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Abstract—The world is increasing the investments in electricity
production from renewable sources, such as wind farms, al-
though, the variable power production of wind farms must be
balanced by other sources of energy, such as thermal units. As
the amount of electric energy generated by the wind represents a
higher percentage in the electric grid, it becomes more important
to do accurate wind power forecasts and confidence intervals to
support the system’s operation and reduce its costs. In order to
generate the confidence intervals, the forecasting error is often
assumed to follow a Gaussian distribution. A wrong assumption
can have a huge impact on the confidence intervals. This work
proposes an evaluation of the forecasting error distribution
generated by a Reservoir Computing network forecast in different
timescales and the confidence intervals generated using the
maximum likelyhood method and the distribution based method.

Keywords-Reservoir Computing; Confidence Intervals; Maxi-
mum Likelihood Method; Distribution Fit.

I. INTRODUCTION

Following the ideas of sustainable growth, the World is
increasing the use of wind to generate electrical energy. As an
alternative to fossil fuels, it is plentiful, renewable and widely
distributed around the globe [1]. The problem involving this
source of energy is that the wind might be inconsistent as
it is strongly influenced by the weather conditions and other
sources of energy are needed to cover the deficit from wind
farms.

As the participation of wind farms in the electrical grid is
raising, the challenge to maintain the balance between power
generation and load is even harder. Another sources of energy
must be kept in order to compensate eventual changes in the
wind power output. In this scenario, it is very important to
have accurate wind power forecasts. As the forecast improves
its accuracy, the need of other sources of energy, such as
thermal units, are minimized, representing a cost reduction to
the system. The cost of wind power forecast errors in a single
plant is around e15,000 - 18,000 per MW of installed capacity
[2], which is the production capacity of a plant.

In order to improve the wind power forecast, which is
mostly represented as a single value, confidence intervals can
be built. They represent a range of estimated values for a
certain probability. These intervals increase the amount of
information of the prediction, making it easier to operate the
system. There can be different intervals for distinct timescales.
This kind of estimation is important because the system
must be able to anticipate the needed load by increasing the

generation from other sources, such as hydroelectric power,
like Brazil, or slow starting thermal units. And this is why it
is really important to have forecasts done with results for every
hour to one day ahead.

The generation of confidence intervals is highly correlated
to the forecast error distribution. It is very common to assume
that the errors can be represented by a Gaussian distribution
in every timescale. This assumption can create errors and the
system may overestimate or underestimate wind power gener-
ation, and this represents extra costs to the system operation
[2].

Some studies have concluded that these errors are better
represented using a Cauchy or Weibull distribution when
compared to a Gaussian or Beta distribution [3]. One of the
objectives of this work is to study the error distribution of
a wind power forecast generated by a Reservoir Computing
network using data from a real wind farm in Brazil. This work
will evaluate which distribution represents better the error in
different timescales doing a distribution fit, in order to improve
the forecast (Figure 1).

Figure 1. Normal vs. Cauchy Distribution.

After finding the distribution that fits better the forecast
errors, it will be possible to compare the confidence intervals
generated. The method used to generate the interval is pro-
posed by Nandeshwar [4], the maximum likelihood method.
The method assumes that a prediction has two uncertainty
sources. The first one is related to the prediction error and the
second one is related to the error generated by the network
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when trying to predict its own error. The maximum likelihood
method uses these two values to generate an upper and a lower
limit to represent the confidence interval. The final objective
is to compare and evaluate the confidence intervals generated
for distinct timescales using values from the distribution that
fit better with forecast values.

This paper is organized as follows. Section II contains
the basic explanation about Reservoir Computing and its
training. All the information about the distribution fit problem
is explained in Section III. Details about confidence intervals
and the methods to generated them used on this paper are
reported in Section IV. Section V explains the methodology
used, giving details about the database used, how the network
was trained and how the distribution fit was done. The results
are shown on Section VI and the conclusions in Section VII.

II. RESERVOIR COMPUTING

Artificial Neural Networks are mathematical models of
computer intelligence based on the behavior of the human
brain and its basic unit, the neuron. Inspired by the biological
neuron, the artificial neuron was modeled. It is capable of
processing entering signals (inputs) and generating one or more
outputs, representing a synapse [5].

A Multi Layer Perceptron network (MLP) determines new
rules for neurons’ organization. Unlike the previous networks,
it has a hidden layer. This new layer is responsible for the
non linearity of MLP, making it possible to solve non-linearly
separable problems, like the most of real problems.

The Reservoir Computing is presented as a network of
several layers including the principle of recurrences in its links.
Thus, the network is no longer feed-forward and the signal
propagates through the network in several directions.

One of the ideas that gave rise to the Reservoir Computing
network was the Echo State Network [6]. It is characteristic
of it that a neuron in the middle layer can be interconnected,
including with itself. This topology creates cycles within
the network, and the signal propagated ”echoes” by these
recurrences. The network creates a kind of signals memory.
The signals lose strength with time as they propagate through
cycles (Figure 2).

Figure 2. Reservoir Computing Network.

The topology of the network does not allow the use of
simple training methods as used in MLP, the backpropagation
method. The difference is caused by the recurrences. The
method used in this work uses the matrix inversion (JAMA)
to adjust the weights connected to the output layer. The other
weights are determined once and remain the same during the
whole training.

With these characteristics, Reservoir Computing is pro-
posed to be a powerful tool to solve dynamic problems related
with time processing and continuous values just like the
wind power prediction [7], and this is why it was chosen.
Because of its recent implementation, some of the Reservoir

Computing’s properties are not theoretically based and they
are set empirically.

III. DISTRIBUTION FIT

As the Reservoir Computing returns a set of predicted val-
ues using the input data, the error can be calculated subtracting
it from the real values for each output. Some information of
theses errors need to be extracted in order to generate the
confidence intervals. One of them is the error distribution,
which is often assumed to be Gaussian/Normal, and it is not
true for all the cases. This kind of mistake can have a huge
impact on the confidence interval accuracy [2].

Probability distribution fitting, or just distribution fitting,
is a way to fit a probability distribution function to a data set
by observing data characteristics to adjust the distribution’s
parameters. Doing this it is possible to predict the probability
of occurrence of a certain phenomenon. There are many
distributions of which some can represent a data set better than
others, depending on the data characteristics. The distribution
giving a close fit is supposed to lead to good predictions.

The distributions evaluated in this work are normal, beta,
cauchy and weibull distribution. Each of these will be fit to
the set of errors generated by the network and the results
will be compared. The Kolmogorov-Smirnov test will be used
to decide which distribution fits better to the set of errors.
As the model have predictions for every half an hour for
24 hours, there can be a variation of which distribution fits
better depending on the timescale. The prediction may present
different results for a short timescale (+00:30 or +01:00) when
compared to a long range timescale (+24:00) for example.

IV. CONFIDENCE INTERVALS

In a prediction model, the output value does not represent
much information to the user. To use it in a proper way there
is a need to know how much reliable the model is, or how
certain it is about the outputs. Because even a unstable model
may present random good results for a period of time.

The confidence intervals have as its objective measure
the reliability and also aggregate information to the results
presented. Instead of estimating one single value, a interval
of probable estimates is given. The range of this interval will
determine the quality of the results presented for a specific
problem. If the interval is too wide, it means that the reliability
is low and the model shows unstable results. If the interval is
thin, it means that the results are constant and the model is
reliable.

With higher probabilities wider will be the intervals. But if
it is too wide, it means that the results are poor on information
about the problem. In a ideal situation, the model will generate
a thin interval for a high value of probability of containing the
occurred value. The value of probability is chosen by the needs
of the user.

In other models based on neural networks, confidence
intervals are implemented using traditional linear statistical
models [8].

In neural networks prevision based models, the confidence
intervals have generally been set grounded by traditional linear
statistic models [8]. However, as neural networks are non-
linear models those linear methods are not always appropriate
so that new proposals are being tested, such as the maximum
likelihood method.
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A. Maximum Likelihood Method
To create a confidence interval, it is necessary to set an

upper and a lower limit from the chosen probability and the
results obtained in network training.

In this work, we applied the maximum likelihood
method [4] proposed by Nandeshwar. The method assumes
that there are two sources of uncertainty in a interval prediction
model:
• The first is the noise variance (σ2

v), calculated from
the variance calculation standard equation (2) applied
to absolute errors (1).

• The second is the uncertainty’s variance (σ2
w), calcu-

lated from a separate network variance (2) errors that
aims errors generated by the first network training.
This second variance is related to the network’s ability
to predict the error itself.

Error = |occurred value− calculated value| (1)

σ =
1

n− 1

n∑
i=1

(Errori − ̂Error)2 (2)

where:
Errori = Errors regarding the i entry.̂Error = Errors average.
The total variance is determined by the sum of the two

previously calculated variances ( 3).

σ2
total = σ2

v + σ2
w (3)

The calculation of the confidence interval is done using
(4). Given a predicted value f(x):

f(x)− t ∗ σ2
total < f(x) < f(x) + t ∗ σ2

total (4)
where t is the extracted value of the t Student’s table. In this

work the largest possible degree of freedom has been chosen
combined with an alpha value of 5%.

The algorithm on Figure 3 shows the steps to generate the
confidence interval using the maximum likelihood method.

Figure 3. Maximum Likelihood Method.

Figure 4. Confidence Interval sample.

The confidence interval validation is made using the oc-
curred and the calculated values. When applying the interval,
the occurred values must be within the range of the interval
with the same probability used to choose the value of t in the
t Student’s table (Figure 4).

V. METHODOLOGY

A. The Database
In order to achieve the objectives of this work, a real

database was used. The data come from a real wind farm in
Brazil containing measurements for every 30 minutes including
wind speed, direction and generated power. Each value repre-
sent a mean calculated from every windmill in the farm. They
also include the date it was measured, the standard deviation,
minimum and maximum value for each type of data. The
installed capacity of this wind farm is 54.61MW.

In total, there are 11712 measurements. Therefore, a few
values are missing due to problems during the measurement.
This instants are not using during the network training. All
values chosen to be the inputs on the network’s training are
values of mean generated power. The whole data is spited in
3: training, cross validation and testing set.

Before using the data for training, it must be normalized
(step 2 on the algorithm show on Figure 3). This is done using
a linear transformation 5. The data will be represented on a
interval between 0.25 and 0.75.

x =
(x− xmin) ∗ (b− a)

xmax − xmin
+ a (5)

where:
xmax = Maximum value found on the real data.
xmin = Minimum value found on the real data.
a = Minimum value for the normalized data.
b = Maximum value for the normalized data.

Doing this the network will deal with values that are alike
attributing the same importance to a low and a high value. The
de-normalization (step 5 on the algorithm show on Figure 3)
is done using this same equation in a reverse way.

B. Reservoir Computing
The Reservoir’s structure is an important factor that could

determine a good or bad performance for the wind power
forecast task. As being a result of recent studies, some network
properties are determined empirically.

In this work, a Reservoir Computing network with three
layers was created. The first one represent the inputs. To set
the number of inputs, the linear correlation was evaluated and
it was decided to use 7 past values to be the inputs. Too
much past values may confuse the network and too few values
may not give enough information to the network. The hidden
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layer was set up with 20 neurons determined empirically.
Both of these two layers have the sigmoid logistic as the
activation function. The output layer has 48 neurons, each one
representing one of the 48 instants of half an hour a head that
are needed to be predicted. The number of outputs has been
chosen according to other existing methods that are already
applied on ONS (Brazilian electric system operator).

On the hidden layer, there is a 20% probability of existing a
connection between two neurons where it could be positive or
negative by the same chance. This probability value determines
the amount of recurrences in the network.

Based on previous work this Reservoir Computing network
has a little improvement from the basic version. It has connec-
tions between the input layer and the output layer. This feature
leads to better results.

The training uses 75% of the database, where 50% is used
for initial training and 25% is used for cross-validation. The
rest is used for tests where values that never have been shown
to the network are used to evaluate its results.

The training can be stopped if a maximum number of
cycles have occurred or if the network is not improving
itself anymore. For this evaluation, the mean squared error
is calculated using (6). If the error stops decreasing it means
that the network has been stable and need no further training.

MSE =
1

n

n∑
i=1

(xcalci − xobsi)2 (6)

The last part of training is the test phase. The predicted
values generated on the test phase are used to evaluate the re-
sults of the network and also to create the confidence intervals.
The error for each timescale is calculated by subtracting the
real value minus the predicted value, doing this we get a set of
errors for each one of the outputs. As the Reservoir presents
predictions for distinct timescales, the confidence intervals
may present different behaviors. For each one, the distribution
fit is applied in order to find a probability distribution to
represent the errors in a certain timescale and generate a better
confidence intervals.

C. Distribution Fit
The distribution fit can be done by adjusting the parameters

of a certain probability distribution using the characteristics
of a set of values. In this work, the normal, beta, cauchy
and weibull distribution are adjusted to the sets of errors
obtained on the Reservoir’s training. To evaluate which one
is more similar to the error set, the Kolmogorov-Smirnov test
is used. This test is used to compare a sample with a reference
probability distribution.

Using this method, it is possible to rank the four distribu-
tions for errors in each timescale. As the errors present distinct
behaviors for different timescales, it is possible the rank have
variations for each scale and this will make it possible to
choose the best distribution for each case.

VI. RESULTS

A. Maximum Likelihood Method
In order to evaluate the behavior of the maximum likeli-

hood method applied over the prediction of generated power
done by a Reservoir Computing network, the hit rate of the
confidence interval must be observed. This means that the
number of real values inside the boundaries created by the

TABLE I. Maximum Likelihood results table.

Maximum likelihood method results
Sigma V Sigma W Sigma T Hit Rate

+00:30 4.311594 4.302589 6.09115 96.71%
+12:00 13.61194 13.5954 19.2358 99.63%
+24:00 11.8412 11.8304 16.74022 98.56%

confidence intervals must be coherent to the confidence level
chosen, in this case 95%.

The results can be observed on Table I. As the prediction
has different properties for distinct time scales the results are
shown in 3 moments: Half hour ahead, 12 hours ahead and 24
hours ahead.

Figure 5. Maximum likelihood interval for +00:30.

The results show that the predicted values are really close
to the real values (Figure 5) and the prediction error present
low variance for a short range of time (+00:30). This statement
can be observed on the corresponding line on Table I.

Figure 6. Maximum likelihood interval for +24:00.

For instants that are far ahead, 12 or 24 hours ahead, and
the correlation with past values is lowered the Reservoir does
not show constant results and the error variation is increased
(Table I). For this reason, the confidence intervals generated
are wider (Figure 6) and the hit rate is increased because of
the interval’s range. This means that the Reservoir has poor
results on these timescales, which can be justified by the low
correlation caused by the randomness of the wind in a larger
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TABLE II. Distribution Fit +00:30 results table.

Kolmogorov-Smirnov
Distribution Statistic Rank

Cauchy 0.05301 1
Normal 0.07168 2

Beta 0.0719 3
Weibull 0.12251 4

TABLE III. Distribution Fit +12:00 results table.

Kolmogorov-Smirnov
Distribution Statistic Rank

Beta 0.03576 1
Weibull 0.04459 2
Normal 0.04569 3
Cauchy 0.10767 4

timescale, compromising the prediction and the confidence
interval’s quality.

B. Distribution Based Method
Before generating the confidence intervals using the dis-

tribution based method, the distribution fit must be evaluated
using the Kolmogorov-Smirnov test. It may be observed that
for each timescale there was a distribution that fits better with
the errors set (Tables II, III, IV), and this one will be used as
a reference to generate the confidence interval.

For half an hour ahead (+00:30), the probability distribution
that fit better with the forecast error distribution was cauchy
(Figure 7). The K-S test pointed it as being the most similar
between to the error distribution. The normal and beta distribu-
tion had similar results and weibull showed the poorest result
for this time scale (Table II).

Figure 7. Distribution Fit +00:30.

TABLE IV. Distribution Fit +24:00 results table.

Kolmogorov-Smirnov
Distribution Statistic Rank

Weibull 0.01944 1
Beta 0.02041 2

Normal 0.02492 3
Cauchy 0.09133 4

For Twelve hours ahead (+12:00), cauchy did not present
the same results as for half an hour ahead, it was actually
the worst in the Kolmogorov-Smirnov test (Table III). For this
timescale the winner distribution was beta followed by weibull
and normal in this order (Figure 8).

Figure 8. Distribution Fit +12:00.

For twenty four hours ahead, presenting a large variation
between the predicted values and the real values, the distri-
bution that fit better with the error distribution was weibull
(Table IV), followed by beta, normal and cauchy (Figure 9).

Figure 9. Distribution Fit +24:00.

Having the results previously mentioned, it is possible to
generate the confidence intervals based on the right probability
distribution. As seen, the error may be represented better by a
certain distribution in a timescale, and this one will be chosen
to create the intervals for that instant.

Generated for a half an hour ahead timescale, the first
confidence interval will use the cauchy distribution (Table II).
As it is fit to the error distribution, the values are extracted
from it according to the confidence level chosen, 95%. Being
the distribution asymmetric, two values must be extracted, one
for the positive side and one for the negative side. These values
are -0.164 and 0.184. To establish the upper and lower limit of
the confidence interval these values must be multiplied with
the installed capacity of the wind farm and then added the
calculated value (Reservoir’s output).

Part of the interval for +00:30 may observed on Figure 10.
It was obtained a hit rate of 98.2668% (real values inside the
confidence interval’s range).
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Figure 10. +00:30 Confidence interval sample.

Using beta distribution, the confidence interval generated
for a +12:00 timescale may be observed on Figure 11. The
values extracted from the distribution are -1.66 and 1.64, also
following the 95% confidence level. The hit rate was 88.99%.

Figure 11. +12:00 Confidence interval sample.

Figure 12. +24:00 Confidence interval sample.

For twenty four hours ahead (+24:00) and using the weibull
distribution, a sample of the confidence interval for this
timescale may be observed on Figure 12. The values extracted
from this distribution are -1.36 and 1.33 and the hit rate is
90.1646%.

VII. CONCLUSION AND FUTURE WORK
Analyzing the presented results, it is possible to take a

few conclusions about the generation of confidence intervals
applied on the wind power forecast done with Reservoir
Computing. Also, it is possible to compare the two methods
used in this work.

The maximum likelihood method showed coherent results
for a short range timescale (+00:30). The confidence interval
has a hit rate close to what it was proposed (95%) and it is
not too wide. For the cases where the Reservoir Computing
did not generate stable results and the error variation was high
(+12:00 and +24:00), the maximum likelihood method did not
show good results. As the variation is high, the intervals show
a wide range for the same 95% confidence level.

The distribution based method presented good results for
all three timescales. In all of them the confidence interval’s
width is quite similar and the hit rate is close to what it was
proposed, the 95% of confidence level. This proves that a
distribution analysis is worth done in order to improve the
generation of the confidence intervals.

Comparing the result of these two techniques, it is possible
to conclude that they show similar results for sets that present
a distribution with low variation. In the other case, where there
is some large variation, the distribution fit helped the creation
of better confidence intervals with the same confidence level
but with a shorter range.

In the future works, these techniques will be applied to
other set of data that have different characteristics in order to
compare the results. Also, another model must be tested in
the prediction to check if this result are only related to the
Reservoir Computing’s outputs. Other techniques to generate
confidence intervals must be evaluated.
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