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Abstract—One of the main challenges today is the growing
global energy demand. In order to meet this need, the most widely
used energy sources are oil, natural gas and coal. The main
problem with these sources is due to the fact that, besides being
extremely polluting, they are non-renewable sources. Therefore,
renewable sources are becoming essential for humanity. Among
many of them, the wind is the most promising choice. Wind farms
have their potential directly related to the wind power, which
requires good estimates of this variable in order to build effective
strategies and plans. However, this task presents great difficulties
due to the complex characteristics of the wind, such as the high
variability of its velocity and direction. This paper aims to use
the technique of Reservoir Computing for the prediction of wind
power generated by a wind farm and compare its performance
with the one produced by the Multi-Layer Perceptron, another
type of artificial neural network and the most widely used for
this purpose. At the end, it will be possible to analyse the results
and conclude which one is more appropriate for predicting wind
power.
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I. INTRODUCTION

One of the major challenges today is the growing global
energy demand. In order to meet this need, the most widely
used energy sources are petroleum, natural gas and coal. The
main problem with these sources is due to the fact that, besides
being extremely polluting, they are non-renewable sources, i.e.,
will be exhausted from nature within a few years. According
to the International Energy Agency (IEA), if we do not reduce
the average consumption recorded in recent decades, the world
reserves of oil and natural gas will be exhausted in 100 years
and those of coal in 200 years [1]. Thus, the use of renewable
energy sources has become essential. They will also help to
combat environmental degradation.

Renewable energy, for the reasons cited above, is becoming
increasingly important to humanity. The main advantage of
renewable energy are: it is clean, safe, abundant and, therefore,
does not impact the environment in a negative way. Among
the various sources available in the world, the wind is the
most promising choice. This is explained due to its constant
availability anywhere and its production is now considered cost
competitive [2].

Due to the randomness of wind generation, it is not possible
to guarantee a fixed amount of energy to the electrical system.
In addition to that, there is the increasingly high investment
of several governments in this type of energy in order to meet
the high power consumption in recent years. Thus, in order to
help countries whose energy matrix now includes the wind as
an alternative source, the forecast wind power has proven to
be crucial for developing strategies and appropriate, efficient
and inexpensive planning. This forecasting depends mainly on
wind power. Various models are used to perform it, several
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of them including artificial intelligence. This work aims to
use an architecture of Artificial Neural Network (ANN) called
Reservoir Computing (RC) and analyse its performance.

Although there are already models using the most common
types of ANNS, such as Multi-Layer Perceptron (MLP), the
Reservoir Computing was chosen for having an architecture in
which artificial neurons are interconnected and organized in a
more similar way to the human brain (a metaphor that is the
origin of ANNS, as the name implies)[3].

This characteristic of the RC architecture allows this tech-
nique to represent systems with dynamic behaviour, which are
difficult to be represented in neural networks, such as MLP
[4]. Therefore, learning the dynamic characteristics which
represent the temporal series of the wind power becomes a
more suitable task for the RC.

Due to this, it is expected that its performance on forecast-
ing is better than that obtained by the other ANNs. Hence, the
prediction would be more accurate and increase efficiency in
the planning and use of wind energy, encouraging its use in
many place and, at the same time, preserving the environment.

This paper is organized as follows. Section II introduces
the Reservoir Computing technique, its structure and how it is
created, used and trained. Section III presents the methodology
used during this work, such as the database used and the
ANNs configurations. Results can be found in Section IV.
Conclusions and future works are given in Section V.

II. RESERVOIR COMPUTING

In addition to feed forward architectures, such as the
MLP, widely used in time series forecasting, Recurrent Neural
Networks (RNN) began to emerge. In this new type of network,
there is the addition of recurrent connections to existing feed
forward architectures. These connections transform the system
into a complex dynamic system and one more suitable for
solving temporal problems. In the case of this project, it
becomes an attractive option because the problem to be solved,
the forecast of wind power, is temporal in nature. Figure 1
shows the structure of a feed forward and recurrent network
[5].

The RNNs are computational models capable of creating
internal memory required to store the history of input patterns
through their recurrent connections [5].

In 2001, a new proposal for the design and training of
RNNs was suggested independently by Wolfgang Maass [6]
called Liquid State Machine (LSM) and Herbert Jaeger [7]
called Echo State Networks (ESN). Verstraeten proposed the
unification of these two approaches into a single term called
Reservoir Computing. Since then, RC began to be adopted
in the literature as a generic name for learning systems that
consist of a recurrent network dynamics with simple compu-
tational nodes combined with a simple output function [8].
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Fig. 1: Structure of a feed forward (left) and recurrent
network (right)

[Fonte: [4]]

A reservoir computing system consists of two main parts:
a reservoir and a linear output layer. The reservoir is a non-
linear dynamical system with a recurrent topology composed
of processing nodes. The connections between nodes are ran-
domly generated and are globally rescaled in order to achieve
a proper dynamic state. An important property of the RC is
that the reservoir has fixed weights, that is, its training is not
necessary. Only the output layer is trained, therefore, it has an
output function. This function can be, for example, a classifier
or linear regression algorithm [4].

The fact that only the output layer needs to be trained
allows the use of the same reservoir for the solution of different
tasks simultaneously by keeping the same inputs.

An interesting feature of RC is one based on ESNs, a
property called echo. This property defines the effects of a
previous state x (n) and an input value at a future state x (n
+1) should gradually decrease with the passage of time k (i.e.
k — infinity) and should not persists, or be amplified.

Due to recurrent connections, information on past entries
is stored in the network. Because of this, the network contains
a rich set of non-linear transformations and mixtures of input
signals of past and present (called echoes) times.

A. Creating and Using Reservoirs

In the following text, it is assumed that the RC system
consists of N reservoir nodes, M inputs and P outputs.

1) Creating the input and reservoir connections:

1)  Construct an MxN input to reservoir weight matrix
Win. The weights are drawn from a random distribu-
tion or discrete set. If all input signals are fed to all
reservoir nodes, then all elements of this matrix are
non-zero. Otherwise, there will be null elements.

2)  Construct an NxN reservoir interconnection weight
matrix W,..s. The values for the weights are again
drawn from a distribution or a discrete set of values
(e.g.,[-1, 1]).

3) Rescale the weight matrix globally such that the
reservoir has a suitable dynamic excitability. The most
common way to do this is to tune the spectral radius
of W,.s. The spectral radius of a matrix is its largest
absolute eigenvalue. A value close to 1 is usually
proposed as a good starting point for optimizations
of ESNs.

2) Simulating the Reservoir and training and testing read-
out:
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1)  Construct a dataset D and split it in 3 sets: training,
cross validation and tests.

2)  The network state at time k is denoted as x[k] and an
input at the same time as u[k]. For every sample, we
initialize x[0] = 0. Before starting the training, the first
100 cycles are called warm up. During the warm up,
the neural network forgets its initial states and loses
the influence of value zero. As soon as the warm up
finishes, the training is started and the neural network
is simulated recursively.

3)  After every sample is simulated, state matrices of the
training set are concatenated into a large state matrix
A.

4)  Compute the output weights. In this project, to per-
form this calculation, we used the Moore-Penrose [9]
generalized matrix or pseudo-inverse due to the fact
that the matrix A is not square. These calculations will
be done automatically by a Java routine called JAMA.

5 After a sample entry is trained, cross-validation is
performed in order to check if the training can now
be finalized. The Mean Square Error (RMSE) is cal-
culated and stored for each cross-validation done.

6)  After training, the network is simulated with the test
set and the Mean Absolute Percentage Error (MAPE)
is calculated. These errors are stored for subsequent
statistical tests. In this project, we used the Normalized
Mean Absolute Error (NMAE).

Through the NMAESs calculated for network performance
with the RC and MLP techniques, it will be possible to
compare which architecture is the best choice for the prediction
of wind power.

III. METHODOLOGY
A. Database

The database used in the experiments was provided by
the brazilian Operador Nacional de Sistena Elétrico (ONS) or
National Operator of Electrical System. The ONS is the body
responsible for the coordination and control of the operation
of generation and transmission of electricity in the national
interconnected system [10].

Data for average wind power are daily and the period in
which they were measured and collected goes from December
1, 2011 until July 31, 2012. They were observed from 30 to
30 minutes and the available data are: average wind speed,
direction and power. From all these attributes, we will only
use the power of the wind. Through experiments, it was noted
that only this variable achieves good results.

Each wind farm has an installed power capacity associated
with it. This value indicates the maximum power that can be
produced by the farm. The database used belongs to a wind
farm with a capacity of 54.61 MW.

B. Pre-processing of data

The first step in the stage of pre-processing data is the
normalization of values. This step aims to prevent high values
from influencing too much the calculations of the ANN while
low values go unnoticed. It is necessary to ensure that the
variables at different intervals receive equal attention during
the training. Moreover, the variables should have their values
proportional to the boundaries of the activation function used
in the output layer. If the activation function chosen is the
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logistic sigmoid, their values are limited between [0 and 1],
then the data are usually normalized between [0.10 and 0.90]
and [0.15 to 0.85] [11].

The normalization is calculated using the formula described
in (1):

Y = (b—a)(xi — Tmin) ta )
(mmaw - xmin)

where:

e y = normalized value;

x; = original value;

Tomin = Minimum value of x;

Tmaz = Maximum value of x;

a ¢ b = limits chosen. In this work, a = 0.15 e b =
0.85.

C. Measure Network Performance

In case of wind power prediction, the usual error descrip-
tors, such as MAPE and Mean Absolute Error (MAE), are
given as a percentage of the installed capacity of a particular
wind farm. In this work, it was defined that the network
performance would be measured by the Normalized Mean
Absolute Error (NMAE).

D. Predicting Wind Power with MLP

Although it is widely used in many researches, the MLP
requires that several of its parameters are configurable and the
choice of each directly influences the final outcome of the
prediction.

Below are the main parameters of the MLP and Backprop-
agation algorithm:

e  Number of neurons in the input layer;

e Number of neurons in the hidden layer (only one
hidden layer);

Number of neurons in the output layer;

Activation function;

Stopping criterion;

Learning Rate;

Momentum.

The number of entries varied in order to be possible to
make an analysis of the impact of a larger amount of inputs,
like 48 or a smaller number of inputs, such as 7 and if this
alteration made any difference in the wind power prediction.
As noted, it did not matter if the number of neurons in the
input layer was 7 or 48. For the purpose of expediting the
training, we chose the value of 7 inputs.

The output is always 48 wind power values, thus the
predictions are one day ahead.

The algorithm used is the Backpropagation and the activa-
tion function chosen for the neurons is the logistic sigmoid.
This function returns values in the interval [0, 1].

The stopping criterion used was cross-validation, with 50%
of the set of values for training, 25 % for cross-validation and
the remaining 25 % for testing.

Several tests were performed to define the learning rate,
momentum and number of neurons in the hidden layer. The
best results correspond to the values of 0.8 for the learning
rate, 0.2 for the momentum and 6 neurons in the hidden layer.

The MLP used has been implemented in the JAVA pro-
gramming language and in the Eclipse development environ-
ment [12].
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E. Predicting Wind Power with RC

Like the MLP, the Reservoir Computing technique has sev-
eral parameters that require configuration. Taking into account
that it is a recent area of research, the choice of these settings
can not be considered ideal and is often performed randomly.
One way to do this is to evaluate each chosen value and de-
termine if it was better or worse for the network performance.
This process is repeated until a value is considered optimal,
which does not necessarily means the best.

Below are the parameters whose settings were required to
be defined during this project:

e  Number of neurons in the input layer;
Number of neurons in the output layer;
Number of neurons in the reservoir;
Activation function of the reservoir;
Activation function of the output layer;
Initialization of weights;

Connection rate of the reservoir;
Number of warm up cycles;

Stopping criterion.

The number of inputs remains the same as used in the MLP,
since it is necessary to keep this parameter with the same value
of the prior neural network in order to perform statistical tests.
The same applies to the number of outputs. The RC will have
48 neurons in the output layer to predict one day ahead.

The number of neurons in the reservoir is one of the
parameters for which there is no fixed criterion that defines
it. It was chosen randomly after checking the NMAE at the
end of each training. It was observed that the ideal number of
neurons in the reservoir was 20.

As mentioned in Section II, the weights of the input layer
to the reservoir and the weights of the reservoir are randomly
generated from a random distribution.

The reservoir states are initialized to zero (0). Because of
this, as also mentioned in Section II, it was decided to add to
the network a phase called warm up. During the warm up, it
is not necessary to find the weights of the output layer, or to
calculate an output value. This warm up phase is done just to
update the states of the reservoir and remove the dependence
on the initial state. The number of cycles chosen for warm-up
was 10.

The connection rate of the reservoir neurons was 20%. That
is, only 20 % of the connections have weight values different
from zero associated to them.

The stopping criterion used was also cross-validation, with
50% of the set of values for training, 25 % for cross-validation
and the remaining 25 % for testing.

The activation function chosen in the reservoir was the
logistic sigmoid. In the output layer, the selected function was
linear one.

During this work, we implemented a Neural Network with
the technique of RC in the programming language Java and
the Eclipse development environment. Figure 2 is a synthesized
form of how this ANN works.

F. Statistical Tests

After 30 trainings with each type of neural network [13],
statistical tests were performed to assess which technique has
the best performance in the prediction of wind power or if
their results can be considered statistically equivalent.

Among various tests in the literature, there are the t-student
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Set the number of neurons in the input layer ;

Set the number of neurons in the reservoir layer ;

Set the number of neurons in the output layer ;

Randomly generate the weights of Win matrix between

-lel;

5 Randomly generate the weights of Wres matrix between
-lel;

6 Normalize the weights of Wres matrix so that the
spectral radius of the matrix is smaller than or equal to
l;

7 while until the end of the number of warm up cyeles do

8 | updates the states of the neurons of the RC;

9 end

10 while unril the stopping criterion is reached do

1 for each value of the input set do

12 | updates the states of the neurons of the RC;

13 end

14 Calculates the Moore-Penrose matrix inverse to find

the weights connecting the output layer to the RC;

15 for each value of the cross-validation set do

16 | updates the states of the neurons of the RC;

17 end

18 Calculates the output values of the RC;

Calculates the RMS:

Checks if the stopping criterion has been reached;

e

end
for each value in the set of tesis do

| updates the states of the neurons of the RC;
end
Calculates the output values of the RC;
Calculates the NMAE// in case of wind power
prediction;

FREBREBREES

Fig. 2: Pseudo-code of RC

test and the Wilcoxon Rank-Sum test. To apply t-student test,
it is necessary to begin using the Shapiro-Wilk test in order to
check whether or not the data are normally distributed. If they
are considered normal samples, then we performed an F test
to verify if the variance can be considered originated from the
same population. By passing these tests, we applied t-student
test for unpaired data. If samples are not considered normal,
nor pass the F test, then we apply the Wilcoxon Rank-Sum
test.

IV. RESULTS

The training of the MLP and the RC was conducted with
three settings, as mentioned in the previous section, until the
best result was achieved. The following three settings were
tested: 7, 24 and 48 entries. As it shown in table I, the NMAE
did not vary significantly if the number of inputs were altered.

TABLE I: Executions for determining the ideal number of

inputs
Number of input neurons RC MLP
7 18.04% | 23.54%
24 18.47% | 24.03%
48 18.23% | 24.07%

30 simulations were performed for each topology and the
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average NMAEs can be found in Table II.

TABLE II: Average Normalized Mean Absolute Errors Values

Topology | Average NMAE
RC 18.02 %
MLP 24.47%

In addition to calculating the average normalized mean
absolute error, a graphic was constructed to better show the
behaviour of the expected values when compared to the ones
obtained from the training of a RC neural network.

Analysing Figure 3, it is possible to observe that, even if the
average normalized mean absolute error is low and considered
a better result when compared to other techniques, the curve
of the calculated values do not approach the one with the
real values. When it is desired to predict the maximum power
(peaks) or the minimum (the valleys), these values are not
well forecast and it can jeopardize the planning and decision
making of a wind farm.
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Fig. 3: Graphic comparing the curves of the calculated values
with the real ones

Finally, for each set of 30 simulations, we performed
statistical tests and the process began with Shapiro-Wilk test.
The R software was used [14] and it defines the value for the
significance level as 0.05. It was observed that the sample
belonging to MLP network does not come from a normal
population, i.e., that is not normally distributed, since the p-
value calculated during the test was 0.005 for the MLP, thus
less than the level of significance.

From this result, it became unnecessary to perform the
Student t test, whose pre-condition for its use is that the
samples were normal. For this reason, the next step was the
application of Wilcoxon Rank-Sum test.

This test is non-parametric, that is, it is assumed that
the data distribution is not regular. The result of this test
showed that the p-value has a value much smaller than the
significance level, hence, the null hypothesis is refuted, which
states that the performance of neural networks with the RC
and MLP architectures are considered statistically equal and
concludes that the use of the proposed technique RC has a
better performance.

V. CONCLUSION AND FUTURE WORK

This work aimed to predict the power generated by a
wind farm for 1 day ahead using the technique of Reservoir
Computing and compare it with the results provided by other
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existing prediction models. Since the MLP neural network is
the most widely used in this type of application, it was the
model chosen and its results were compared with the results
of the RC technique.

In order to achieve this objective, a neural network with
the RC topology was implemented and a database provided
by the brazilian Operador Nacional de Sistema Elétrico (ONS)
or National Operator of Electrical System was used. Several
simulations were performed for both topologies and the results
were compared.

Through statistical tests, it was proven that the performance
with the RC is better than the one obtained by the MLP. This
result opens a field of research for the study of dynamic neural
networks, such as the RC for time-series forecasting.

As future work, further studies of the parameters of the
RC will be conducted in order to find the best way to define
them. Good and more accurate values can positively impact
the RC’s performance.

In addition to that, it is necessary to work with databases
from across the country and the world. With different
databases, it is possible to observe if the RC technique can
still be considered the best solution.

Finally, since the graphic showed discrepancy between the
calculated values and the real ones, a correction technique will
be employed to ensure a more realistic representation of the
real power curve.
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