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Abstract—The increasing use of wind power as source of 

electricity motivates a continuous improvement of the accuracy 

of wind power forecasts. There is a considerable value in 

optimizing forecasts systems to provide the best performance 

in an environment where the wind power production increases 

and/or decreases by a large amount over a short period of time. 

This paper presents a model that uses Reservoir Computing to 

classify energy production variations in wind farms, known as 

ramp events. This method is compared with two other 

approaches: one that uses a MLP network and the other is 

based in Persistence. The tests were performed and the results 

are given for real cases, reaching up over 90% of success rate. 

Keywords-ramp events; wind power forecast; reservoir 

computing; neural networks; mlp. 

I.  INTRODUCTION 

In recent years, with the large-scale expansion of wind 
farms, the percentage of energy derived from wind sources is 
increasing rapidly. Thus, the demand for more reliable wind 
energy is driving the need for detection and prediction of 
ramp events [1]. 

There are wind power predictive models that are based 
on physical characteristics, of the weather, of the terrain, and 
thus dependent on the physical aspects. Recent research 
works in wind power forecasting, however, have focused on 
associating uncertainty estimates to these point forecasts, 
using historical measurements and machine learning 
algorithms to induce a predictive model [2][3]. In the 
following section, there are some examples of works done in 
this area, but no model was found, even among those which 
use machine learning algorithms, with the same techniques 
compared in this work for the same purpose (classify and 
predict ramp rates). 

The series representing power generation in wind farms 
are very dynamic, predisposed to many variations. These 
series oscillate a lot in short periods of time, since it suffers 
various influences of physical and meteorological factors, 
which requires the use of a technique that handles very well 
with this volatility. 

If properly applied, these works have much to add in 
wind power generation, increasing significantly the value of 
this modality in our energy matrix. 

Today, a major difficulty when it comes to the prediction 
accuracy of wind power is to provide a forecast able to 
handle extreme situations, these situations that still rely 
heavily on the activities of end users, who need to develop 
procedures that meet the electricity demand, as well as 

maximizing the economic and environmental benefits. These 
extreme events are associated with large deviations on power 
generation compared with what was expected. The severity 
of these events depends on the speed with which they occur 
and when they occur, because the demand for electricity is 
also highly uncertain. The sooner these events are planned, 
the most effective are the procedures [2][3]. 

One solution to be considered is to try to determine in 
advance, and with the best possible accuracy, the timing, the 
amplitude and the width of the variations of the power 
generated. In this work, we try to optimize this type of 
solution using this Reservoir Computing model. 

The remaining of this paper is organized as follow. 
Section 2 presents some related work, Section 3 addresses 
the proposed model based on Reservoir Computing, a 
recurrent neural network approach, whose structure is 
discussed, in addition with how it was applied and why it 
was chosen. Still talking about the proposed model, it was 
explained a little about ramp events, bringing the concept 
and defining the parameters considered in this work. In 
Section 4, the experiments are presented, showing the 
improvements compared to the results from a model using a 
Multi-Layer Perceptron (MLP) neural network and a second 
model based on the Persistence concept. Section 4 also 
explains a little about the common use of Persistence models 
as a reference predictor. The final remarks and future works 
are discussed in the conclusion section. 

II. RELATED WORK 

As discussed in introduction, physical-based models are 
still most common in this area, such as weather and terrain-
based. These models use to determine relationships between 
the physical aspects and wind farms output power [4][5][6].  

The other approach is the mathematical modelling, in 
which statistical and/or artificial intelligence methods are 
used to find the relationship between historical data sets and 
wind farms output power [7][8][9][10].  

In the last decade, there was strong research effort on the 

improvement of wind power predictions using 

meteorological forecast data from Numerical Weather 

Prediction (NWP) systems. NWP systems uses 

mathematical models of the atmosphere and oceans to 

predict the weather based on current weather conditions 

data.  

In the European project ANEMOS, several prediction 

models (multi-model approach) were applied and compared 

for the prediction of selected wind farms located in areas 
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with different characteristics. The ANEMOS project 

develops intelligent management tools for addressing the 

variability of wind power.  

In other studies, strong improvements, up to about 20%, 

were obtained by using the data of different NWP models or 

ensemble models as input data for the wind power prediction 

models [11][12][13]. 

Within the short-term context, time series based models 

have shown a better performance than NWP models for 

horizons up to few hours [14][15][16]. These models, as the 

model brought in this paper, try to learn and replicate the 

dynamic shown by certain time series, for instance the 

power output time series of a wind farm. 
For wind ramps forecasting, there are studies which 

showed improvements of predictions by using statistical 
and/or artificial methods too [17][18][19] [20]. 

Any work was found related to our case study regarding 
with Reservoir Computing. 

III. PROPOSED MODEL 

A. Theoretical background 

There are certain complex situations and problems which 
are part of our reality. These facts have stimulated and 
continue boosting research aimed at bringing computing 
solutions to what could not be solved in a most trivial way. 
Many interesting and challenging problems in engineering 
also do not have direct solution using heuristic methods or 
algorithms explicitly programmed. These problems are prime 
candidates for the application of machine learning methods 
[21], which share the common property of learning by 
example and being able to generalize these examples in a 
"smart" way to new entries yet unseen.  

A large subclass of machine learning methods is formed 
by Artificial Neural Networks, which are very abstract 
connectionist models of how the brain makes computing. 
They consist of networks of simple and non-linear 
computational nodes that communicate values via weighted 
connections, i.e., having their respective weights. Mainly, 
these weights are computed through features extracted from 
examples in such way that the desired behavior of the 
network is reached. If the network has a recurrent structure, 
i.e., with feedback loops, then it will have a memory of past 
inputs, which allows it to make the processing of temporal 
signals making them powerful computational nonlinear 
methods [21]. 

In Fig.1, there are two examples of neural networks 
topologies. At left, a feedfoward network, without feedback, 
where the signal travels through the network in a single 
direction. At right, a recurrent network, with feedback loops, 
that provide memory of past input, as explained above.  

These recurrent neural networks are, however, 
notoriously difficult to train. A new learning paradigm called 
Reservoir Computing (RC) was introduced, allowing the use 
of recurrent neural networks alleviating the consuming and 
difficult phase of training. This idea was emerged 
simultaneously from the Echo State Networks [22] and 
Liquid State Machines [23] approaches, proposed 

independently and in periods very close (2001 and 2002 
respectively). In both networks, the architecture consists of a 
recurrent network of neurons, we call this reservoir, which is 
built randomly and not trained initially, and a separate linear 
output layer, trained by simple one-shot methods [21], i.e., 
do not require large data sets or multiple training rounds, 
leaving to the discretion of the modeler doing training in 
batches, if desired.  

Figure 1.  Differences between network topologies. 

Fig. 2 below shows a schematic representation of a 
network with Reservoir Computing approach. The fixed 
connections and randomly formed are indicated with a solid 
line, the trained connections are indicated with a dashed line. 

Figure 2.  Schematic representation of a network with Reservoir 

Computing approach. 

Since its introduction, Reservoir Computing has attracted 
much attention in the community of neural networks, due to 
the combination of simplicity of use and its good 
performance in a variety of difficult benchmark tasks [21]. 
Therefore, Reservoir Computing is used in our proposed 
model in the classification of ramp events task. Basically, 
ramp events can be understood as a variation on the nominal 
power greater than a threshold that lasts for a certain period 
of time. A more concrete definition about ramp events is 
presented in the following section. 

B. Databases preparation for ramp events classification 

Recently, the wind power industry began to evaluate the 
nature of ramp events. There is still no universal acceptance 
threshold to detect them [22], the most commonly used 
concept is the one that defines the ramp event as a variation 
that exceeds a minimum percentage of the nominal power 

( ) in a wind farm within a time period less than or equal 

to a maximum ( ) [2][22], that is, when there is an 
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alteration in the output power that has an amplitude 
sufficiently large for a relatively short period of time [3]. It is 

difficult to find a consensus between the values for  and 

, because they usually depend on geographical situation, 
climate and complexity of the terrain and end up being set 
"arbitrarily" by the solution modeler [2]. 

Fig. 3 below shows an example based on Ferreira [3] 
where the ramps are defined as a change in power of at least 
50% of the capacity over a maximum duration of 4 hours. 

 
Figure 3.   Ramp event definition: for this image, a change in power of at 

least 50% of the capacity over a maximum duration of 4 hours (Ferreira, 

2010). 

In this work, the behavior of the databases fairly reflected 
what was previously said, the values for  and  vary 
considerably according to local conditions of the wind farm. 
To define the parameters and continue favoring the 
individual behavior of generation in each wind farm, we 
chose not to set a universal value for  and , but to 
do it according to the number of events observed in 
accordance with the variation of these parameters. The ramp 
should be a sparse event, not repeated many times, so the 
event does not become widespread throughout the 
generation. To process the data, we assume that the number 
of values found above the threshold  should be about 
10% of total. To find these quantities of values observed at 
each threshold, the following process was made: 

1) Apply filters that make it possible to view the 
percentage of variation of the series; 

2) Count occurrences for each variation percentage; 
3) For each variation percentage, check how much the 

ramps of this threshold represent in relation to the whole. 
For the first step of the process, we based on an approach 

that does not work directly with the sign of the power 
generated in the farm, but turns the signal into a more 
appropriate representation. This strategy is used by Bossavy 
et al. (2010), who consider n differences in the amplitude of 
the power generated. In this procedure, let ( t as the time 

series of wind power, and ( )t as the filtered signal 

associated, obtained by the following equation: 

 mean  h      

In (1), the  comes from the amount of differences in 
power measurements to be considered in the average (  = 
number of averaged differences of measures). The filtered 

signal ( )t measures variations of the wind power series 

( )t. The ramp event then corresponds to a time interval 

where the absolute value of the filtered signal ( )t exceeds a 

threshold t>0. The ramp time is the point where the filtered 

signal ( )t reaches a local maximum. Figures 4, 5, and 6 

demonstrate part of the analysis done until we could choose 
the appropriate .  

In Fig. 4 below, there is a part of the power generation 
time series on Farm A ( )t and absolute values of the filtered 
signal ( )t with parameter = 2. Ramps in power series 
coincide with the local peaks of the filtered signal. 
Considering the threshold of 20% of the nominal power, for 
example, we observe 6 ramp events on this stretch.  

 

 

Figure 4.  Part of the power generation time series on Farm A ( )t and 

absolute values of the filtered signal ( )t with parameter = 2. 

In Fig. 5 below, the parameter was set as 5. 
Considering the threshold of 20% of the nominal power too, 
4 ramp events can be observed on this stretch. The 
identification of the ramps observed at t = 108 and 110 in 
Fig. 4 is lost, this happens because lower values of do the 

filtered signal ( )t be more sensitive to variations in power 
series occurred in shorter periods of time. 

 

 

Figure 5.  Part of the power generation time series on Farm A ( )t and 

absolute values of the filtered signal ( )t with parameter = 5.  

89Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-340-7

COGNITIVE 2014 : The Sixth International Conference on Advanced Cognitive Technologies and Applications



In Fig. 6 below, the parameter was set as 10. It is 
possible to observe that bigger values of will result in a 
filtered signal increasingly less sensitive to variations in the 
generated power. 

 

 

Figure 6.  Part of the power generation time series on Farm A ( )t and 

absolute values of the filtered signal ( )t with parameter = 10. 

This work was done using power generation time series 
of three wind farms in Brazil, here we call them Farm A, 
Farm B and Farm C. These wind farms range in capacity 
54.6, 70.56 and 126 MW respectively. This dataset is 
available for research purpose under request. The following 
figures were extracted from the Farm A series. 

With the three power series used as case study in this 
paper (Farm A, Farm B and Farm C), using the previously 
detailed definition, the value of remained 5 for the three 
cases and the thresholds were defined as: 15% to the Farm 
A, 20% to the Farm B and 40% for the Farm C. 

890 values were found exceeding the threshold of 15% 
over a period of 5,855 hours with measurement occurring 30 
to 30 minutes in the Farm A, 1236 values exceeding the 
threshold of 20% over a period of 8,784 hours (one year) 
with measurement occurring 30 to 30 minutes in the Farm B 
and 1,243 values exceeding the threshold of 40% over a 
period of 8,784 hours (one year) with measurement 
occurring 30 to 30 minutes in the Farm C. 

The series were transformed into an hourly measurement 
before setting the s, then  = 5 means 5 hours and 

= 2 means 2 hours, i.e., for the Farm A, for example, the 
definition of the ramp is a variation of 15% in a period of 5 
hours or less.  

Figure 7 portrays these situations more easily and also 
shows that we would have more examples of ramps opting to 
use = 5 instead of = 2. This figure also presents 
that choosing a threshold below 15%, 10% for example, 
more ramps could be observed, however, as said previously, 
would increase greatly the sensitivity of the filter and the 
whole generation would be filled with ramps, generalizing 
too much the event. 

In the following section, the experiments and results of 
ramp events classification are discussed. Then, the objective 
was to train the model to signalize in which periods the ramp 
events may occur. 

 

Figure 7.  Filtered signal ( )t of Farm A considering = 2 and = 5 
to verify the amount of occurrences exceeding all thresholds. 

In addition with the proposed system based on Reservoir 
Computing, the experimental results of systems based on the 
both methods are presented: MLP network and a Persistence 
model. 

IV. EXPERIMENTS AND RESULTS COMPARISONS FOR WIND 

RAMPS CLASSIFICATON 

A. Used settings 

The experiments were made using the last 24 hours to 
predict 24 hours ahead, but it can be parameterized for other 
options. 

For neural networks, both of the Reservoir and for the 
MLP, we used 48 input neurons and 48 output neurons. The 
48 entries relate to a full day of measurement, occurring in 
30 to 30 minutes, the 48 output neurons correspond to 5-hour 
intervals (each interval has 10 values, since the measurement 
are arranged in 30 to 30 minutes) from the first hour of the 
day until the 9

th
 measument of the subsequent month, since 

this was the maximum period set for detecting ramp events 
using 100% of power from one day. To find the amount of 
neurons in the hidden layer and other settings specifics to 
each type of network (interconnectivity rate and warm up 
cycles for RC and the learning rate and moment for MLP), 
we performed tests between possible configurations, 
explained in the following section, comparing the percentage 
of correct classifications (Success Rate) and checking if the 
choice had generalization capability to perform a good 
classification over all wind farms in study. These values will 
be showed and discussed in results comparisons section. 

B. Results comparisons 

To compare the classifications performed by the models 
employed in this work, and choose the best one, we used 
Success Rate (SR), as said before. 

1) Reservoir Computing 

With RC, as shown in Table I, we have achieved a 
success rate of 76.85% with standard deviation of 4.49 in 
Farm A, 80.48% with standard deviation of 3.93 in Farm B 
and 91.52% with standard deviation of 2,71 in Farm C. 
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TABLE I.  RESULTS FOR CLASSIFICATION USING A RC MODEL 

 Success Rate Deviation 

Farm A 76.85% ±4.49 

Farm B 80.48% ±3.93 

Farm C 91.52% ±2.71 

 

The tests were conducted always incrementing the 

number of neurons in the hidden layer, starting with 5 

neurons until 100, the rate of interconnectivity between the 

neurons of the hidden layer, from 50% to 100%, and the 

amount of warm up cycles from 1 to 100, but after 4 warm 

up cycles, any positive difference detected is very low. 

Figures 8, 9 and 10 below show how the success rate 

changes due to the number of neurons for Farms A, B and 

C. The x-axis and y-axis correspond to executions and the 

number of neurons, respectively. 

 

 
Figure 8.  Changes in Success Rate according to the number of neurons in 

the hidden layer for Farm A data. 

 
Figure 9.  Changes in Success Rate according to the number of neurons in 

the hidden layer for Farm B data. 

 
Figure 10.  Changes in Success Rate according to the number of neurons in 

the hidden layer for Farm C data. 

The blue line, referring to the number of neurons, 

remains at the same level during a sequence of executions 

because other parameters are changed (warm-up cycles and 

rate of interconnectivity). 

Despite the small deviation, it’s important to mention 

that each wind farm presented a different configuration for 

the best result. This information is on the Table II below: 

TABLE II.  BEST RESULTS FOR CLASSIFICATION USING RC MODEL 

 

Number 

of 

neurons 

in hidden 

layer 

Interconnectivity 

rate 

Warm up 

cycles 

Success 

Rate 

Farm A 30 64% 36 84.02% 

Farm B 10 76% 11 88.13% 

Farm C 10 94% 66 93.93% 

2) MLP 

With the MLP tool, no significant difference was 
detected in results between the tested configurations. This 
scenario occurred for the three wind farms used as case 
study.  

According to Table III below, in Farm A, the success 
rate ranged an average of 71.57% with standard deviation of 
0.49 in Farm B, ranged an average of 83.07% with standard 
deviation of 0.52 and in Farm C, ranged an average of 
90.28% with standard deviation of 0.30. 

TABLE III.  RESULTS FOR CLASSIFICATION USING MLP MODEL 

 Success Rate Deviation 

Farm A 71.57% ±0.49 

Farm B 83.07% ±0.52 

Farm C 90.28% ±0.30 

 

Despite the small deviations, it’s important to mention 

that each wind farm presented a different configuration for 

the best result. This information is on the Table IV below: 

TABLE IV.  BEST RESULTS FOR CLASSIFICATION USING MLP MODEL 

 α β 

Number of 

neurons in 

hidden 

layer 

Success Rate 

Farm A 0.7 0.4 10 72.35% 

Farm B 0.6 0.3 120 83.76% 

Farm C 0.4 0.7 45 91.87% 

3) Persistence 

As Kariniotakis [24] reports, it is worthwhile to use 
operationally an advanced tool for wind forecasting only if 
this is able to outperform naive techniques resulting from 
simple considerations without special modeling effort. Such 
simple techniques are used as reference to evaluate 
advanced ones. The most commonly used reference 
predictor is Persistence. This approach states that the future 
wind generation will be the same as the last measured power 
value. 

Despite its apparent simplicity, this model might be hard 
to beat for the first look-ahead times (up to  4-6 hours). This 
is due to the scale of changes in the atmosphere, which are 
relatively slow, in order of days [24]. 
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Here, it was considered that the occurrence of ramps the 
next day is the same as the present day, at the same 
moments. For example, if we had ramp events at 12 o’clock 
today, we will consider the occurrence of ramps at 12 
o’clock tomorrow. Assuming that, the moments that this 
model hits the occurrence of ramps will be counted in the 
success rate. The Table V below shows the results found for 
wind farms A, B and C: 

TABLE V.  RESULTS FOR CLASSIFICATION USING A PERSISTENCE 

MODEL 

 Success Rate 

Farm A 41.87% 

Farm B 43.92% 

Farm C 12.87% 

C. Improvement calculation 

The improvement between the RC model and the two 
other reference models was calculated, based, for 
classification, on the best success rate found.  

The improvement is calculated as in (2): 

    

The results obtained are shown in the Table VI below: 

TABLE VI.  IMPROVEMENT CALCULATION BETWEEN COMPARED 

MODELS FOR CLASSIFICATION 

Compared models Wind farm Improvement 

Reservoir Computing 
x MLP 

A 13.89% 

B 4.96% 

C 2.19% 

Reservoir Computing 

x Persistence 

A 50.17% 

B 50.16% 

C 86.30% 

MLP x Persistence 

A 42.13% 

B 47.56% 

C 85.99% 

 
With the used metric, the RC model has shown better 

results than the MLP and the Persistence model, as we can 
see above.  

As the RC model offers recurrence between neurons, it 
was expected that it would provide better results, as 
discussed in theoretical background in Section 3. This 
expectation was met.  

Besides the recurrence, Reservoir Computing has a 
simpler way of training, as explained in Section 3 too. This 
feature helps to create models that tend to use less 
processing time compared with other recurrent neural 
networks. 

CONCLUSION AND FUTURE WORK 

In this work, a model that uses a recurrent neural 

network with differentiated learning method, called 

Reservoir Computing, was proposed for trying to promote 

better results in ramp events classifications and in power 

generation forecast in wind farms. A MLP neural network 

and a Persistence model were used as reference models. 

The results indicate that the proposed model has better 

performance compared with reference models for 

classifying ramp events, reaching up over 90% of success 

rate. 
As prospects for future works, is suggested the 

investigation of new options of input variables and 
architectures for the RC, as well as further support to 
indicate the amplitude of wind energy ramp events. 
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