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Abstract—Imitative processes, such as knowledge trans-
ference, have been long pursued goals of Artificial
Intelligence (AI). The significance of Knowledge Ac-
quisition (KA) in animals and humans has been stud-
ied by scientists from the beginning of the 20th cen-
tury. Our research focuses on observational imitation
through agent-user interaction, for acquisition of sym-
bolic knowledge. The cognitive agent (CA) emulates an
imitative learning system, trained for the purpose of
learning to represent knowledge, acquired from Rich
Site Summary (RSS) feeds. It learns to autonomously
represent that knowledge in a manner that is both logi-
cally sound, and computationally tractable, through the
fusion of Conceptual Graphs (CG) and Reinforcement
Learning (RL). The novel algorithm enabling this agent
extends Reinforcement Learning, by approximating de-
cisions via exploitation of distributional and relational
semantics governing the knowledge domain.

Keywords–Cognitive Agent; Reinforcement Learning;
Conceptual Graphs; Expert Systems; Imitation Learning.

I. Introduction
Similar to recent research projects, which try to acquire

knowledge from the Internet, such as KnowRob [1] or
Never Ending Image Learner [2], this paper focuses on the
acquisition of knowledge found on the Internet, a large
source of ever growing data. We examine RSS feeds [3]
as the source of knowledge, due to their parsimony and
quality of information. RSS has been around for more than
a decade, and is used to display and update in real time in-
formation from various news agencies, websites and social
media, and represent an important and stable, widely used
means of information distribution of the modern world.

The CA emulates, but does not simulate, a perceptive
process and learning system, based upon psychological
studies in humans [4] and animals [5]. The CA purpose
is to acquire knowledge; for that we train the agent using
RL, instead of heuristics, which is the norm. Doing so, we
hypothesise makes the agent adaptive, and enables it to,
domain-independently, augment its acquisition capabilities
(KA) and thus, expand its knowledge in an autonomous
or semi-supervised manner. The CA described in the pa-
per, employes a symbolic-based imitation learning process
(observational imitation) as defined by previous research

[5][6]. The actual algorithm emulating the imitational pro-
cess, is performed through the fusion of AI technologies as
well as a new approximation algorithm we’ve developed for
RL, in order to enable the CA to keep learning indefinitely,
after training. Machine Learning (ML) literature treats an
increased state space as a problem rather than an aid [7],
something usually dealt with state or action approxima-
tion. In contradiction to this belief, we attempt to show
that by re-using existing reinforced episodic experience,
through semantic approximation, learning can benefit from
an expanding state space. CA learning to acquire infor-
mation, cannot afford to perform random actions (e.g.,
Monte-Carlo search) as part of the Markov Decision Pro-
cess (MDP) used by RL, as this leads to poor performance
or slow convergence [8]. Modelled after imitation [5] and
Programming By Example (PBE) [6], we hypothesise that
the rate at which prior experience is exploited can alter
the decision making process of RL, through the fusion
of approximation methods. By employing semantics and
reasoning on underlying semiotics governing the symbolic
particles found in the knowledge domain, we attempt to
restrict the amount of random decisions, and replace them
with known actions, assumed to be correct. The purpose
of the RL algorithm is to obtain RSS feeds, and then learn
how to isomorphically project the feed onto a CG [9].

Section II visits related research, describing the context
in which the current proposal has been created. Section III
describes the main problems we are attempting to solve
in this paper in greater detail. Section IV describes the
learning architecture of the CA. In Section V, we describe
the algorithm that implements semantic approximation,
and thereby extends RL. This is followed by a discussion
in section VI and conclusions in Section VII.

II. Related Research
Existing research on automated KA has focused on

heuristics [10][11] or statistical and probabilistic analysis,
either via Natural Language Processing (NLP) or as part
of the Knowledge Representation (KR) generation [12] of
CG. Other researchers have used CG [13] for mining, yet
others used semantics and morphosyntactics [14] in order
to extract concepts (not CG). Older research has seen
combination of concept maps and neural networks, such
as the KBMiner [15] for KA or mining. Direct comparison
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with all the aforementioned research won’t do justice to
either the work described, or ours, as it would partially
compare one side of our work (KA) to research that was
not focusing on CA or imitation learning. As such, the only
comparison possible, would be the performance of our fully
trained CA, against the performance of the algorithms
described above.

AI research in imitation has historically [5] attracted
attention from roboticians, as it stands to be the field that
would mostly benefit from knowledge transference. Whilst
research on knowledge transference in software agents [6]
has focused on inference and pattern prediction for Web
interfaces, programming automated tasks, etc., we address
bridging CA and RL, for acquiring knowledge (KA), as
part of an imitation process. Lieberman set the founda-
tions for PBE [6] on which a great deal of our research
relies on. However, most of the research by Lieberman
(or his associates) does not deal with agents (much less
CA), nor does it deal with KR. The only research by
Lieberman on agents [16], was for Web browsing and text
mining, which has fundamental differences from KA. Other
researchers using PBE have done quite similar research
(with respect to intentions and processes) [17], but still
the comparison is incomplete as different technologies were
used, and for a different purpose.

In comparison to both PBE and KA research, we
employ RL, in order to train the agent. The algorithm
described in this paper here can be said to belong to the
family of stochastic semi-supervised learning algorithms.
The agent does not attempt to detect patterns, mine
information, or summarize text, but instead focuses only
on projecting information into a formal representation
(KR structure), such that it can be manipulated for other
knowledge management operations (which are outside the
scope of this paper). Knowledge is making sense of in-
formation, and for learning to make sense of RSS, we
use RL, which has been widely used for a variety of AI
tasks, ranging from robotics [18], to games, to intelligent
agents [7]. RL research has, however, been conscious about
approximating and regressing state-actions since its incep-
tion [8][7], and there exists a plethora of methods on how
to effectively regress and approximate, in order to infer
correct policies. However, our approach using semantically-
driven approximation in combination with distributional
semantic similarity calculations, should provide grounds
to support episodic experience re-usability in CA learning
via RL.

III. Problem Setting and Objectives

The primary objective of the described CA is to obtain
feeds and construct the correct Conceptual Graph (CG)
from each feed. We assume each feed to contain knowledge
that can produce one or more CG [9]. Traditionally, CG
creation has been assigned to knowledge engineers, human
users acting as experts who construct the correct CG.
The second, more practical objective, is to enable the CA
to learn how to acquire knowledge by reusing its own
experience, thereby aspiring to enable the CA to self-
augment its capabilities. By creating a trainable agent to

acquire knowledge, we aim to enable the CA with certain
advantages over conventional approaches:

• The agent should be able to process any domain
of symbolic information.

• The agent should be adaptive, thus be able to learn
training indefinitely and adapt to non-monotonic
knowledge (through the use of RL).

• The agent after being trained, should be able to
autonomously acquire knowledge without the need
of a knowledge engineer.

• The (trained) agent should be able to deal with
unknown domain particles (via Semantic approxi-
mation) and uncertainty.

IV. Cognitive Agent Architecture
According to the criteria set by Lawniczak and Di

Stefano [19], the described agent could be partially called
a CA. It satisfies four of the five criteria:

• Perceives Information (RSS) in its environment
(Web) and provided by other agents (through tex-
tual queries)

• Reasons about that information using existing
knowledge (through ML, RL and Semantics)

• Responds to other agents, human (via Web inter-
face) or artificial (via textual responses)

• Learns and changes the existing knowledge if the
newly acquired information allows it

In fact, the only criteria not satisfied, is the ability to
judge obtained information using existing knowledge [19].
The novelty in the design of the cognitive agent is not
merely the fusion of different A.I. technologies, but finding
a novel usable expression of the notion that a cognitive
agent can be trained to learn how to acquire knowledge,
by reusing its own accumulating experience. It is however
important to note that this agent is designed to deal only
with symbolic knowledge, and not with continuous, metric
or numeric information. As the source of information, RSS
feeds are used. RSS offer certain distinct advantages over
other sources of information. Thelwall, Prabowo and Fair-
clough [3] mention that RSS feeds are one of the very few
sources on the internet, which may be able to offer quality
information relevant to specific subjects. The Knowledge
Representation (KR) meta-structure used is Sowa’s CG
[9], which are formal structures, based upon philosophical
principles, that offer logically sound reasoning operations
[20]. They also offer a few advantages over other KR
structures, such as Web Ontology Language (OWL) or
the Resource Description Framework (RDF). They do not
use a subject-predicate-object format, but are relation
centric. Their greatest advantage is that they are visually
simple to understand, even by (human) users who are not
knowledge engineers or computer scientists. They also offer
a computationally affordable [13] and tractable way, in
order to perform various logic and reasoning operations
[20], which are important and desirable for the future
of this project. The agent’s main task is to parse feeds,
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and construct the correct Conceptual Graph (CG) g such
that g correctly represents the knowledge encapsulated in
the feed r. What this implies, is that the agent learns
how to read text found on the internet and represent it
internally. The actual manipulation and management of
the acquired knowledge is outside of our scope, we only
focus on enabling such a process so as to emulate imitation
and observation learning. We model this, as shown in (1),
indicating that the imitating function f is a mapping or
projecting function.

f : r 7→ g. (1)

The function f is composed of a parsing fp and an isomor-
phic projection fm so that r ∼= g, as shown in (2).

fp(r) = tr, fm(tr) = gr ∴ (fm ◦ fp) = fm(fp(r)). (2)

Those two functions compose the actual operation of the
CA: first the feed r is parsed as a set of tokens tr , and then
that set is isomorphically projected onto graph g. If parsing
fp does not produce the correct output, then projection fm
may have undefined behaviour. Function fm is the subject
of RL, and by using fm as a policy for projecting r ∼= g
(1), we may replace fm with Q, as shown in (3).

fm : r ∼= g ⇔ Q(st, at). (3)

where (3) Q is the Markov decision, calculated as a policy
for a given state st when taking action at, at step t.
Function fp parses the feed r, into the set of tokens
tr:{t1,..,tn} by tokenizing it. Parsing and tokenizing is a
NLP task, which we do not include within the projection,
or the learning material for the agent; instead we rely on
simple white-space tokenizing, using a grammatical rule-
based approach [21]. We chose to do so, in order to simplify
the decomposition operation, into a minimal algorithm
with small complexity, and thus, focus on the projection
algorithm. Using heuristic parsing [21], amongst others,
this process concatenates words that are encapsulated
by quotes (single or double) into a single token. Using
morphosyntactic (part-of-speech) tagging [22], the parsing
algorithm also finds tokens, which denote a person, and
concatenates them into a single token. Trailing “’s” found
after a word, are removed, and replaced by the token
“owns”. Free particles, such as “the”, “a”, “an” are also
removed. All implied tokens, not found in the actual feed
r, should be discoverable by the CA, as it has no other way
of inferring those tokens. The tokenizing should capture
the ontology of the feed, in the resulting token set tr.

Following the tokenizing, the projection starts, and is
done in two stages, and represented as a MDP in the form
of an episode of RL:

• In function fn tokens have to be converted to a
vertex (Concept or Relation) [9].

• In function fc relations have to connect to concepts
with an edge [9].

The state is always represented by the same CG (see
figure 1), which is being constructed by the RL algorithm,
and is only finished when a terminal state is reached [7].
The construction of the CG, is what that the CA learns
to perform, described by the MDP used by RL. In a

temporal sense, each time-step in the MDP is describing
the algorithm constructing a piece of the CG. As the graph

Figure 1. MDP as a RL State-Path
is constructed by the feed tokens, the graph vertices are
eventually connected, in order to form the final graph. We
employ states and actions as per the RL literature [7], and
the human trainer provides a reinforcement at the end
of each episode, rewarding that CG. The CA uses that
reward to reinforce correct CGs. We chose to use RL over
other methodologies, because it deals best with partially
observed MDP [7]. The Q-Policy value is calculated by the
SARSA algorithm [7], as shown in (4).

Q(st, at) = Q(st, at)+α[R(t+1)+γQ(st+1, at+1)−Q(st, at)].
(4)

The algorithm back-propagates that reward Rt+1 for ter-
minal states, when re-iterating previous states, using a
discount factor γ and learning rate α. We chose SARSA
over Q-learning, as it is assumed to be more greedy with
respect to immediate rewards [7]. The actual action at in
(4), has the binary nature described by (figure 1) and, can
logically be represented, as shown in (5).

at ← fn(tr) ∨ fc(g). (5)

The disjunction signifies the two-staged construction as a
temporal process: either vertices, or edges, are created. The
action search space can vary, and is denoted by Spat, as
shown in (6), where n is the number of all vertices in g.

Spat(fn) = 2n. (6)

A correct decision, could be expressed as a search in that
action space, where the algorithm has to find the correct
vertex types for graph g, or establish the correct edges
between them. The action space is also proportional to
the number of tokens in the feed, and is dynamically
parametrised by the decided relations r and concepts c of
g where xr is the available edges for a relation, as shown
in (7).

Spat(fc) =
∫ c

1
(r ∗ xr). (7)

Each relation vertex r can have minimum one edge to a
concept, and maximum an edge for each concept. Only
relations can establish edges to concepts [9].

The CA is complemented by a semantic graph, repre-
sented internally by a Word-Net instance [23]. Contrary
to CG literature [20], we do not employ two distinct maps
for relations and concepts, as Word-Net has its own clas-
sification and categorization. All semantic operations are
delegated to Word-Net, which acts as a semantic authority.
Using an action at which has been reinforced, implies that
this action has been performed at least once. Normally,
this action would be randomly chosen from the space of
possible actions Spat and only after being reinforced, could
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it become a policy. Whilst this may not be a problem for
other AI-related areas, it is of the utmost importance for
the CA to decide the right actions the first time, and not
wait for a policy. In reality, the same, identical states would
rarely be revisited, in order for a policy to become of much
use.

V. Semantic Approximation
A vast search space is a problem in RL when computing

or searching for policies [7]. Conventionally, RL is a semi-
random MDP, often employing a Monte-Carlo search.
However, due to the importance of semantics in symbolic
domains [23], the described algorithm for selecting an
action for a state, assuming st has never been experienced
before, attempts to avoid random selections, and instead
relies on semantic distance and word similarity, in order
to reason, as to why an action should be performed. The
premise upon which this notion is based, is that of reusing
prior positive experience. Furthermore, the operation is
to approximate state similarity, and then approximate
action similarity through semantics. Assuming enough
reinforced experience exists, the algorithm should have
enough sources to reason as to why an approximation
could or should work. The semantic similarity between
the particles that describe a state is inherited from the
lexicon of the domain, for which knowledge is acquired.
Those semantic relations are exploited in a logic fashion,
so as to reason about re-using, known to-be-correct (via
reinforcement) actions. Each episode in memory, can be
positively or negatively rewarded by the trainer. The first
operation is to approximate similarity to all positively
rewarded graphs in memory, as shown in (8), by using a
Vector Space Model (VSM) [24].

Sr = M ∗ Vr

‖M‖ ∗ ‖Vr‖
. (8)

Sparse matrix M (8) contains token-frequencies, and is
created by indexing each unique CG as a column, and
each token used as a vertex in a CG, as a row. Vr is the
(respective to matrix M ) row vector of tokens representing
the feed r. The VSM discovers similarity based upon
distributional semantics, and returns a column vector Sr

of degrees of similarity, as shown in (9), representing how
similar each CG in memory, is to the input vector Vr.

Sr = [cos(Θ1), ..., cos(Θn)] . (9)

For each identical particle in graph g’ (the graph already
in memory) that is similar to g (e.g., the one currently
being created), we perform the same action. For example,
if at converted t to concept c, we assume the same deci-
sion to be valid. Thereby by approximating the state st

we can obtain policy Q(st,at). However, for non-identical
particles, assuming that graph g’ ∈ Sr(cos(gn)), has tokens
g’ :{t1,..,tn}, we subtract the identical particles of g’ from
g, with result set X :{gparticle – g’particle}. Each particle in
X should exist in g but not in g’, as shown in (10).

(p ∈ X) ∧ (p 6∈ g′). (10)

The next phase of the action-decision algorithm, iter-
ates for each particle p ∈ X, and tries to establish, if ∃

[n,n’], a semantic relation as a graph path, for n ∈ X and
n’ ∈ g’. Please note that n and n’ are the semantic vertices
within a semantic graph, with the respective symbolic
value of token t, concept c, or relation r. The semantic
relation describes an “IS A” relation. Semantic relations
in the semantic graph are hierarchically ordered. This
semantic graph should in fact be a Hasse diagram where
super-ordinates are sorted near the root and sub-ordinates
are sorted near the bottom, similar to the conceptual graph
literature [20]. However, that depends on the semantic au-
thority, in this case, Word-Net [23], which does indeed sort
hierarchically the vertices, as hypernyms and hyponyms.

Finding a path in the semantic graph, between n and n’,
denotes that there exists some form of semantic similarity.
In case a semantic relation is discovered as a path, then the
action-decision mechanism in RL will use the same action
that was used in state st when constructing the graph g’.
The theoretical basis for this decision, is the principle of
reusing positively rewarded experience; something known
to be correct, will be re-used and assumed correct, until
reinforced otherwise. However, the direction of that se-
mantic similarity is important [23]. Super-ordinates denote
a super-type, from which sub-ordinates are assumed to
inherit all or some of its properties, a form of inductive
hypothesis. The exact opposite, a path connecting super-
ordinate n to subordinate n’, implies a deductive hypoth-
esis (e.g., a specialization of n to n’). As such, n may not
inherit properties or attributes of n’. The actual search
which tries to establish if there exists a path between n
and n’ is simply a breadth-first search (BFS).

Semantic distance d[n,n′] also plays an important role
[23]; the further apart the semantic relation discovered, the
weaker it is assumed to be. The algorithm will sort the re-
sulting set of semantic paths discovered between n and n’,
based upon the semantic distance, biased towards smaller,
over longer distances (measured in steps t). Semantic di-
rection dt, is described by the upwards movement towards
a super-ordinate or towards the downwards movement
towards a sub-ordinate. Direction towards super-ordinates
is preferred over sub-ordinate direction, and is perceived
to be more important [9]. Direction is accumulated, as +1
for sub-ordinates and -1 for super-ordinates for each step
t until the search terminates. The accumulated sum, as
shown in (11), is discounted by factor γ.

v[n, n′] = ws(d[n,n′] + γ ∗
∑

dt). (11)

However, Word-Net also uses a sense classification [23], re-
lated to the frequency at which a semantically hierarchical
tree appears. We chose to weight the sense by using ws,
thereby further biasing the computed value v[n,n′], to prefer
the most frequent sense. The sense weight ws is min-max
normalised in the event that many senses are discovered.
Therefore, the resulting path values are described by three
attributes: frequency of path, distance and direction. By
using those attributes, and computing a v[n,n′] value, we
approximate the best action at, for the most similar state
obtained by the VSM earlier. The algorithm will use an
action at with the smallest v[n,n′], as shown in (12).

∃ : ([n, n′]) ∴ at ← at(min(v[n,n′])). (12)
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Below is the pseudo-code describing Semantic approxima-
tion. Selecting a vertex of Concept or Relation type, as
shown in (5), is algorithmically implementable, as shown
in (Algorithm 1). More specifically, operation Sim (Algo-

Algorithm 1. Token Action Decision
1: function Decide(M ,Vr, t) . t is a token
2: Sr = Sim(M , Vr) . set of similar graphs
3: if Sr¬∅ then
4: Sr = Sort(Sr)
5: for g′ ∈ Sr(cos(gn)) do
6: if (x = sg–g′)¬∅ then
7: for t′ ∈ x do
8: if t ≡ t′ then return g′ : (at)
9: else if ∃v[n,n′] then

10: at : min(v[n,n′]) return g′ : (at)
11: else return Null
12: end if
13: end for
14: end if
15: end for
16: end if
17: end function

rithm 1, line 2) is the VSM vector output from formula (8),
whereas Sort (Algorithm 1, line 4) is simply a descending
ordering based upon cosine, as shown in equation (9).
Please note that the BFS is not shown in (Algorithm 1).
The algorithm may terminate when:

• A path between n and n’ is found.
• The search is exhausted (e.g., there exists no path)

The CA commences (Algorithm 1) whilst there exist to-
kens not converted to vertices in the CG. As such, this is
a linear operation, proportional to the tokens found in the
feed r. Complexity is O(n2), and the algorithm describes
the function fn(tr), as shown in (5).

The second part of the action space, function fc(g), as
shown in (5), is depicted in (Algorithm 2) which has to
decide what edges to create for Relations. In (Algorithm
2), the complexity is at least O(n3), and depending on the
output of the similarity function, there is no guarantee that
a decision may be possible to be approximated. The min-
imum min(v[n,n′]) calculation has been omitted, albeit it
should be at (Algorithm 2, line 15). Deciding for relations
r, is a bit different: the algorithm not only has to establish
if there exists a similarity between relations r and r’, but
also discover if r’ is usable by establishing if the concepts,
to which r’ is known to connect to, exist in our graph g.
Failing to establish such a condition, the algorithm will
try to find if for any of the concepts c’ connected by r’,
there exists a semantic relation (Algorithm 2, line 14).
Therefore, the action approximation will not be based
solely on the similarity between relations but is further
based upon the similarity of concepts. Only in the event
that the algorithm cannot provide an appropriate action
at, a random action will be selected. In such an event, the
algorithm falls back to being a semi-random MDP, where
fn(tr) randomly selects a vertex type, and fc(g) randomly
connects relations to concepts.

Algorithm 2. Edge Action Decision
1: function Decide(M ,Vr, r) . r is a relation
2: Sr = Sim(M , Vr)
3: if Sr¬∅ then
4: Sr = Sort(Sr)
5: for g′ ∈ Sr(cos(gn)) do
6: if (x = sg–g′)¬∅ then
7: for r′ ∈ x do
8: if (r′ ≡ r) ∨ (∃v[r,r′]) then
9: edgesr′ : {[r′, c′

1], .., [r′, c′
n]}

10: for c′ ∈ edgesr′ do
11: for c ∈ g do
12: if c′ ≡ gc then
13: return g′ : (at)
14: else if ∃[c, c′] then
15: return g′ : (at)
16: end if
17: end for
18: end for
19: else return Null
20: end if
21: end for
22: end if
23: end for
24: end if
25: end function

VI. Discussion AND Further Work

Reusing known positively rewarded experience is a
characteristic of the human psyche known as crystallized
intelligence [4]. By extending RL in such a way, which is
also modelled upon psychological processes [7], we hope to
enable a form of RL algorithm, which can avoid random
selections as often as possible, whilst emulating a cognitive
function in a somewhat realistic manner. Furthermore, an
expansion in experience should actually aid the action-
decision, as more experience implies that there will exist
a plethora of episodes and their respective graphs, upon
which the algorithm may reason why an action should be
taken. The proposed action-decision algorithm is an on-
policy approximation, based upon logic and semantics, as
shown in (13).

Q(st, at)← Q(st(max(cos(Θg))), at(min(v[n,n′]))). (13)

Entirely avoiding random selections is not possible, as
a cold-start issue may always ensure that at some point, a
random choice will have to be made. Furthermore, seman-
tic relations are obtained by a semantic authority, such as
Word-Net [23]. Semantic relations may not be discoverable,
due to being non existent in Word-Net, as may be the case
with highly specialized terms or words, in which case, the
algorithm will fall back to random selections. This relates
to whether the MDP is fully observable; it is assumed
not to be due to the limitations of discovering semantic
relations. In addition to the above, the actual size of
reinforced experiences (as episodes or conceptual graphs)
would not benefit from a high ratio of negative experiences,
albeit those could be used to avoid negative actions when
randomly deciding. We have empirically optimised the RL
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algorithm in our preliminary experiments, by adjusting for
a low α learning rate and high γ discount factor. During
non-RSS trial runs, convergence occurred with a thousand
iterations whilst using an exploration-greedy policy. Early
tests of the algorithm indicate that it appears to approx-
imate states and actions, with an accuracy that could be
related to the VSM model and Word-Net accuracy, but
that remains to be evaluated. Future work will see the
comparison of a plain RL (Markov e-greedy) algorithm,
a probabilistic (Morphosyntactic) RL algorithm, and the
Semantic-driven RL algorithm described in this paper.
A double-blind experiment where human users have to
project RSS feeds to CG, may also provide further psy-
chological insight and information on the modelled process
and algorithm.

VII. Conclusions
The need for such an algorithm was discovered af-

ter early anecdotal experiments indicated that frequent
random actions occurred due to infrequent Q policy re-
visitation, and thus had a dramatic effect on the learn-
ing ability of the agent. The novelty is in implementing
approximation methods on a purely symbolic basis. As
most approximation and regression methods are based on
numeric foundations [8][7], semeiotic relations governed
by distributional and relational semantics, were the most
important factor in dictating the design of this algorithm.

Whereas a lot of effort has been put into approx-
imation, regression, knowledge mining, acquisition and
management, it is our belief that trying to tackle such
a task using a trainable and adaptive cognitive agent,
presents some very interesting dilemmas and hence, can
provoke interesting solutions. However, the algorithm is
still rudimentary, as it does not rely on exploiting knowl-
edge acquired by conceptual graphs, but only episodic
experience. The absence of domain knowledge re-usability
should not be a limiting factor for learning, but it could be
a limiting factor for discovering new knowledge, or other
logic operations based upon that domain knowledge. Will
prior knowledge and experience aid learning? Could the
agent successfully reason after the solution? It is widely
accepted that an increase in the number of propositions has
a dramatic impact on learning algorithms [8]. More impor-
tantly, as the state space grows, will the propositional logic
deteriorate or augment? The algorithm and framework is
based upon the principality that relations discovered will
not drastically change over time, but even if they do, the
agent should be able to adapt to those changes through
learning.
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