomaly is aborted.

Figure 6. Projections

The reflex method projects an arrival rate of frames for

each instrument stream. This projection is called the
instrument arrival rate bandwidth. For example, the GPME
expects the camera to provide an image every five seconds.
After six seconds, if an image has not arrived, the GPME
detects a reflex anomaly. The same anomaly would also be
detected if the image arrived three seconds after the previous
one. Since instruments are unlikely to be as regular as the
example indicates, the GPME uses a range based on its
experiences.

The context method detects an anomaly in two different
ways. The first way relies on segment significance. The
anomaly occurs when a segment that should be significant is
not, or, when a segment that should not be significant is
found to be. When the significance of a segment does not
match its projected significance, the GPME detects the
anomaly and creates an episode. The second way projects the
accuracy of the projection. This expectation is called the
projection accuracy bandwidth.

The emotional method relies on the homeostasis value.
The GPME projects the homeostasis value to be within a
certain range, called the homeostasis bandwidth. If the
homeostasis value is outside the band, the GPME detects the
anomaly and creates an episode. The bandwidth is the range
between the highest and lowest homeostasis value in short-
term memory, however, it is further adjusted by the
emotional state.

3) Deadlines
When the GPME provides a suggestion, it also projects

the effect the suggestion will have in the future, based on its

208Copyright (c) IARIA, 2014. ISBN: 978-1-61208-340-7

COGNITIVE 2014 : The Sixth International Conference on Advanced Cognitive Technologies and Applications

experience. As a result, the GPME also establishes deadlines
by which results are expected. Deadlines allow the GPME to
respond to anomalies of absence.

4) Reasoning Mechanisms
While responding to anomalies, the links allow the

GPME to traverse the knowledge base in search of
experiences that link current conditions to goal conditions.
The algorithm the GPME uses to search the knowledge base
is called a Reasoning Mechanism. The reasoning mechanism
is specified in an internal language called Amri. The GPME
is deployed with a number of reasoning mechanisms;
deductive, qualitative, probabilistic, inductive, abductive,
analogical, reactive, look-ahead and creative. The GPME can
create new reasoning mechanisms by applying a
Programming Method. The methods are random, mutation,
interleaving and grafting.

For example, the deductive reasoning mechanism looks
for the highest homeostasis value in linked cases, following
the causal type links only. The abductive reasoning
mechanism uses the causative or order link between super
cases only. The look-ahead reasoning mechanism uses the
temporal link through the clusters to find co-occurring
centroids to build projections. The creative reasoning
mechanism generates a result using its internal representation
of the environment. The interleaving programming method
blends two reasoning mechanisms into a new one.

5) Bayes Ontology
The GPME retains the Bayes ontology from MCL2.

However, it is used to manage the success of reasoning
mechanisms in producing a successful suggestion. In MCL2,
it was used to track the success of specific suggestions.

C. GPME Processes

In principle, the GPME is similar to the Ouroboros model
[12] at a high level. Comparisons between the models will be
possible once there is an Ouroboros implementation. At the
core of the Ouroboros model lays a self-referential recursive
process with alternating phases of data acquisition and
evaluation. In comparison, the GPME is a highly parallel
system with several distinct processes operating concurrently
on the episodic memory and the projection. There are eight
distinct GPME processes named after Hindu mythology
based on their function. Figure 7 depicts the GPME
processes and their high-level data flows.

The Vishnu process assembles the current frame from
the telemetry and supplies it to the Brahma and the Shiva
processes. Vishnu sources the knowledge base to create
projections based on the current frame. These projections are
not related to anomalies; they are expectations of what
normally happens in the future based on current conditions.
The projections and their links are referred as the Vishnu
Web.

The Shiva process identifies fragments (projections) that
match the current frame. Such a fragment is referred to as an
Anchor. Anchors are placed in short-term memory. Shiva
reverses the decay of useful cases (and their underlying
frames) and generates anomalies related to matching.

The Kali process decays every object in the knowledge
base by one unit. It calculates the current homeostasis value

and emotional state. It publishes a new moment unique
identifier. It also triggers homeostasis anomalies.

Figure 7. GPME Processes

The Ganesh process is responsible for responding to

anomalies by doing nothing, waiting or using a reasoning
mechanism to identify a suggestion. It creates an episode in
the presence of an anomaly. If a suggestion is identified, it
projects the expected results in the Vishnu Web.

The Brahma process manages the knowledge base and
continually revises and optimizes clusters and cases. It also
maintains the ontology.

The Saraswati process is responsible for communicating
with other GPME instances.

The Lakshmi process is responsible for handling special
requests from the host and for monitoring the accuracy of the
Vishnu Web.

The Parvati process provides an instrumentation and
management interface.

V. ONGOING AND FUTURE WORK

Since the GPME improves on MCL2, the testing strategy
revolves around comparing the performance of systems
placed in the same circumstances and scenarios. We intend
to compare the system’s performance when integrated with
MCL2 in comparison to integrated with GPME. If possible,
we will also compare performances with an established
metacognitive framework such as SOAR-RL [13].

While several metrics will be collected, the principal
metric is homeostasis. As we described earlier, homeostasis
is the number of anomalies weighed by type. During the
sampling interval, we will calculate the homeostasis of the
system and examine the curve over time.

The core test involves a maze the system must navigate
to obtain rewards. Periodically, the location and nature of the
rewards will change in a non-random manner, cycling back
through known states. The test emulates seasonality. We can
envision that the system is an animal and the reward is food.
Depending on the season, the animal finds the food in
different locations and in different quantity. However, the
location and quantity of the food is consistent with the
season.

We expect that each time the season changes, the system
experiences a surge in anomalies as rewards become scarce.
In response, the metacognitive component helps the system
find new rewards. Once a new source is found, the number

209Copyright (c) IARIA, 2014. ISBN: 978-1-61208-340-7

COGNITIVE 2014 : The Sixth International Conference on Advanced Cognitive Technologies and Applications

of anomalies should trend back towards a norm. We can
measure cleverness based on the norm. The system with the
lower norm is cleverer at finding rewards. We can measure
adaptability based on how quickly the system responds to the
change in seasons. The system that recognizes the change
faster is more adaptable. Finally, we expect that as the cycle
of seasons repeats itself, the GPME will outperform MCL2
and the RL in terms of total homeostasis over time.

Plotting the weighted anomalies over time, we calculate
the slope of the curve from the change of season to the peak
number of anomalies, to measure the efficiency of the
metacognitive component’s ability to recognize the change
of season. The slope of the curve between the peak and the
normal number of anomalies measures the efficiency of
adaptation. The actual value of the normal number measures
cleverness.

Figure 8. Projected Performance Curve over a Season

The test will execute several thousand seasonal cycles.

Analyzing the performance curves of all cycles, we expect
that the GPME will outperform MCL2 and RL by
substantially minimizing the slopes over time.

Figure 9: Projected Aggregate Performance Comparison

VI. CONCLUSION

The domain-generality of the GPME and its open and
flexible interface will allow designers to build robust systems
more rapidly, accelerating the application of metacognition
enabled solutions in a larger number of domains.

The GPME builds on MCL2 by introducing the ability to
deal with seasonality. To support this ability, the GPME
develops its own expectations to supplement those the
designer specifies. As a result, the foresight of the designer is
no longer a limiting factor and it is free to discover and
handle anomalies the designer did not anticipate. The GPME
uses its episodic memory to match attributes of anomalies to
cases it generates. This approach substantially lowers the
need to relearn when dealing with seasonal changes. The
introduction of decay means that experiences and cases that

are not valuable eventually exit the episodic memory in order
to keep its performance constraints manageable.

ACKNOWLEDGMENTS

This research is supported in part by the Office of Naval
Research grant ONR #N00014-12-1-0430.

REFERENCES

[1] [1] M. T. Cox, “Metacognition in computation: A selected research
review,” Artif. Intell., vol. 169, no. 2, pp. 104–141, Dec. 2005.

[2] [2] M. D. Schmill, M. L. Anderson, S. Fults, D. P. Josyula, T.
Oates, D. Perlis, H. Shahri, S. Wilson, and D. Wright, “The
Metacognitive Loop and Reasoning about Anomalies.” p. 17, 2011.

[3] [3] G. P. Zhang and M. Qi, “Neural network forecasting for
seasonal and trend time series,” Eur. J. Oper. Res., vol. 160, no. 2, pp.
501–514, 2005.

[4] [4] T. Taskaya-Temizel and M. C. Casey, “A comparative study of
autoregressive neural network hybrids.,” Neural Netw., vol. 18, no. 5–
6, pp. 781–9, 2005.

[5] [5] M. L. Anderson, T. Oates, W. Chong, and D. Perlis, “The
metacognitive loop I: Enhancing reinforcement learning with
metacognitive monitoring and control for improved perturbation
tolerance,” J. Exp. Theor. Artif. Intell., vol. 18, no. 3, pp. 387–411,
Sep. 2006.

[6] [6] K. Tsumori and S. Ozawa, “Incremental learning in dynamic
environments using neural network with long-term memory,” Proc.
Int. Jt. Conf. Neural Networks, 2003., vol. 4, pp. 2583–2588, 2003.

[7] [7] D. P. Josyula, H. Vadali, B. J. Donahue, and F. C. Hughes,
“Modeling metacognition for learning in artificial systems,” 2009
World Congr. Nat. Biol. Inspired Comput., pp. 1419–1424, 2009.

[8] [8] D. P. Josyula, S. Fults, M. L. Anderson, S. Wilson, and D.
Perlis, “Application of MCL in a Dialog Agent,” in Third Language
and Technology Conference, 2007.

[9] [9] D. Wright, “Finding a Temporal Comparison Function for the
Metacognitive Loop,” Doctoral Dissertation. University of Maryland,
College Park. 2011.

[10] [10] K. M. M’Balé and D. P. Josyula, “Integrating Metacognition
into Artificial Agents,” in AAAI 2013 Fall Symposium Series, 2013,
pp. 55–62.

[11] [11] R. C. Schank, Dynamic Memory Revisited, 2nd ed. New York,
NY: Cambridge Press, 1999, p. 302.

[12] [12] K. Thomsen, “The Cerebellum in the Ouroboros Model, the ‘
Interpolator Hypothesis ,’” in COGNITIVE 2013, 2013, pp. 37–41.

[13] [13] R. P. Marinier and J. E. Laird, “Emotion-Driven Reinforcement
Learning,” Cogn. Sci., pp. 115–120, 2008.

210Copyright (c) IARIA, 2014. ISBN: 978-1-61208-340-7

COGNITIVE 2014 : The Sixth International Conference on Advanced Cognitive Technologies and Applications

