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Abstract—Autonomous robotic exploration of unstructured and
highly dynamic environments is a complex task, particularly, in
underwater environments. An underwater robot needs to quickly
detect a region of interest and then track it for a certain period
of time in order to plan for the next trajectory; all of these
while keeping its motion control stable. In this paper, we present
a novel approach that robustly detects and tracks regions of
interest in underwater video streams at frame rate. First, to detect
relevant regions in an image, our approach combines two existing
visual attention schemes with some improvements to adjust it to
underwater scenes. Second, a scaled version of the resulting image
is segmented by using a superpixel segmentation algorithm, and
each relevant point is associated to a superpixel descriptor. The
descriptor helps to track the same region as long as it results
interesting for the visual attention algorithm. The experimental
results demonstrate that our approach is robust when tested on
different videos of underwater explorations.

Keywords-visual attention models; regions of interest; super-
pixel segmentation; feature tracking; underwater vision

I. INTRODUCTION

The development of simple sensory motor skills for track-
ing an object of interest starts at early stages of life, this
involves motion of eyes, head and even tongue and/or hands
(in newborns), which together with cognitive skills, direct the
way to explore the surrounding environment [3], [15]. As we
grow and get more mobility, we develop more sophisticated
exploratory skills, which can be transferred and adapted to new
objects or scenes. It is at this point that the exploration fully
involves active perception and navigation skills [6]. However,
the goal of exploration is not just to navigate and look around
in the environment but to build hypotheses about the data,
in other words, to build knowledge about what it is sensed.
This knowledge depends on the type of environment and the
application for which the exploration is required [5]. For a
robotic system, for example, the goal of exploring a natural
habitat may be to prevent natural disasters. In any case, a key
aspect in the exploration task is to know what features are
relevant in an environment in order to learn about it and take
important decisions while interacting with it.

The detection and tracking of relevant regions in an scene
is a fundamental part of any autonomous robotic exploration
task [16]. Particularly, in underwater environments, it may
result complex. On one hand, the inherent physical properties

of marine environments cause geometrical distortions, such as
color distortions, dynamic lighting conditions and suspended
particles (known as ”marine snow”), resulting in poor visibility
thus hindering computer vision tasks. On the other hand, this
type of environments are unstructured and highly dynamic.
Since exploration is implicitly linked to motion, the tracking
of relevant features must be stable enough to allow for smooth
movements for the suitable control of the robotic system.

In this research work, we present a real-time visual atten-
tion model to robustly detect and track relevant underwater
features with the aim of exploring coral reefs. The real-time
characteristic in robotics applications is fundamental since the
tracked relevant features will help to direct the exploration
trajectories in subsequent captured images while estimating
the relative robot pose.

The outline of the paper is as follows. Section II presents
the related work. Section III describes our model and its
implementation. The experimental results and discussion are
presented in Section IV. Finally, in Section V the conclusions
and future work are given.

II. RELATED WORK

The use of visual attention models to find regions of interest
in images is a common preprocessing tool for a variety of
applications. However, for practical applications, the main
challenge for designing these systems lies in their real-time
performance requirements. Particularly, when applied to video
streams at frame rate. Two of the more popular ones, due to
their easy implementation, flexibility and fast computation are
the Neuromorphic Vision Toolkit (NVT) proposed by Itti et
al. [12] and the attention system called Visual Object detection
with a CompUtational attention System (VOCUS) by Frintrop
et al. [10]. The Focus Of Attention (FOA) is the place in
the image that draws the attention of the system. Itti et al.
[12] obtained the FOA by using a Winner-Take-All neural
network. Frintrop et al. [10] simply find the point with the
highest saliency value by scanning every point, and the most
salient region is determined by seed region growing.

Recently, visual attention models have been used in robotic
applications [5]. There has been likewise underwater applica-
tions of these models. For example, Walther et al. [17] and
Edgington et al. [7] detect objects and potentially interesting
visual events for humans in order to label the frames of a video
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stream as interesting or boring. In both research work, the NVT
[12] model is used and the videos were recorded by a Remotely
Operated Vehicle (ROV). Barat and Rendas [4] present a visual
attention system for detection of manufactured objects. Their
model is based on the minimum description length test for
detecting the motion of contrasting neighboring regions. After
that a statistical snake is adapted to determine the boundary of
the object. Lobato et al. [13] use intensity, motion and edge
maps as features for their visual attention model to detect the
Norway lobsters and help scientist to quantify them.

In all these works, the visual attention models are used
for aiding humans in the task of analyzing video streams. In
our case, we want that the visual attention model leads the
robot motion by automatically detecting and tracking features
that are considered of interest for exploration. Particularly,
we are interested in transferring abilities to an Autonomous
Underwater Vehicle (AUV) in order to detect regions of
interest without human supervision while successfully navigat-
ing the environment. Visual attention models for autonomous
underwater exploration require an strict real time performance.

As hardware limitations in underwater robots are still an
issue, we need to rely on fast computational algorithms.

III. METHODOLOGY

In this section, we describe our visual attention model for
underwater scenes.

The general structure of our methodology (see Fig. 1)
combines two methods with some improvements to adjust it to
be used in underwater scenes – the NVT [12] and the VOCUS
method [10].

Figure 1. General diagram of our visual attention algorithm.

Given that underwater environments are unstructured, i.e.,
the existing objects lack of specific orientation and shape,
our attention model relies strongly on the intensity and color
information. Therefore, the use of a color space capable of
highlighting colors that are different from the color of seawater

is crucial. As pointed out, this represents a challenge given
that visibility conditions in open water are not always ideal
and color tonality tends to diminish significantly. The space
color we choose is the CIELab. This color model has the
characteristic of being perceptually uniform and also that its
a and b channels naturally encompass the green-red and blue-
yellow contrast colors, which turns to be perfect for underwater
image analysis and processing. By assigning weights to each
of the five color channels (intensity, green, red, blue and
yellow) the focus of attention can be directed to a certain
object or characteristic. This is specially important since water
absorbs color abruptly with depth thus limiting its detection.

Furthermore, our model needs to be robust to dramatic
changes in illumination, which are very common for under-
water images or videos. By considering only the chromatic
channels a and b of the CIELab color space, our model does
not consider abrupt changes in brightness in images as these
tend to be smooth in the chromatic channels. This turns out to
be fine for our purposes.

An important aspect to consider in any computational
visual attention system is how to highlight the relevant parts of
each feature. This is usually done by using a center-surround
mechanism (also called center-surround difference), which is
inspired in cells of the human visual receptive field [14].

For exploration tasks, keeping track of the same focus of
attention, or one near a previous one at different image frames,
is of particular importance. First, it allows the robot to lead
its motion in a smooth manner avoiding sudden maneuvers,
which may cause the system to become unstable. Secondly, for
the navigation part, it is important to have an estimate of the
current pose of the robot, thus, by tracking the same feature
(natural landmark in our case), it would allow the robot to
estimate its relative pose by means of triangulation.

Our strategy to achieve this is based on the fact that once
a region of interest is identified as FOA, this region should be
kept as FOA as long as it results interesting for the attention
system. In other words, the robot needs to robustly keep track
of the same or very similar FOA for a certain period of time in
order to make inferences about it, to estimate its relative pose,
and finally, to plan the motion to the next relevant region to
be explored. To achieve this behavior we apply a superpixel
segmentation technique based on the Simple Linear Iterative
Clustering (SLIC) algorithm [2]. The information captured at
each superpixel forms a descriptor, which helps to discriminate
the FOA at the current frame by considering the FOAs in the
previous frame. By doing this, the algorithm tries to keep the
same region as FOA in consecutive frames.

In the following sections, we describe in more detail each
of the steps involved in our visual attention model.

A. Preprocessing of the image

The input RGB image is scaled to a size of 320×240 pixels
and then blurred with a Gaussian filter. After that, the image
is converted to the CIELab color space to extract a particular
color from an image (Section III-B).

B. Getting the features maps

We use intensity and color (red, yellow, green and blue) as
features. The intensity map corresponds to the L−channel of
the CIELab image. The colors are extracted from the a and b
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channels, as described in [8], as follows,:

Fi(x, y) = Vmax − ‖ab(x, y)− p‖, (1)

where Fi is the ith feature map, Vmax = 255 in 8-bit depth
images, p = (ad, bd) is the desired color to extract (only
the a and b component are used) and ab(x, y) is the ab-
channel of the image. The color feature maps are gray-scale
images in which the intensity indicates how near is the desired
color to the original color of the pixel. As it was previously
mentioned, there is no need of using the orientation feature,
since underwater environments are unstructured.

C. Getting the conspicuity maps

The conspicuity maps tell us where the most relevant
regions are in an specific feature map. We are going to have
five conspicuity maps at the end of this process. One for
intensity and four for each of the colors.

The first step to calculate the conspicuity maps is to build
a Gaussian pyramid. The number of levels used in the pyramid
depends on the size of the image and the size of the relevant
regions to be found [9]. In the algorithm, we use a 3−level
pyramid, i.e., three scales sn = 1

2n with n = {0, 1, 2}. We
obtain three maps Fin for each feature map.

Once the pyramids are built, the center-surround differ-
ences are applied. The center-surround differences are imple-
mented as in [9], but using filter operations.

Dinσ(x, y) = center − surround (2)
center = Fin(x, y) (3)

surround = K(σ) ∗ Fin(x, y) (4)

K(σ) =
1

(2σ + 1)2 − 1

[1 ... 1
: 0 :
1 ... 1

]
(2σ+1)×(2σ+1)

(5)

where ∗ is the convolution operator. We use σ = {3, 4}.
After the center-surround differences are applied, each of

the resultant maps Dinσ(x, y) is normalized in a range of
[0,M ] (in our case, we set M = 1). Then, all the obtained
maps from the same feature are added across-scale in s2. This
way, we obtain a conspicuity map Ci for each feature.

D. Getting the saliency map

To calculate the saliency S map we normalize each of the
conspicuity maps, then we weigh each with a value wi and add
them into a single saliency map S. By changing the values of
wi, we can give a preference to certain color feature.

S(x, y) =
∑
i

wiCi(x, y). (6)

It is worth noting that the saliency map is a gray-scale
image in the scale s2. The most relevant parts of the image
appear brighter in the saliency map.

The way to fuse the maps into a single one (the scaled
feature maps into a conspicuity map and conspicuity maps
into a saliency map) is called a naive strategy [11]. We have
also implemented the normalization operator N(·) [12],[11] to
fuse the maps.

Finally, in order to give priority to relevant points that are

close to the most relevant point in a saliency map, each value
of saliency in the map is weighted as follows:

w = e−a
√

(xc−x)2+(yc−y)2 , (7)

where (xc, yc) are the coordinates of the most relevant point c,
(x, y) are the coordinates of the other points of the image and
a is a positive value. This way the points nearer to c are more
likely to be chosen as the next relevant points by the algorithm.

We compared the relevant regions obtained with our
method to those obtained with the model of the non-iterative
N(·) normalization and the model of the iterative normaliza-
tion using a dataset of non-underwater images, containing nat-
ural and man-made objects. Two examples of natural outdoor
scenes are shown in Fig. 2 (top and middle rows). As our
interest is in underwater scenes, we carry on this comparison
using a dataset of underwater images containing only natural
structures (rocks, coral reefs, fishes). The last row of Fig. 2
shows an example with an underwater scene. Each of the
relevant regions detected is surrounded by a circle. It can be
observed that the relevant regions detected by our model are
all on the rock formation whereas the regions detected with
the other models are mostly on areas like sand or sea water,
which are not of relevance for exploration tasks.

Figure 2. Comparison results on the detection of relevant regions (indicated
by circles) in non-underwater an underwater scenes by using the N(·)
normalization (left), the iterative normalization (middle) and our visual
attention model (right).

In general, good results are obtained for still images,
however for a video sequence of a coral reef, the results were
not satisfying for our purpose (underwater robotic exploration)
because the focus of attention changed its position arbitrarily
from one frame to the next one. Therefore, a robust tracking
of FOA is fundamental (more details in Section III-E).

E. Robust tracking of focus of attention

We find the most relevant point (FOA) by scanning all
the values of saliency in the map and choosing the one with
the highest value, then we set the surrounding points to zero
in a given radius. We repeat this process until we find the n
most saliency points. It is important to recall that we want
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the algorithm to find a relevant region and be able to find the
same relevant region in the next image frame, that is, we want
to keep track of the relevant region for few more subsequent
images if and only if this region is still among the n most
saliency ones. We are interested in this behavior because it will
lead the movement of a robot during an exploration. Having
abrupt changes of the FOA from one frame to next one may
cause an erratic motion.

To tackle this problem, we segment the smallest image in
the 3-level pyramid (i.e., an image of 80×60 for an input image
of 320×240) in m superpixeles using the SLIC algorithm [2].
Each superpixel is a set of pixels with similar features and
it is characterized by a 5−dimensional vector of the form
c=[Lc, ac, bc, xc, yc]. The n most relevant points are described
with a descriptor c of the superpixel they belong. Once we
have the descriptor of each saliency point, we choose the
closest (the most similar) to the descriptor of the FOA from
the previous frame. The chosen region become the FOA of the
current frame. The distance (similarity) measure is based on
the SSD metric as in [2], but without using the L component:

dist(p1, p2) =

√(
ds
ns

)2

+
(
dc
nc

)2

, (8)

ds =
√

(ap1 − ap2)2 + (bp1 − bp2)2,

dc =
√

(xp1 − xp2)2 + (yp1 − yp2)2,

where nc and ns are the normalization factor for the distance
in the color space and the image space, respectively. These
values were set as described in [1]. Fig. 3 illustrates the use

(a)

(b)

Figure 3. Finding the next focus of attention. (a) Superpixels are used to
associate a descriptor to each relevant point. (b) The distance defined in (8) is
used to find the next focus of attention. The relevant point descriptors inside
the yellow circle represent the FOA candidates.

of superpixels to achieve a stable tracking of similar FOAs in

a region of interest. If the distance from the closest saliency
descriptor to the previous FOA descriptor is greater than a
defined threshold (yellow circle in Fig. 3b), the distances are
ignored and the point with the highest saliency value is chosen
as the new FOA.

IV. EXPERIMENTAL RESULTS

Before conducting the experiments, we tested our algorithm
with different image resolutions to analyze their performance.
The complexity of the algorithm is O(N), where N is the total
number of pixels in the image. The average processing time,
in a 2.1GHz dual-core processor, for an image of 640×480 is
184 ms. We select to use the 320× 240 resolution (49 ms) as
the behavior of the detected FOA was better (with less abrupt
changes). Also, some parameters, related to regions considered
as relevant in underwater scenes, needed to be tuned before
running our algorithm. We conducted visual tests with 32
people (16 women and 16 men) in an age range of 20 − 30
years old. In the experiment, each person was asked to select
the region(s) in an underwater image that attracted more their
attention. A set of eight images were shown to each person.

Fig. 4a depicts some examples of the regions of interest
chosen by people. Each column shows the regions selected
in an image. With this information, we train our algorithm
by assigning to each color feature a weight. In Fig. 4b, some
regions of interest chosen by our visual attention algorithm
are shown. It can be observed that the regions detected by the
algorithm resembles the ones detected by people. We carried

(a)

(b)

Figure 4. Some of the region of interests selected by (a) people and by (b)
our visual attention algorithm. A column shows the snapshots considered as
FOAs in each of the images.

out a set of experiments using two different underwater videos
taken during a dive exploration of the coral reef of Mahahual,
Costa Maya. The first video (Video 1) is a 30 fps video
in which the diver’s camera motion is mainly forward. The
second video has also a frame rate of 30 fps but the camera’s
motion is mainly a rotation around its vertical axis and it is
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(a) Position of FOA during forward motion. (b) Position of FOA during rotational motion.

(c) Position of FOA during forward motion (using (d) Position of FOA during rotational motion (using
superpixel descriptors for each saliency point). superpixel descriptors for each saliency point).

Figure 5. Position of the FOA on the image plane. (a) The FOA is chosen by using directly the point with the highest saliency map. (b) The FOA
is chosen using the superpixel descriptors for each saliency point in order to keep a FOA in the same region on a given number of consecutive frames, avoiding
with this, an erratic motion in the robot.

slower than Video 1. We use Video 1 to test the performance of
the algorithm in forward motion and the Video 2 for rotational
motion. The experiments were done in 200 consecutive frames
on each video.

In the first experiment, the FOA was chosen by using only
the information provided by the saliency map obtained from
the visual attention algorithm, i.e., the point with the highest
saliency value on the map. Figures 5a-b show the graphs of the
(x, y) images coordinates of the FOA obtained at each frame
for Videos 1 and 2, respectively. As we can see, there are some
abrupt changes in the position of the FOA from one frame to
the next one, especially on forward motion. In general, this can
be considered as a good behavior because an exploration task
implies that the focus of attention changes over time. However,
when the FOA only stays for a very short period of time (i.e., in
very few consecutive frames), then this may become a problem
as the abrupt uncontrolled changes of position of the FOA
may cause an erratic movement in the robot. To solve this, we
segment the image in superpixels. From the saliency map we
take the n most relevant points and describe them with the a,
b, x and y component of the superpixel they belong to. Figures
5c-d show the results of the FOA obtained at each frame for

Videos 1 and 2 but now using the superpixel descriptors.
Once we have the descriptor of each saliency point, we

choose the closest (the most similar) to the FOA of the previous
frame. The similarity measure is calculated using (8). It is
important to mention that if the distance from the closest
saliency point to the previous FOA is greater than a defined
threshold then we ignore the distances and the point with
the highest saliency value is chosen as the new FOA. It can
be observed that the FOA still takes arbitrary regions in the
image, but once a new FOA is obtained, it stays almost in
the same region on several consecutive frames. The effect
of the improvement to the visual attention algorithm can be
seen more clearly on the plot of Video 1. We can obtain
less abrupt changes in the FOA by adjusting the threshold
for the similarity measure between a previous FOA and the
new saliency points. In the previous experiment, for Video 1,
this threshold was 2 (Figures 5c and 6a). We observed that the
greater the value of the threshold the less abrupt changes in the
FOA. Fig. 6b shows results when applying a threshold value of
2.5 and using the naive normalization. Each time the distance
overpasses the threshold, we extract a snapshot of the FOA
and its surrounding region (pixels) to see how different these
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(a) Position of FOAs with their representative snapshots at each change (indicated by (b) Position of FOAs with two relevant regions when
regions A, B, C and D) when using a threshold of 2. using a threshold of 2.5.

Figure 6. Relevant regions captured at each change of FOA.

(a) Position of FOA points. (b) Relevant regions detected.

Figure 7. Position of FOA points with some of the associated relevant regions when using the N(·) operator.

regions are. As it can be seen in Fig. 6a, when the threshold
was set to 2 the algorithm found 10 relevant regions, although
many of them represent almost the same scene. Instead, when
the threshold was set to 2.5 (see Fig. 6b) the algorithm found
only 2 relevant regions.

We carried out an additional experiment, in which our al-
gorithm was tested using the N(·) operator in order to compare
the results with those obtained using the naive normalization
(Fig. 6b). We can observe in the plot of Fig. 7a that the position
of the FOA changes abruptly when the N(·) operator is used;
about 57 relevant regions were found using this operator (Fig.
7b). Even so, this may be useful in an offline program to find
all the possible relevant regions or in a training phase.

Finally, as poor visibility is a common problem in underwa-
ter environments, we want to see how our algorithm performs
in this type of conditions. Fig. 8 shows the position of the FOA
and a snapshot of the relevant regions found when running our
algorithm. Despite of the poor visibility, parts like the hand of
the diver, the blue triangle in the red ball or the yellow tube
are detected.

V. CONCLUSION AND FUTURE WORK

We have presented a novel approach which robustly detects
regions of interest in underwater video streams and tracks them
under forward and rotational movements. As it is shown in the
experiments, the robustness of this approach is mainly due to
two parts. The first part is the visual attention model that can
determine relevant regions of an underwater image even if the
geometry or shape of the environment to explore is unknown,
making it ideal when dealing with unstructured environments.

The other important part is the use of the superpixels as
a descriptor, because it summarizes the information of color
and position of the similar set of pixels, thus reducing the
computational time significantly.

Our approach turns out to be also robust for tracking
saliency zones even in scenes with poor visibility conditions.

As future work, we want to test our approach in real
underwater explorations performed by our robotic system.
Also, further analysis on the training process is needed in order
to determine the concurrence of FOAs annotated by the users
with those detected by our algorithm. Finally, the approach
could be extended to track more that one region of attention.
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(a) Position of FOA points.

(b) Relevant regions detected.

Figure 8. Results of applying our visual attention algorithm in underwater
environments with poor visibility.

This will help to plan ahead the robot’s trajectories, which
leads to a better exploration.
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