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Abstract – Associative memories are data structures ad-

dressed using part of the content rather than an index. They 

offer good fault reliability and biological plausibility. Among 

different families of associative memories, sparse ones are 

known to offer the best efficiency (ratio of the amount of bits 

stored to that of bits used by the network itself). Their re-

trieval process performance has been shown to benefit from 

the use of iterations. In this paper, we introduce several rules 

to enhance the performance of the retrieval process in recent-

ly proposed sparse associative memories based on binary 

neural networks. We show that these rules provide better 

performance than existing techniques. We also analyze the 

required number of iterations and derive corresponding 

curves. 

Keywords – associative memory; sparse coding; parsimony; 

iterative retrieval; threshold control 

I. INTRODUCTION 

Associative memories are alternatives to classical index-

based memories where content is retrieved using a part of it 

rather than an explicit address. Consider for example accessing a 

website using a search engine instead of a uniform resource 

locator (URL). This mechanism is analogous to human memory 

[1] and has inspired many neural-networks-based solutions such 

as [2] [3].  

A new artificial neural network model was proposed recently 

by Gripon and Berrou [4]. It employs principles from infor-

mation theory and error correcting codes and aims at explaining 

the long-term associative memory functionality of the neocortex. 

This model was proved to outperform the celebrated Hopfield 

neural network [3] in terms of diversity (the number of messages 

the network can store) and efficiency (the ratio of the amount of 

useful bits stored to that of bits used to represent the network 

itself) [5]. It was later extended in [6] to a sparser version based 

on the Willshaw-Palm associative memory model [2] [7].  

The key difference between the models proposed in [6] and 

[2] is the use of specific structures in the network. This is done 

by grouping neurons into clusters within which connections are 

not authorized (multi-partite graph). These clusters are consid-

ered analogous to cortical columns [4] of mammalian brains 

within which nodes are likened to micro-columns. This is sup-

ported by Mountcastle [8] who suggests that a micro-column is 

the computational building block of the cerebral neo-cortex. In 

addition, here are some reasons to motivate the use of clusters: 

 It is believed that micro-columns in each cortical column re-

act to similar inputs. The concept of clustering is meant to 

imitate this stimulus-similarity-based grouping. A conse-

quence is the possibility to use this network for retrieving 

messages from inaccurate observations. This type of retrieval 

is addressed by Gripon and Jiang in [9]. 

 Clusters allow for simple and natural mapping between non-

sparse input messages and sparse patterns representing them 

in the associative memory. In the case where clusters are all 

of size 1 each, a model equivalent to the classical Willshaw-

Palm networks is obtained, where input messages have to be 

sparse. 

 It was observed that micro-columns usually have many short 

inhibitory connections with their neighbors [10] [8], which 

means that the activation of one micro-column causes all of 

its near neighbors to be deactivated. This is due to the locally 

limited energy supply of the brain. This mechanism is repre-

sented by the local winner-takes-all rule introduced in [4]. 

 Using clusters allows for introducing guided data recovery in 

which a prior knowledge of the location of clusters contain-

ing the desired data can significantly enhance performance. 

A detailed study of this type of data retrieval is available in 

[6]. 

In this paper, we consider the extended version of the model 

proposed in [6]. We introduce several retrieval rules including 

adaptations of those proposed by Willshaw [2], Palm [11], 

Schwenker [12] and Gripon and Berrou [4]. We also propose 

new ones and make a comparison of these regarding performance 

and number of iterations. 

The rest of this paper is organized as follows: in Section II, 

we describe the general architecture of the network model we 

use. Section III introduces a generic formulation of the retrieval 

algorithm on such structures. Then, the following five sections 

develop each step of this algorithm. For each step, different rules 

are reviewed if available. Some of these rules have been pro-

posed in previous papers, and others we introduce here for the 

first time. In Section IX, performance comparisons of several 

combinations of retrieval rules are presented. Section X is a 

conclusion. 

II. NETWORK TOPOLOGY AND STORING MESSAGES 

This section focuses on the neural-network-based auto-

associative memory introduced by Gripon and Berrou in [4]. It is 

dedicated to defining this network and describing how it can be 

extended to store variable-length messages. 

 Architecture A.

The network can be viewed as a graph consisting of   verti-

ces or units initially not connected (zero adjacency matrix) orga-

nized in   parts called clusters with each vertex belonging to one 

and only one cluster. Clusters are not necessarily equal in size 

but for simplicity, they will be all considered of size    through-

out this work. Each cluster is given a unique integer label be-

tween   and  , and within each cluster, every vertex is given a 

unique label between   and  . Following from this, each vertex in 

the network can be referred to by a pair      , where   is its clus-
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ter label, and   is the vertex label within cluster  . For biological-

ly-inspired reasons [13] [14], and as explained in [6], a unit in 

this model is chosen to represent a cortical micro-column instead 

of a single biological neuron which is why we shall not use the 

term “neuron”. 

At a given moment, a binary state     is associated with each 

unit       in the network.  It is given the value   if       is active 

and   if it is idle. Initially, all units are supposed to be idle. The 

adjacency matrix (also called the weight matrix  ) for this graph 

is a binary symmetric square matrix whose elements take values 

in      . In this representation, a zero means an absence of a 

connection while a   indicates that an undirected (or a symmet-

ric) connection is present. Note that despite the fact that physio-

logical neural networks are known to be asymmetric, we argue 

that units in the proposed model represent populations of tens of 

neurons, and therefore can be mutually connected.  

Row and column indexes of the weight matrix are       pairs. 

So in order to indicated that two units       and       are con-

nected, we write              . All connection combinations are 

allowed except those among units belonging to the same cluster, 

resulting in a  -partite undirected graph. When the memory is 

empty,   is a zero matrix. 

 Message Storing Procedure B.

We now describe how to store sparse messages using this 

network. This methodology has been first introduced in [6]. 

Suppose that each message consists of   submessages or seg-

ments. Some of these segments are empty, i.e., they contain no 

value that need to be stored, while the rest has integer values in 
        . For the sake of simplicity, let us consider that all mes-

sages contain the same number of submessages  . Only those 

nonempty submessages are to be stored while empty ones are 

ignored. For example, in a network with     and     , a  

message                  with     has two empty seg-

ments (the 1st and the 4th) while the remaining ones have values 

that need to be stored. In order to store  , each nonempty seg-

ment position   within this message is interpreted as a cluster 

label, and the segment value   is interpreted as a unit label within 

the cluster  . Thus, each nonempty segment is associated with a 

unique unit      . So the message   maps to the 10th unit of the 

2nd cluster, the 7th unit of the 3rd cluster, the 12th unit of the 5th 

cluster and the 11th unit of the 6th (last) cluster. A single message 

is not allowed to use more than one unit within the same cluster 

because, by definition, connections are not allowed within a 

cluster. 

Then, given these   elected units in   distinct clusters, the 

weight matrix of the network is updated according to (1) so that a 

fully connected subgraph (clique) is formed of these selected 

units. 

                             n             (1) 

where             refers to the undirected connection between 

      and       which are two units associated to message seg-

ments    and   , respectively.   and   are cluster indices while 

  and   are unit indices.  

The value of the parameter   can be unified for all stored 

messages, or it can be variable. A description of how to choose 

an optimal value of   is provided in [6] where   is considered 

identical for all messages.  

It is important to note that if one wishes to store another mes-

sage    that overlaps with  , i.e., the clique corresponding to    
shares one or more connections with that of  , the value of these 

connections, which is  , should not be modified. Such a property 

is called the nondestructivity of the storing process. As a direct 

consequence, the network’s connect on m p  s the un on o   ll 

cliques corresponding to stored messages.  

It is worth noting that when    , the structure of this net-

work becomes equivalent to the Willshaw-Palm model. 

III. THE RETRIEVAL PROCESS 

The goal of the retrieval process introduced in this paper is to 

recover an already stored message (by finding its corresponding 

clique) from an input message that has undergone partial erasure. 

A message is erased partially by eliminating some of its nonemp-

ty segments. For example, if                 is a stored mes-

sage, a possible input for the network is  ̅             . 
The core of the retrieval process can be viewed as an iterative 

twofold procedure composed of a dynamic rule and an activation 

rule. Figure 1 depicts the steps of the retrieval process:  

Insert an Input Message. 

Apply a dynamic rule. 

Phase 1: 

 Apply an activation rule. 

 Apply a dynamic rule. 

Phase 2: 

   While (stopping criterion is not attained) { 

         Apply an activation rule. 

Apply a dynamic rule. 

}. 

output   active units. 

 

Each step of the algorithm of Figure 1 is described in detail 

in the next sections. 

IV. INPUT MESSAGE INSERTION 

An input message should be fed to the network in order to 

trigger the retrieval process. For example, suppose that we have a 

stored message                . Suppose now that we wish to 

retrieve   from the partially erased input             . In 

order to do that, all units corresponding to nonempty segments 

should be activated. That is, a unit       associated with the 

segment of  ̅ at position   whose value is   is activated by setting 

     . So,   activates two units:       and       .  Having a 

number of active units, a dynamic rule should be applied. 

V. DYNAMIC RULES 

A dynamic rule is defined as the rule according to which unit 

scores are calculated. We will denote the score of a unit       by 

   . C lcul t ng un ts’ scores  s cruc  l to deciding which ones 

are to be activated. A score is a way of estimating the chance that 

a unit belongs to a bigger clique within the set of active units and 

thus the chance that it belongs to the message we are trying to 

recover. In principle, the higher the score the higher this chance 

is. Two dynamic rules have been already introduced, namely, the 

Sum-of-Sum [4] and the Sum-of-Max [15] rules. We also intro-

duce for the first time what we call the Normalization rule. 

 The Sum-of-Sum Rule (SoS) A.

The Sum-of-Sum is the original rule. It states that the score 

of a unit       denoted by     is simply the number of active units 

connected to       plus a predefined memory effect   which is 

only added if       is active. Scores should be calculated for all 

of the units in the network. This Sum-of-Sum rule can be formal-

ized by the following equation: 

 

Figure 1. The generic algorithm for the retrieval process. 
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    n                 

           ∑ ∑               
 
   

 
      (2) 

Although intuitive, this rule has a major problem which is 

that in some cases, the scores give a false estimate of the chance 

that a given unit belongs to a bigger clique within the set of 

active units. To clarify this point we consider the example of 

Figure 2 where black circles represent active units at an iteration 

   . The clique we wish to restore is      which is maximal 

in size. Now, we will see what happens when we calculate the 

scores of units   and   given a memory effect     where   is 

part of the searched message while   is not. According to the 

Sum-of-Sum rule, unit   has a score of   while unit   has a score 

of  . This result indicates that the latter unit is more likely to 

belong to a bigger clique than the former because it has a higher 

score. This observation is not true since most of the active units 

connected to   belong to the same cluster and by conception, a 

message can only contain at most one unit per cluster. In order to 

solve this problem, the Sum-of-Max and the Normalization 

dynamic rules can be applied. 

 The Normalization Rule (Norm) B.

In the Normalization rule th t we  ntro uce here, un ts’ 

scores are calculated using the following equation: 

          ∑
 

|  |
∑               

 
   

 
      (3) 

where |  | is the number of active units in cluster  . Equa-

tion  (3) states that the contribution of a unit       to the score of 

another unit connected to it is normalized by the number of 

active units in cluster  . That is, if the cluster   contains   active 

units, then the contribution of the unit       becomes    . So, 

by applying this rule to the network of Figure 2, unit   gets a 

score of   and unit   gets a score of  
 

 
 which is a result that 

privileges the activation of the latter unit and thus solves the 

Sum-of-Sum rule problem. 

 The Sum-of-Max Rule (SoM) C.

According to the Sum-of-Max rule, the score of a unit       is 

the number of clusters in which there is at least one active unit 

      connected to       plus the memory effect   if       is 

active: 

          ∑         (              )
 
      (4) 

So referring back to Figure 2, and according to (4), unit   has 

a score of   whereas unit   has a score of 3. This is a more satis-

fying result than the one obtained by the Sum-of-Sum rule since 

it indicates that the latter unit, although connected to more active 

units, is less likely to belong to a bigger clique within the set of 

active units than unit  .  

Moreover, it has been shown in [15] that for the particular 

case, when    , the Sum-of-Max rule guarantees that the re-

trieved massage is always either correct or ambiguous but not 

wrong. An ambiguous output message means that in some clus-

ters more than one unit might be activated among which one is 

the correct unit. 

VI. ACTIVATION RULES 

The activation rule is applied for electing the units to be acti-

vated based on their scores after the application of a dynamic 

rule. So basically, a unit       is activated if its score     satisfies 

two conditions:  

     is greater or equal than a global threshold that may be 

chosen differently for each activation rule.  

         where     is the activation threshold proper to unit 

     . [16] 

The difference between the two thresholds defined above is 

that     could be set differently for each unit, so it can be used to 

control   un t’s sens t v ty to  ct v t on. For   very l rge v lue o  

   ,       is inhibited. This is helpful for excluding a group of 

units from the search of a certain message in order to save time. 

The global threshold has a unique value independent of any 

individual unit. So it is used to elect units to be activated in a 

competitive activation process. For example, in a winner-take-all 

competitive process, this threshold could be dynamically set to 

the value of the highest score in the network in order to activate 

only units with the highest score. 

The activation rule should be able to find two unknowns: The 

subset of clusters to which the message we are trying to recover 

belongs, and the exact units within these clusters representing the 

submessages. Two activation rules are introduced in this paper: 

the Global Winners Take All rule (GWsTA) which is a generali-

zation of the Global Winner Take All (GWTA) rule, and an 

enhanced version of the Global Losers Kicked Out (GLsKO) rule 

initially presented in [17] . 

 The GWsTA Rule A.

The GWTA rule introduced in [6] activates only units with 

the network-wide maximal score. The problem with this rule is 

that it supposes that units belonging to the message we are look-

ing for have equal scores. It also supposes that this unified score 

is maximal which is not necessarily the case. It has been shown 

in [6] that spurious cliques, i.e., cliques that share one or more 

edges with the clique we are searching, might appear and render 

the scores of the shared units of the searched clique higher than 

others’.  

For example, in the network of Figure 2, if the searched 

clique is     , then     is an example of a spurious one. Now, 

by applying the Sum-of-Max rule on the black units which are 

supposed to be active, and considering    , we get the scores: 

    ,      ,      ,      ,      ,            . 

Thus, according to the GWTA rule, only units   and   will be 

kept active and the clique      is lost. This is caused by the 

spurious clique     which increases the scores of   and  . 

The generalization of the GWTA rule we propose is meant to 

account for this problem. 

The behavior of the Global Winners Take All rule is the 

same in both phases of the retrieval process. It elects a subset of 

units with maximal and near-maximal scores to be activated. In 

other words, it defines a global threshold   at each iteration, and 

only units that have at least this threshold are activated. 

In order to calculate this threshold at a given iteration, we 

first fix an integer parameter  . Then we make a list compromis-

ing the   highest scores in the network including scores that 

appear more than once. For example, if the units scores in a 

network with a total number of units      are 

Figure 2. Dynamic rule application phase. Black-filled units are active. 
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                                and    , then our list 

becomes                       . The minimum score in this 

list which is    becomes the threshold  . Then we apply the 

equation: 

     n                                              

     {
          n                                    

            otherw se                                        
 (5) 

It is worth noting that this activation rule is equivalent to the 

retrieval rule proposed by Willshaw [2] in that units are activated 

by comparing their scores to a fixed threshold  .  

One problem with this rule is that the choice of an optimal   

for a certain message size would not be adapted for other mes-

sage sizes. This limits the possibility of using this rule for retriev-

ing messages of variable sizes. Moreover, this rule always acti-

vates a subset of units with maximal and near-maximal scores. 

But in some cases, when the number of stored messages reaches 

a high level, the units with the near-maximal score do not neces-

sarily belong to the searched message.  

 The GLsKO Rule B.

As we have seen, The GWsTA rule needs a prior knowledge 

of the value of the message size   in order to retrieve a message. 

This means that if   is not available at retrieval, the rule may not 

be able to correctly retrieve information. The Global Losers 

Kicked Out (GLsKO) rule is designed to address this problem by 

being independent of any prior information about   which should 

also enable it to retrieve variable-sized messages more efficiently 

than the GWsTA rule. In order to achieve this, the GLsKO rule 

has a behavior in phase 1 of the retrieval process that differs 

from that of phase 2 as follows: 
 

Phase 1: 
Apply the GWTA rule. 

Phase 2: 

   Kick losers out. 

 

In phase 1, the GWTA rule is applied resulting in the activa-

tion of a subset of units to which the searched message is guaran-

teed to belong. After this, the activation thresholds of inactive 

units are set to infinity because we are no more interested in 

searching outside the already activated units. 

In phase 2, the rule changes behavior, so, at each iteration, it 

makes a list compromising the   lowest nonzero scores of the 

active units only. For example, if the set 

{                               represents the scores of 

active units in a network with a total number of units      and 

we fix    , then the list of lowest scores becomes 

                   . After that, a threshold   equal to the max-

imum score in the latter list is set, and only units with scores 

greater than   are kept active. This can be described by the fol-

lowing equation: 

     n                                       

     {
          n                                    

   n                  otherw se             
 (6) 

The reason why     is set to an infinitely large value is that 

after the first phase of the algorithm, a subset of units is activat-

ed. The clique corresponding to the message we are looking for 

is guaranteed to exist in this subset given that we are dealing with 

partially erased messages. So, setting     in this fashion ensures 

that units that have failed to be active upon the first phase would 

be out of the search scope throughout the retrieval process. 

We propose to enhance the performance of the GLsKO rule 

by controlling the number of units   to be deactivated. This is 

only interesting when    . For example, if we set     in the 

network example of the previous paragraph, we get the following 

list of scores        . If   is not specified, all losers are deac-

tivated. But by setting    , only one of these two units is 

randomly chosen to be deactivated. This may be useful if we 

wish to exclude losers one at a time and thus reduce incautious 

quick decisions.  

VII. STOPPING CRITERIA 

Since the retrieval process is iterative, a stopping criterion 

should be used in order to put this process to an end. In parts A 

and B of this section we review the two classic criteria that are 

already in use. In parts C and D, we propose two new ones that 

are supposed to enhance performance. 

 A Fixed Number of Iterations (Iter) A.

A stopping criterion can be defined as a predefined number 

of iterations of the retrieval process. So dynamic and activation 

rules are applied iteratively, and when a counter announces that 

the desired number of iterations is attained, the retrieval process 

terminates and the activated units are taken for the retrieved 

message. The problem with this approach is that the stopping 

criterion which is a simple iteration counter is independent of the 

nature of retrieved message. That is, the activated units after the 

last iteration are not guaranteed to form a clique corresponding to 

an already stored message. This stopping criterion is only inter-

esting with the GWsTA rule. 

 The Convergence Criterion (Conv) B.

This criterion states that if the set of active units at iteration 

    is the same as that of iteration  , the retrieval process is 

taken as converged so it terminates and the result is output. The 

convergence criterion is only compatible with the GWsTA rule. 

In the case of the GLsKO rule, one or more active units are 

deactivated in each iteration. So it is not possible to have the 

same set of active units throughout two subsequent iterations.  

 The Equal Scores Criterion (EqSc) C.

The idea we propose here is that when all scores of active 

units are equal, the retrieval process terminates and the result is 

output. 

 The Clique Criterion (Clq) D.

This new criterion depends on the relationship between the 

number of activated units and their scores. If the activate units 

form a clique the retrieval process terminates. Thus, the retrieved 

message is more likely to make sense though it is not necessarily 

the correct result. In order to check if the activated units form a 

clique, we define the set of active units as     |         | |  , 
      as the score of the active unit    and   as an integer, then 

we apply the procedure shown in Figure 3: 

 

        | |. 
    

           (  )           n       | |            

 hen 
   output the result. 

term n te the retr ev l process  

Figure 3. The Clique stopping criterion (Clq). 
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To make sense of this stopping criterion, we take an intuitive 

situation when      In this case, the stopping criterion is that 

when all active units have an equal score which is equal to the 

number of these units, a clique is recognized, so the process 

terminates and the result is output. 

It is worth noting that when using the GWsTA rule, it is al-

ways preferable to combine any stopping criterion with the Iter 

criterion so that when any one of them is satisfied the process 

terminates which prevents infinite looping. 

VIII. RESULTS 

We have seen that there are many possible combinations of 

dynamic, activation rules and stopping criteria in order to con-

struct a retrieval algorithm. In this section we will demonstrate 

the performance of some of these combinations. All messages 

used for the following tests are randomly generated from a uni-

form distribution over all possible message values. Reported 

retrieval error rates for a given number of stored messages are 

averaged over 100 trials. However, no significant difference was 

found between average error rates and error rates resulting from 

single trials. All the tests were written in C++, compiled with 

g++ and executed on a Fedora Linux operating system. 

 Comparing Dynamic Rules A.

Figure 4 shows that both the SoM and the SoS dynamic rules 

give a similar performance. The Norm rule was found to give the 

same results also, but it is not shown in the figure for clarity. 

This is not the case with the original network introduced in [4] 

where the Sum-of-Max rule was proved to give better results 

[15]. This is an interesting phenomenon that is worth studying. It 

may indicate that the major source of retrieval errors in this 

sparse version of the network is not related to the different meth-

o s o  c lcul t ng un ts’ scores. This renders the differences in 

performance due to the use of different dynamic rules insignifi-

cant. 

 Comparing Retrieval Strategies B.

We notice in Figure 5 that the GWsTA (    ) rule gives a 

better performance than the GWTA (equivalent to GWsTA with 

   ) rule used with the Conv stopping criterion with 30 itera-

tions allowed at most. This is due to the fact that the former rule 

has a better immunity to the phenomenon of spurious cliques 

described in Section VI.A. We also notice that the GWsTA 

(      rule gives even a lower error rate when the memory 

effect   is set to a large value such as       This is because 

setting   to a very large value restrains the search to only a lim-

ited region of the network where the target message is thought to 

exist. This is due to the fact that a large value of   guarantees that 

active units always get higher scores than other ones. So, in 

subsequent iterations, the set of active units would most often be 

the same or a subset of the previous active set. In all cases, the 

GLsKO (   ,    ) rule using the EqSc or the Clq (not 

shown on the figure for clarity) stopping criterion has the lowest 

error rate which almost achieves the performance of the brute 

force Maximum Likelihood retrieval algorithm (ML) (which is a 

simple exhaustive search for a maximum clique) for   erased 

input submessages out   . This is because the GLsKO rule con-

figured with such parameter values searches for the output in a 

limited subset of units resulting from phase 1 and excludes only 

one unit at a time before testing for the stopping criterion. This is 

proved by the degraded performance shown in Figure 6 of this 

same rule but without specifying a value of   which results in the 

exclusion of more than one unit at a time rendering the retrieval 

process less prudent and more susceptible to bad exclusions.  

We also notice that when a Willshaw-Palm network with 

       units is used with the GWsTA (        ) rule, 

the same performance as in a clustered network  is obtained. 

 The Number of Iterations C.

Figure 6 shows that the average number of iterations required 

to retrieve a message is relatively constant for all rules up to 

       messages learnt. Beyond this, the number of iterations 

required for the GLsKO and the GWsTA rules with      be-

gins to increase rapidly. It is worth emphasizing that the maxi-

mum number of iterations we allowed for the GWsTA rule is 30 

so the constant level reached by the curve representing this rule 

with     in Figure 6 is just a result of that constraint. However, 

the number of iterations for the GWsTA rule with        

increases only slightly approaching an average of 3.3 up to 

250000 messages stored.  

The reason for this explosion of the number of iterations in 

the case of the GLsKO rule is that the number of units activated 

after the first phase increases with the number of stored messag-

es. So more iterations would then be needed in order to exclude 

losers and thus shrink the set of active units. In the case of the 

GWsTA rule with    , all units in the network are concerned 

with the search for a message in each iteration. So when the 

number of stored messages increases, the connection density in 

the network gets higher and it then would be more likely that 

new winners appear in each iteration violating the Conv criterion. 

Figure 4. Influence of dynamic rules on retrieval error rates in a network 

with χ      𝑙     𝑐     γ    σ𝑖𝑗    initially, with 3 segments of 

partial erasure in input messages. 

Figure 5. Influence of activation rules on retrieval error rates in a net-

work with χ     , 𝑙    , 𝑐    , γ    if not stated otherwise σ𝑖𝑗  

  initially, with 3 segments of partial erasure in input messages. 
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Setting   to 1000 limits the possibility of the apparition of new 

winners in each iteration and consequently decreases the number 

of iterations needed before satisfying the Conv criterion. 

IX. CONCLUSION AND FUTURE WORK 

In this paper, we analyzed the performance of retrieval algo-

rithms on extensions of a recently proposed sparse associative 

memory model. We demonstrated and compared the performance 

of these algorithms when using partially erased messages as 

inputs. We also provided comparisons between the model pro-

posed in this paper and the Willshaw-Palm model where we 

proved that the clustering constraint applied to the model we use 

which decreases the number of available connections does not 

necessarily affect performance when comparing with the Will-

shaw-Palm model. 

We found that our modified version of the GLsKO activation 

rule combined with the equal scores or the clique stopping crite-

ria gives the best results in terms of retrieval error rate but with a 

rapidly increasing number of iterations. Actually, the second 

phase of the GLsKO rule along with the clique criterion can be 

viewed as an operation equivalent to searching the maximum 

clique among active units. This is a famous NP-complete prob-

lem. However, many suboptimal solutions were suggested for 

this problem (or equivalently, the minimum vertex cover prob-

lem) such as [18] [19] and many more. We believe that such 

suboptimal solutions are adaptable to our problem and can be 

integrated in our retrieval algorithm in the future in order to give 

a better performance with a more reasonable number of itera-

tions. 

Finally, the retrieval algorithms presented in this work are all 

synchronous in the sense that, at each iteration, dynamic and 

activation rules are always applied to all clusters. In future work, 

we will consider asynchronous methods which can take into 

account the fact that some clusters may reach their final state 

before others, so application of dynamic and activation rules 

could then be limited to only a subset of clusters. We also aim at 

extending the scope of the algorithms presented in this paper to 

deal with other types of input messages, such as distorted ones in 

which some submessages have slightly modified values from 

their origin. 
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