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Abstract— This paper summarizes a work in progress in the 

area of the metacognitive loop (MCL). The objective of MCL is 

to provide a design approach supported by software to extend 

an intelligent system’s ability to cope with perturbations. A 

perturbation is any deviation from optimal performance for 

the system. Many MCL implementations exist, each increasing 

in sophistication. This paper describes an approach to produce 

the next implementation of MCL, which we call the General 

Purpose Metacognition Engine (GPME). The GPME evolves 

the functionality of the current implementation developed at 

the University of Maryland, MCL2, in particular, to handle 

seasonality. Seasonality is a periodic or cyclic variation in 

conditions that causes agents to re-learn when the length of the 

seasonal cycle exceeds their ability to detect the cycle. 

Keywords-Metacognition;Learning;Reasoning;Situated 

Agents;Autonomous Agents. 

I. INTRODUCTION 

One of the objectives of Artificial Intelligence is to 
impart upon systems the ability humans have for overcoming 
the “brittleness problem.” The “brittleness problem” is the 
characteristic of systems to fail when operating 
circumstances exceed the designer’s expectations. The 
Metacognitive Loop is a proposed solution for addressing 
this problem [1]. 

Metacognition is cognition about cognition; reasoning 
about one’s own reasoning. Conceptually, the solution 
consists of one system, referred to as the host, which is 
integrated with another system referred to as MCL. The host 
supplies information to MCL about its actions and about the 
expectations of the results of these actions. MCL monitors 
the success of the host’s actions by comparing expectations 
and outcomes. When an outcome does not match an 
expectation, MCL notes the anomaly. It assesses the 
anomaly using its internal knowledge such as significance, 
priority, similarity to other anomalies and possible responses. 
Finally, MCL guides the host by providing a suggestion to 
address the anomaly. MCL applies a basic algorithm 
composed of these steps; note, assess, guide, repeat [2]. 

Consider a robot trained to perform a certain function. Its 
initial training occurs on a dry surface. After some time in 
operation, it arrives at a wet surface. It needs to learn how to 
function efficiently on this new surface. A slightly wet 
surface might require minor adjustments such as tolerating 
wheel slippage. A very wet surface requires major 
adjustments that amount to relearning how to function. 
Learning is a time-consuming and expensive operation. After 
some time operating on the wet surface, the robot moves 
again onto a dry surface. Ideally, it is not necessary for the 

robot to once again invest the same level of effort for 
learning how to function on a dry surface. A better option is 
for the robot to note the change in the environment it is 
situated in, to assess which of its learned procedures have the 
best chance to work and to proceed efficiently. While this 
example used a robot, MCL and GPME are intended to 
integrate with cognitive robots or cognitive software agents. 
We use the terms host, agent and robot interchangeably to 
mean a cognitive host. 

Several approaches have been researched to address 
seasonality. For example, Zhang and Qi describe the inability 
of artificial neural networks to handle seasonality [3]. Using 
simulated and real trend time series data, their research 
concludes that neural networks are not well suited to forecast 
without substantial prior data processing. In another paper, 
Taskaya-Temizel and Casey conclude that neural networks 
model seasonality provided their architecture is properly 
configured [4]. To address seasonality, the input layer size 
should be equal to the longest cycle information. In this 
paper, we discuss how seasonality, changes that repeat 
periodically, can be handled using expectation violations. 

In Section II, we describe the initial MCL implemented 
using different strategies. In section III, we describe the 
current implementation of MCL (MCL2). In Section IV, we 
describe the design of the GPME, the successor to MCL2. In 
Section V, we describe our testing approach. Finally, we 
conclude. 

II. MCL-ENHANCED Q-LEARNERS 

Agents equipped with MCL have the ability to recover 
from unanticipated failures. Several applications of MCL 
exist that improve the performance of the underlying 
cognitive agent. The earliest MCL implementations utilized 
simple strategies to improve a host system that consisted of a 
Q-Learner as the baseline [5]. The baseline Q-Learner 
enhanced with MCL was capable of increasingly complex 
responses to expectation violations (anomalies). 

The Q-Learner was deployed in a basic 8x8 grid where 
two grid locations contained rewards. After a set number of 
cycles, the reward locations, magnitude and type were 
changed to force an anomaly. The performance of the Q-
Learner to relearn the location of the rewards, by abandoning 
the policy it had previously learned and restarting the 
learning when needed, is the key measure used to compare 
performance between several variations of MCL, as reported 
in Table I.  

In response to the anomaly, simple MCL purges the 
policy that the Q-Learner has learned and restarts learning. 
The simple MCL acted after the occurrence of three 
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anomalies. The sensitive MCL considered reward values, 
time to reward and the expected reward per cycle. In 
addition, it expanded the definition of anomalies to include 
an unexpected reward, delays in finding rewards and the 
actual value of the reward compared to the expectation. The 
next two MCL added an effect on exploration by introducing 
an exploration factor called ε. A Q-learner will take the 
action recommended by its policy (the so-called ‘‘greedy 
action’’) with probability (1 – ε), and will take a random 
action with probability ε. This helps ensure that the agent 
comprehensively and continuously explores its world, 
learning the effect of all the actions it can take from all 
possible states, rather than sticking to what it already knows 
will bring rewards. In addition to purging, the ε value is 
changed to encourage the Q-Learner to explore the grid. In 
the steady case, the ε value is set to a fixed amount for a 
fixed number of cycles and then returned to the baseline 
value. In the decaying case, the ε value is set to the same 
fixed amount but it decays linearly back to the baseline value 
over the same number of cycles. 

TABLE I.  Q-LEARNER PERFORMANCE SUMMARY. 

MCL type Performance 

Baseline Q-Learner 0.530 

Simple MCL 0.545 

Sensitive MCL 0.546 

Steady ε 0.510 

Decaying ε 0.526 

Sophisticated MCL 0.567 

 
Finally, the sophisticated MCL carried out an analysis of 

the anomaly and incorporated the results in its suggestion. It 
measured the magnitude of the anomaly and used this 
calculation to affect ε, and beyond a certain threshold, to 
purge. It used a decision tree to classify the degree of 
perturbation of the anomaly, to moderate its response. 

In all these approaches, when the world has changed 
considerably, MCL throws out the current policy and restarts 
learning. Tsumori and Ozawa showed that in cyclical 
environments, reinforcement learning performance could be 
enhanced with a long-term memory and a ‘‘change 
detector’’, which would recall stored policies when a given 
known environment reappeared [6].  The different “throw-
out current policy and explore” MCLs discussed above act as 
change detectors but they do not have a memory to store 
policies associated with a given environment and to recall 
policies when a known environment reappears (seasonality). 

MCL has been applied to other systems to improve their 
responses to anomalies. In the Air Traffic Controller (ATC) 
[7] and the Natural Language Processor (Alfred) [8] 
implementations, MCL is implemented as a component 
within the host agent. In the Mars Rover [9] implementation, 
MCL is an external component that controls the behavior of 
the host agent. 

An important consideration from the implementation of 
MCL across these several domains is that a general purpose, 
domain independent MCL could be possible and useful. 

III. MCL2 

MCL2 applies the note-assess-guide cycle for 
metacognition using three ontologies organized as a Bayes 
net shown in Figure 1. Indications nodes are connected to 
fringe nodes associated with domain specific expectation 
violations. Response nodes are connected to fringe nodes 
associated with domain specific actions. Failure nodes 
connect indications to responses. MCL2 tracks the success of 
suggestions against anomalies classified by indications and 
probable causes. The responses are statically defined at 
initialization to ensure that the host can process them 
appropriately.  

 
Figure 1. MCL Ontology 

 
MCL2 succeeds in separating the MCL function from the 

host, as an independent process performing a general 
purpose function. However, MCL2 cannot handle seasonal 
changes efficiently since it does not have an episodic 
memory. Without an episodic memory, the Bayes net 
evolves continually without any note of time. 

IV. GPME 

The GPME squarely aims to remove brittleness from 
MCL itself and to facilitate integration with applications 
[10]. The communication between the host and the GPME is 
fully asynchronous (Figure 2).  

 
Figure 2. GPME and  Host Integration 

 
As a result, the burden is fully upon the GPME to detect 

anomalies from the telemetry. Therefore, some of the 
cognitive burden is alleviated from the host. Furthermore, the 
GPME defines anomalies dynamically by learning 
expectations from the telemetry. Consequently, the GPME 
uses an episodic memory to store, process and analyze its 
experiences. 

A. Episodic Memory 

The host supplies the GPME with a continuous telemetry 
stream. For the purpose of analyzing and detecting patterns 
in the telemetry, the GPME needs to break the telemetry into 
parts. We can consider each part as its own stream. 
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1) Segments 
 Each distinct observation and suggestion is captured in 

an object we call a Segment (Figure 3). 

 
Figure 3. GPME Segment 

 
The Processed Data and Raw Data originate from the 

host. Raw Data is actual sample data from the instrument. 
Processed Data is produced by the host using the Raw Data. 
For example, if the Raw Data contains a photograph, the 
Processed Data might contain a list of recognized faces or 
objects in the photograph. The α attribute is the A-distance; 
the probability of occurrence of this segment and its values 
within its own segment stream. To create the Fingerprint, the 
GPME samples 256 words (2 bytes) at fixed positions in the 
Raw Data. The fingerprint is an abbreviation of the Raw 
Data created from a fixed positional filter. To create the ψ 
attribute, the GPME measures the Hamming distance 
between the fingerprint and a constant fingerprint called the 
Prime Fingerprint. The Prime Fingerprint is randomly 
generated at initialization and it never changes throughout 
the life of the GPME. 

2) Frames  
We define a Frame (Figure 4) as the set of all segments 

received during a given GPME moment. 

 
Figure 4. GPME Frame 

 
The GPME adds a unique moment identifier to the frame. 

It then initializes the Damaru metric (decay value) to a 
special constant value called β and records the GPME’s 
current homeostasis and emotional state (described later). 
The Damaru metric is a measure of the utility of the frame. It 
is a function of the number of times the frame is referenced 
in the episodic memory. The GPME generates the signature 
of the frame. The signature of the frame is a vector that 
identifies which instruments contributed segments to the 
frame and the number of segments each instrument 
contributed. 

3) Links  
Frames are interconnected using links. A link has a 

direction. The types of links are temporal, causative, 
attributive, spatial, order and composition. Temporal, 
causative and attributive links are established between 
adjacent frames when the frame is created. Causative and 
attributive links decay while temporal links do not decay. 
The temporal link reflects the order in which the frame 
arrived over time. This ordering is immutable. The causative 
link denotes that conditions in the successor frame are the 
result of preconditions in the predecessor frame. The 
attributive link denotes the inverse. Over time, incorrect 
causative and attributive links decay and disappear from the 
knowledge base. Spatial, order and composition links are 
created in response to certain anomalies. Temporal links 

connect successor and predecessor frames in order of arrival. 
There can be one of each type of link between two frames. 

4) Clusters  
The GPME stores each frame internally and generates 

additional data structures using sets of related frames. We 
call such a structure a Cluster. The GPME has a hierarchical 
knowledge base built using clusters (Figure 5). A cluster has 
a fixed maximum number of member frames (a prime 
number such as 13 or 17). The GMPE derives an artificial or 
abstract member called a Centroid. The centroid member 
contains the most significant information from each member, 
where significance is a function of the segment’s α attributes. 
The centroid inherits all the links of its members. We refer to 
the abstract frame of a centroid as a Fragment because it is a 
partial or incomplete frame. A mature cluster exhibits a very 
tight grouping; the centroid is essentially equivalent to the 
members. Recall that a frame consists of several segments. 
The GPME uses the segments’ ψ attributes to place the 
parent frame in a ψ cluster. The GPME uses the frame 
signature to place the frame in a signature cluster.  A cluster 
can be understood as a super frame, where the member 
frames are treated as equivalent to each other and all of their 
links are available for traversal. 

5) Decay and Moments  
In order to keep the internal knowledge base manageable, 

every object carries the Damaru decay attribute. When the 
Damaru value reaches zero, the object is deleted. A GPME 
moment is defined as the time required to decrement the 
Damaru metric of every object by one. Therefore, each 
moment results in one frame, and in each moment every 
object decays. 

6) Episodes  
The GPME creates an episode in response to an anomaly. 

An episode begins with the content of short-term memory 
and includes all future frames, until the anomaly is no longer 
detected or decays. Therefore, an episode is a set of 
sequential frames. Episodes can overlap by sharing frames. 
The anomaly is identified by its signature. The anomaly 
signature consists of the attributes that caused the anomaly. 

7) Cases  
Episodes with similar anomaly signatures and similar 

data patterns are clustered into a Case. A case is equivalent 
to a cluster, but its members are episodes (sets of sequential 
frames). Therefore, the case centroid is an artificial or 
abstract episode that contains the most significant 
information from each member, where significance is a 
function of the anomaly signature.  

Case-based reasoning is closely related to episodic 
memory. A case describes a problem the system encountered 
and the solution to the problem [11]. The system needs to 
match a new problem to an existing case to arrive at a 
previously successful solution.  

The GPME uses a variant of case-based reasoning. 
Traditionally, the cases result in well-known solutions. 
However, the GPME creates its own cases from episodes and 
refines them over time. As a result, each case provides 
several overlapping solutions to the same problem. The cases 
form an abstraction hierarchy above the detailed episodes. 

207Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-340-7

COGNITIVE 2014 : The Sixth International Conference on Advanced Cognitive Technologies and Applications



 
Figure 5. GPME Knowledge Base 

  
The GPME uses cases to determine when to adjust the 

knowledge base by looking for cases that resemble the 
current anomaly circumstances. 

8) Homeostasis  
The GPME is an intrinsic reinforcement learner. It uses 

an internal reward that is a function of the number and types 
of anomalies that currently exist and the projection of the 
reward in the future. We refer to the result of this function as 
the homeostasis. As a result, the GPME can react to an 
anomaly caused by future unexpected homeostasis values. 

9) Selective Imitation  
In addition to being an intrinsic reinforcement learner, 

the GPME learns by imitation. The formalization of the 
knowledge base makes it possible for the GPME to share 
parts of its knowledge base with other instances. The 
recipient GPME can then select the portions of the model’s 
knowledge base that it wants to incorporate within its own. 
The GPME is able to learn new cases and reasoning 
mechanisms from other GPME instances without needing to 
experience the environment first hand. 

B. Episodic Memory-Driven Projections 

The GPME uses its episodic memory in two ways. First, 
it matches the current frame to its experiences in order to 
project the future. Second, it matches the current anomaly to 
its experience to select a suggestion and project the future. 
Refer to Figure 6 during the description of the projection 
procedure. 

1) Expectation Generation  
The projection contains fragments and homeostasis. The 

GPME matches the current frame to the projection to 
determine whether anomalies are occurring. This approach 
allows the GPME to define anomalies and expectations 
dynamically. 

2) Anomalies  
The GPME creates an episode when it detects an 

anomaly. There are four types of anomalies; reflex, rational, 
context and emotional. The episode ends when the anomaly 
is no longer detected or it has fully decayed. A rational 
anomaly occurs when the projected homeostasis value is not 
achieved when expected, either because the actual 
homeostasis is over or under the projected homeostasis.  

The other types of anomaly detection use the concept of 
Bandwidth. A bandwidth is the projected range of a certain 
value. The projection is based on historical value contained 
in the short-term memory. The value is projected to occur 
within an upper and lower bound. An anomaly occurs 
whenever the value falls outside the band. The anomaly is 
resolved when the value returns to its original projection. 
Since the short-term memory changes over time, the 
bandwidth also changes. Therefore, it is possible for the 
bandwidth to catch up to the projected value. When this 
situation occurs, the anomaly is aborted.  

 

 
Figure 6. Projections 

 
The reflex method projects an arrival rate of frames for 

each instrument stream. This projection is called the 
instrument arrival rate bandwidth. For example, the GPME 
expects the camera to provide an image every five seconds. 
After six seconds, if an image has not arrived, the GPME 
detects a reflex anomaly. The same anomaly would also be 
detected if the image arrived three seconds after the previous 
one. Since instruments are unlikely to be as regular as the 
example indicates, the GPME uses a range based on its 
experiences. 

The context method detects an anomaly in two different 
ways. The first way relies on segment significance. The 
anomaly occurs when a segment that should be significant is 
not, or, when a segment that should not be significant is 
found to be. When the significance of a segment does not 
match its projected significance, the GPME detects the 
anomaly and creates an episode. The second way projects the 
accuracy of the projection. This expectation is called the 
projection accuracy bandwidth.  

The emotional method relies on the homeostasis value. 
The GPME projects the homeostasis value to be within a 
certain range, called the homeostasis bandwidth. If the 
homeostasis value is outside the band, the GPME detects the 
anomaly and creates an episode. The bandwidth is the range 
between the highest and lowest homeostasis value in short-
term memory, however, it is further adjusted by the 
emotional state. 

3) Deadlines  
When the GPME provides a suggestion, it also projects 

the effect the suggestion will have in the future, based on its 
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experience. As a result, the GPME also establishes deadlines 
by which results are expected. Deadlines allow the GPME to 
respond to anomalies of absence. 

4) Reasoning Mechanisms  
While responding to anomalies, the links allow the 

GPME to traverse the knowledge base in search of 
experiences that link current conditions to goal conditions. 
The algorithm the GPME uses to search the knowledge base 
is called a Reasoning Mechanism. The reasoning mechanism 
is specified in an internal language called Amri. The GPME 
is deployed with a number of reasoning mechanisms; 
deductive, qualitative, probabilistic, inductive, abductive, 
analogical, reactive, look-ahead and creative. The GPME can 
create new reasoning mechanisms by applying a 
Programming Method. The methods are random, mutation, 
interleaving and grafting. 

For example, the deductive reasoning mechanism looks 
for the highest homeostasis value in linked cases, following 
the causal type links only. The abductive reasoning 
mechanism uses the causative or order link between super 
cases only. The look-ahead reasoning mechanism uses the 
temporal link through the clusters to find co-occurring 
centroids to build projections. The creative reasoning 
mechanism generates a result using its internal representation 
of the environment. The interleaving programming method 
blends two reasoning mechanisms into a new one. 

5) Bayes Ontology  
The GPME retains the Bayes ontology from MCL2. 

However, it is used to manage the success of reasoning 
mechanisms in producing a successful suggestion. In MCL2, 
it was used to track the success of specific suggestions. 

C. GPME Processes 

In principle, the GPME is similar to the Ouroboros model 
[12] at a high level. Comparisons between the models will be 
possible once there is an Ouroboros implementation. At the 
core of the Ouroboros model lays a self-referential recursive 
process with alternating phases of data acquisition and 
evaluation. In comparison, the GPME is a highly parallel 
system with several distinct processes operating concurrently 
on the episodic memory and the projection. There are eight 
distinct GPME processes named after Hindu mythology 
based on their function. Figure 7 depicts the GPME 
processes and their high-level data flows. 

The Vishnu process assembles the current frame from 
the telemetry and supplies it to the Brahma and the Shiva 
processes. Vishnu sources the knowledge base to create 
projections based on the current frame. These projections are 
not related to anomalies; they are expectations of what 
normally happens in the future based on current conditions. 
The projections and their links are referred as the Vishnu 
Web. 

The Shiva process identifies fragments (projections) that 
match the current frame. Such a fragment is referred to as an 
Anchor. Anchors are placed in short-term memory. Shiva 
reverses the decay of useful cases (and their underlying 
frames) and generates anomalies related to matching. 

The Kali process decays every object in the knowledge 
base by one unit. It calculates the current homeostasis value 

and emotional state. It publishes a new moment unique 
identifier. It also triggers homeostasis anomalies. 

 

 
Figure 7. GPME Processes 

 
The Ganesh process is responsible for responding to 

anomalies by doing nothing, waiting or using a reasoning 
mechanism to identify a suggestion. It creates an episode in 
the presence of an anomaly. If a suggestion is identified, it 
projects the expected results in the Vishnu Web. 

The Brahma process manages the knowledge base and 
continually revises and optimizes clusters and cases. It also 
maintains the ontology. 

The Saraswati process is responsible for communicating 
with other GPME instances. 

The Lakshmi process is responsible for handling special 
requests from the host and for monitoring the accuracy of the 
Vishnu Web.  

The Parvati process provides an instrumentation and 
management interface. 

V. ONGOING AND FUTURE WORK 

Since the GPME improves on MCL2, the testing strategy 
revolves around comparing the performance of systems 
placed in the same circumstances and scenarios. We intend 
to compare the system’s performance when integrated with 
MCL2 in comparison to integrated with GPME. If possible, 
we will also compare performances with an established 
metacognitive framework such as SOAR-RL [13]. 

While several metrics will be collected, the principal 
metric is homeostasis. As we described earlier, homeostasis 
is the number of anomalies weighed by type. During the 
sampling interval, we will calculate the homeostasis of the 
system and examine the curve over time.  

The core test involves a maze the system must navigate 
to obtain rewards. Periodically, the location and nature of the 
rewards will change in a non-random manner, cycling back 
through known states. The test emulates seasonality. We can 
envision that the system is an animal and the reward is food. 
Depending on the season, the animal finds the food in 
different locations and in different quantity. However, the 
location and quantity of the food is consistent with the 
season.  

We expect that each time the season changes, the system 
experiences a surge in anomalies as rewards become scarce. 
In response, the metacognitive component helps the system 
find new rewards. Once a new source is found, the number 
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of anomalies should trend back towards a norm. We can 
measure cleverness based on the norm. The system with the 
lower norm is cleverer at finding rewards. We can measure 
adaptability based on how quickly the system responds to the 
change in seasons. The system that recognizes the change 
faster is more adaptable. Finally, we expect that as the cycle 
of seasons repeats itself, the GPME will outperform MCL2 
and the RL in terms of total homeostasis over time. 

Plotting the weighted anomalies over time, we calculate 
the slope of the curve from the change of season to the peak 
number of anomalies, to measure the efficiency of the 
metacognitive component’s ability to recognize the change 
of season. The slope of the curve between the peak and the 
normal number of anomalies measures the efficiency of 
adaptation. The actual value of the normal number measures 
cleverness. 

 
Figure 8. Projected Performance Curve over a Season 

 
The test will execute several thousand seasonal cycles. 

Analyzing the performance curves of all cycles, we expect 
that the GPME will outperform MCL2 and RL by 
substantially minimizing the slopes over time. 

 
Figure 9: Projected Aggregate Performance Comparison 

VI. CONCLUSION 

The domain-generality of the GPME and its open and 
flexible interface will allow designers to build robust systems 
more rapidly, accelerating the application of metacognition 
enabled solutions in a larger number of domains. 

The GPME builds on MCL2 by introducing the ability to 
deal with seasonality. To support this ability, the GPME 
develops its own expectations to supplement those the 
designer specifies. As a result, the foresight of the designer is 
no longer a limiting factor and it is free to discover and 
handle anomalies the designer did not anticipate. The GPME 
uses its episodic memory to match attributes of anomalies to 
cases it generates. This approach substantially lowers the 
need to relearn when dealing with seasonal changes. The 
introduction of decay means that experiences and cases that 

are not valuable eventually exit the episodic memory in order 
to keep its performance constraints manageable. 
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