
HORUS: a Configurable Reasoner for Dynamic Ontology Management

Giovanni Lorenzo Napoleoni, Maria Teresa Pazienza, Andrea Turbati

Department of Enterprise Engineering

University of Rome Tor Vergata

Rome, Italy

e-mail: giovannilorenzo.napoleoni@gmail.com,

{pazienza, turbati}@info.uniroma2.it

Abstract—This paper introduces HORUS (Human-readable

Ontology Reasoner Unit System), a configurable reasoner

which provides the user the motivations for every inferred

knowledge in the context of a reasoning process. We describe

the reasoner, how to write an inference rule and check which

explicit knowledge was used to infer a new one. Real cases

examples will be provided to show the capabilities of our

reasoner and the associated language developed to express

inference rules. We show how HORUS allows the user to

understand the logical process over which each new RDF triple

has been generated.

Keywords—Ontology Management; Reasoner; Formal

Language

I. INTRODUCTION AND MOTIVATION

The Semantic Web is becoming more and more popular
and easy to work with. Ontologies are used as a common
base to all the applications which rely on such a framework.
Main features of an ontology are:

 The use of a specified standards, such as Resource
Description Framework (RDF) [1];

 The possibility to infer knowledge from existing
one.

The process of inferring new knowledge, from the
existing one, is delegated to reasoners. They take in input a
vocabulary, the data stored in the ontology and a list of rules
and produce new knowledge, hopefully in the same standard
in which the ontology is written. A list of existing reasoners
can be found at [2]. They differentiate for:

 The rules they are able to use in the inference
process;

 Under which license they are distributed, inside
which tool they can be used;

 The language in which they are written (e.g., Java,
C++, etc.);

 The possibility to accept new rules without the need
to change most of their source code;

 Performances in the inference process.
Once a reasoner has been chosen, it is possible to use it:

 Standalone as a tool to infer new knowledge that is
saved in a particular serialization (with or without
the analyzed knowledge base);

 As a component, inside a framework to immediately
observe the inferred knowledge.

Generally, the task of visualizing the results of any tool
embedded inside a framework is finalized to both validate its
output and produce some performance metrics (such as
precision or recall). The validation process for a reasoner is
very different: in fact as a list of inference rules is used, a
reasoner is characterized on which inference is able to run,
its scalability regarding the size of the ontology it analyzes
and the time it needs to process it.

By analyzing different reasoners, we discover that they
can be really optimized regarding the execution time while
both customization and visualization processes are generally
lacking, even if they are important and useful, as discussed in
[3] (see as an example the use of the framework Protégé
(version 3.4.8) [4] and the bundled reasoner Pellet (version
1.5.2) [5]). In this case, a user is not able to know
immediately which rules the reasoner will apply. The sole
possibility is to consult its home page, [6] for Pellet 2.0. New
rules can be added using the language SWRL [7]. Protégé
3.4.8 provides inferred knowledge generated from the
selected reasoner, specifying that it has been inferred,
without showing which underling knowledge was used in the
inference process and why such new knowledge has been
produced. There are several contexts in which users could be
interested to follow the reasoning process, as for:

 Learning how it behaves;

 Comparing results in different application domains;

 Comparing results with his own expectations related
to previous/personal conceptualizations.

Protégé 4.3 has a new system to manage reasoners
(Protégé 3.x and Protégé 4.x are used depending on the
Ontology characteristics and the existing plug-in). It has two
bundled reasoners, FaCT++ [8] and HermiT [9]; but other
reasoners can be downloaded and installed. It is also able to
provide an explanation to why an inferred knowledge has
been (temporarily) added to the selected ontology, but this
explanation consists of just the list of explicit triples used by
the current reasoner, without showing the other inferred
knowledge produced and successively used along the
reasoning process, so for complex reasoning it can be
difficult to follow the entire process.

For all these reasons, we decided to develop a new
reasoner characterized by the following features:

 Being open source;

 Implemented as a Java library;

66Copyright (c) IARIA, 2014. ISBN: 978-1-61208-340-7

COGNITIVE 2014 : The Sixth International Conference on Advanced Cognitive Technologies and Applications

 Easy to add new rules using an intuitive language
based on the RDF family standard;

 The inference process would point out the list of
RDF triples (explicit and inferred ones) used to
produce every inferred triple.

In such an approach, the end user is totally aware of the
inference process; as a consequence he can evaluate how
much it fits his approach to reasoning.

In the rest of the paper, we describe first in Section II the
architecture on which the reasoner is based on. Then, in
section III, we present the language used to express the
inference rules providing some real case examples. In
Section IV we show how the reasoner allows the user to
understand the logical process over which each new RDF
triple has been generated. Finally, in Section V, we present
our conclusions.

II. ARCHITECTURE AND IMPLEMENTATION

The architecture of the reasoner Human-readable
Ontology Reasoner Unit System (HORUS) is shown in Fig.
1. A modular approach has been adopted to make easy to
change any module without modifying the other ones.

First, the configuration parameters are read by the
Configuration Handler and passed to the Reasoner Handler.
Then, all inference rules are parsed by the Inference Rules
Handler. The language in which these rules are written will
be discussed in detail in Section III. HORUS does not have
any hard-coded inference rule, each rule used by the reasoner
is written in the developed language, so a user will be able to
see what the reasoner is able to infer, without the need to
read its source code. This is a first aspect of configurability.

Once the reasoner is configured, each inference rule is
executed by the Execution Query Handler, which, in the
current implementation, uses SPARQL SELECT [10], taking
advantage for any improvement provided by the triple store
the reasoner is used with. To avoid any dependency on the
specific technology regarding a triple store, HORUS uses the
OWL-ART API [11] middle layer which enable an
abstraction layer over different RDF triple store
technologies. In the current implementation, the reasoner has
been tested with these API in conjunction with a Sesame2

implementation [12]. All the inference rules are executed in
one or more iterations, until the reasoner is able to infer no
further knowledge, or the number of iterations specified
during the configuration is achieved.

Finally, the output of the inference process is shown to
the user by the Output Handler.

III. LANGUAGE

Hereafter, we describe the language defined to specify
the inference rules and consistency rules to be used by the
reasoner, that follow a similar syntax while their objective is
totally different. The former rule is used to deduce new
knowledge (using either already existing or inferred in a
previous iteration), the latter does not produce any
knowledge, it is used to check if the ontology causes an
inconsistency (two or more axioms which contradict each
other). In the following, first we explain the syntax adopted
for the rules and then we provide some real case rules.

A. Rule syntax and use

The simplified grammar of the language developed for
these rule is shown in Fig. 2.

Each rule starts with the word rule followed by its type.
There exist two possible rule types: inference rule (called
new rule) and consistency rule (new consistency rule).

Successively, the name and an id are provided. The id
must be unique and it is used to refer to a specific rule. Then,
the list of premises used by the reasoner follows. They check
if in the current iteration this rule is able to generate new
knowledge. Generally at least two premises are required to

Figure 1. Reasoner Achitecture

parseInferenceRule : (new_rule)+;

new_rule : (rule_info) (premise)+ (filter)* (conclusion)+;

rule_info : 'rule: ' type 'name: ' NAME 'id: ' ID ;

type : 'new rule' | 'new consistency rule';

premise : 'premise: ' triple;

triple : 'subject: ' value 'predicate : ' value 'object: ' value;

filter : 'filter: ' '?' VAR LOGIC_OPERATOR '?' VAR;

value : ('?' VAR) | IRI | BNODE | SINGLEVALUE ;

conclusion : ('conclusion: ' triple) | ('conclusion: ' 'false');

Figure 2. Simplified rule grammar

67Copyright (c) IARIA, 2014. ISBN: 978-1-61208-340-7

COGNITIVE 2014 : The Sixth International Conference on Advanced Cognitive Technologies and Applications

have a meaningful rule. Each premise is constituted by three
elements: a subject, a predicate and an object. Since in the
grammar the reasoner works on RDF datasets, we decided to
adopt the same terminology used in RDF. The meaning of
the premises is that the reasoner searches the RDF datasets
for all the RDF graph which satisfy all the premises of a
given rule. Each element of a premise can be one of the
following:

 a variable (introduced by the symbol ? as it is done
in the SPARQL grammar);

 an IRI (starting with the symbol <, containing a URI
an ending a > or alternatively a prefix followed by a
local name);

 a BNODE (using the same syntax in RDF, a _:
followed by a name), used when we are not
interested in the particular value, we just need that it
exists, as it is done in SPARQL;

 a SINGLEVALUE, which is a typed literal
containing a number.

These premises can be optionally followed by zero or
more filter constrains. In the grammar shown in Fig. 2, each
filter is represented as being just a comparison between two
elements to avoid possible confusion when reading it.

In the real grammar used by HORUS it is possible to
define complex comparison using Boolean expression, so it
is possible to have a filter which uses the or Boolean
operator to join several simple comparison. See example
later on.

The last part of each rule is the conclusion. When dealing
with an inference rule, the conclusion contains one or more
triples. These triples are used by the reasoner to know the
RDF graph that can be inferred using the current rule. The
syntax used by each conclusion is similar to the one used for
the premises, because in both cases the reasoner is dealing
with RDF triples. The variables used in the conclusion
contain the value(s) bound by the reasoner during the
inference process. In the retrieve phase of the inference
process, the reasoner can retrieve more than one RDF graph
which satisfy all the premises of the inference rule. The
reasoner then iterates over all the retrieved RDF graphs, and,
for each graph, it creates all the RDF triples by using the
templates stated in the conclusion section of the rule.

When dealing with a consistency rule, the conclusion can
only be false. In fact, if the reasoner is able to find at least
one RDF graph which satisfies all the premises and the
filters, then the ontology contains an inconsistency, so the
reasoner generate no new RDF triples; it just needs to save
the RDF triples which generated the inconsistency (or at
least what has been labeled by the current rule as an
inconsistency) to show them to user.

B. Inference and Consistency rules example

To better understand what is possible to achieve by using
the previously described grammar, we provide a few real
case rules. By first we present the content of a file containing
two simple rules; then, we discuss a more complex rule
which uses a filter to deal with cardinality restriction
regarding the definition of a class; finally, we show an
example of a consistency rule

1) Simple Inference rules
In the definition of an ontology, it is common to have a

property defined as transitive and/or symmetric. The rules
used for this particular task are shown in Fig.3. The first one,
called Transitive, and identified by the id 1, consists of three
premises and one conclusion. In the premises, we use the
prefix and local name instead of the complete URI (while we
suggest to use the complete URI to avoid any confusion).
The first premise states that we are interested in all resources
which have as one type the value owl:TransitiveProperty.
We then need to find all the RDF triple of the form ?a ?p ?b
and ?b ?p ?c, where ?p is bound to a resource (a property in
this case) which is owl:TransitiveProperty and the variable
?b of the second premise must bound to the same resources
used with the variable ?b of the third premise. At any
iteration, the reasoner searches for any RDF graph which
satisfies these three triples and for every graph it applies the
conclusion. The reasoner searches for the graph not only in
the original ontology, but also in all the inferred triples
obtained in the previous application of the rules, so it
combines both explicit and inferred knowledge. In this case,
there is only one conclusion, ?a ?p ?c, stating that this triple,
where each of the variable is bound to the value found in the
query execution phase, should be added to the inferred list of
new triples. This triple (or these triples if more than one RDF
graph was found) are added to the list of the inferred new
triples only if the following two conditions are met:

 The new triples were not already represented in the
original ontology;

 The new triple has not been already generated in a
previous application of either this or other rules.

 When adding a new triple, the reasoner stores the triples
which were used in the inferred process, to show them in the
log file and in a graph GUI to the user (see Section IV).

The other rule, called Symmetric and having id:2 is
similar to the first one. Having two premises and one
conclusion, it is searching for the resources having type
owl:SymmetricProperty. It is important to notice that even if
two rules share a variable with the same name (in this case
the variables ?a , ?p and ?b) each variable has the rule itself

type : new rule

name: Transitive

id: 1

premise: subject: ?p predicate: rdf:type object:

 owl:TransitiveProperty

premise: subject: ?a predicate: ?p object: ?b

premise: subject: ?b predicate: ?p object: ?c

conclusion: subject: ?a predicate: ?p object: ?c

type : new rule

name: Symmetric

id: 2

premise: subject: ?p predicate: rdf:type object:

 owl:SymmetricProperty

premise: subject: ?a predicate: ?p object: ?b

conclusion: subject: ?b predicate: ?p object: ?a

Figure 3. Two simple Inferemce Rule

68Copyright (c) IARIA, 2014. ISBN: 978-1-61208-340-7

COGNITIVE 2014 : The Sixth International Conference on Advanced Cognitive Technologies and Applications

as its scope, so binding in a rule a variable to a particular
value has no effect on the application of another rule.

2) Inference Rule with a Filter
We now describe a more complex rule using the filter

after the premises. The idea behind this rule is that if a class
?class1 is defined as equivalent to a class having
minCardinality on property?p1 equal to ?card1 AND a
second class ?class2 is equivalent to a class having
minCardinality on property ?p2 equal to ?card2 AND if the
value associated to ?card1 is greater or equal to ?card2
AND if the property bound to ?p1 is subProperty to the
property bound to ?p2, THEN we can infer ?class1 is a
subClass of ?class2.

This complex inference is represented by the rule written
in Fig. 4, in which, to infer that a class is a subClass of
another class, we need to analyze their restrictions. This rule
is constituted by nine premises, one filter and one
conclusion. The nine premises can be divided into three sets:

 The first one has just the first premise and regards
two properties, ?p1 and ?p2 where ?p1 is a
subProperty of ?p1;

 The second one deals with the definition of a class,
?class1, and its equivalent class, ?equiClass1, which
has a restriction regarding the minCardinality,
having value ?card1, on the property ?p1. This
second set is formed by 4 premises (from premise 2
to premise 5);

 The third and final set is equivalent to the second
one, by replacing the variable with ?class2,
?equiClass2, ?card2 and ?p2. Its premises are from
premise 6 to premise 9.

The filter is used to check and compare the values of the
two cardinalities. In this case the cardinality associated to the

first class, ?class1, is greater or equal to the cardinality
associated to the second class, ?class2.

3) Consistency Rule
The three previously described rules highlighted what are

the possible inferences that are possible in HORUS. Now,
we discuss how to write a rule which is used to check if the
ontology, and all the inferred RDF triples, violates any
constraint. Fig. 5 contains two consistency rules.

The first one, named Same_and_Different, is used to
check if there exist two resources (classes in this case) which
are defined, or inferred, to be simultaneously sameAs and
differentFrom. In such a case, there is obviously an
inconsistency in the vocabulary used in the ontology,
because two axioms are mutually exclusive.

The second rule is more complex, it states the presence of
an inconsistency if a class ?x has maxCardinality equals to 0
on property ?p and then in the RDF dataset we have an
instance of class ?x, which has the property ?p. In this
second case as well, the only possible conclusion is false.

IV. REASONER USE AND RESULT VISUALIZATION

We now describe how to use HORUS and how to
visualize reasoning results. Since it has been developed as a
library, it will be invoked inside another tool. Two possible
solutions have been developed:

 Inside a simple stand alone Java program;

 Inside a Semantic Turkey Extension.
In the rest of this section, we will describe how use the

reasoner into Semantic Turkey framework.
Semantic Turkey [13][14] supports an ontology editor

developed as an extension of the popular web browser
Firefox [15] with a client/server architecture. One main
feature is its extendibility, achieved by developing new
extensions by using both Java plugin framework OSGi Felix
[16] and the Firefox extension mechanism. Each Semantic
Turkey extension consists of two part:

 A Java implementation, which extends the server
side and is written completely in Java;

 A Firefox extension, written in JavaScript and XUL
(client side) and responsible for the interaction with
the user taking advantages of the Firefox GUI.

type : new rule

name: ComplexSubClass

id: 13

premise:subject:?p1predicate:rdfs:subPropertyOf

 object: ?p2

premise: subject: ?class1 predicate: owl:equivalentClass

 object: ?equiClass1

premise: subject: ?equiClass1 predicate: rdf:type

 object: owl:#Restriction

premise: subject: ?equiClass1 predicate: owl:onProperty

 object: ?p1

premise: subject: ?equiClass1 predicate: owl:minCardinality

 object: ?card1

premise: subject: ?class2 predicate: owl::equivalentClass

 object: ?equiClass2

premise: subject: ?equiClass2 predicate: rdf:type

 object: owl:Restriction

premise: subject: ?equiClass2 predicate: owl:onProperty

 object: ?p2

premise: subject: ?equiClass2 predicate: owl:minCardinality

 object: ?card2

filter: ?card1 >= ?card2

conclusion: subject: ?class1 predicate: rdfs:subClassOf

 object: ?class2

Figure 4. Complex Inferemce Rule

type : new consistency rule

name: Same_and_Different

id: 6

premise: subject: ?a predicate: owl:sameAs object: ?b

premise: subject: ?a predicate: owl:differentFrom object: ?b

conclusion: false

type : new consistency rule

name: MaxCard_consistency

id: 12

premise: subject: ?x predicate: owl: maxCardinality

 object: "0"^^xsd:nonNegativeInteger

premise: subject: ?x predicate: owl:onProperty object: ?p

premise: subject: ?u predicate: rdf:type object: ?x

premise: subject: ?u predicate: ?p object: ?y

conclusion: false

Figure 5. Consistency Rule

69Copyright (c) IARIA, 2014. ISBN: 978-1-61208-340-7

COGNITIVE 2014 : The Sixth International Conference on Advanced Cognitive Technologies and Applications

HORUS was placed inside a Semantic Turkey extension,
which can be download from [17] with its source code and
the source code of the reasoner as well. Since the reasoner
needs at least one inference rule to work, in the
downloadable package, a file containing several working and
tested inference rules is provided. In what follows, an
evidence of configurable property oh HORUS is described.

When the reasoner is executed inside Semantic Turkey,
the user has the possibility to decide which file containing
the inference/consistency rule to load, which rule among
them to use, how many iterations the reasoner should do (if it
select 0 then the reasoner will stop only when no new
knowledge can be inferred). An example of the presented
GUI can be seen in Fig. 6. It is possible to write new rules
using a dedicated GUI, which in the next release of the tool
will provide a better assistance to the user for this task.

Once the user has selected which rule file to load and
which rules to use, he can launch the reasoning process on
the ontology currently managed by Semantic Turkey.

At the end of the reasoning, the inferred RDF triples are
added in the current ontology in a different graph, which can
be deleted at any moment by the user for several reasons (for
example the ontology has changed and the inferred triples
are no longer valid, because they cannot be derived from the
new ontology).

The user is able to check all the inferred knowledge in
two complementary ways:

 In the logger file, containing all inferred RDF triples
with all the knowledge used to generate them and the
name of the rule used in the process;

 in a graph, where each node is an RDF triple
(explicit or inferred) and each link states which RDF
triples were used to generate other triples.

An example of the result graph can be seen in Fig. 7. In
this case, we have execute HORUS on a small ontology
dealing with some geographical information about Lazio, a
region in Italy. At the center of the graph, for example, we
have the triple Roma locatedIn Italia generated using three
(explicit) triples:

 LocatedIn type TransitiveProperty;

 Roma locatedIn Lazio;

 Lazio locatedIn Italia.
On the left side we have another triple, Ariccia locatedIn

Italia, which has been inferred from the explicit:

 LocatedIn type TransitiveProperty;

 Ariccia locatedIn Roma.
and the previous inferred:

 Roma locatedIn Italia.
Finally, on the left side of the GUI in Fig. 7, we see a

series of button that can be used to switch between the graph
representation or the text one (the logging file) and to delete
all the inferred triple (by deleting the RDF graph in the
ontology in which they are stored). Using the GUI interface
the user is also able to filter the results, to concentrate its
attention to just a particular RDF inferred triple and the
knowledge that was used to produce it.

The consistency rules are not shown in the graph
representation, they are present only in the logging file.

V. CONCLUSION

In this article, we have presented a first implementation
of HORUS, a new reasoner whose main features are:

 Possibility to write new inference and consistency
rules by using an intuitive language based on some
concepts of RDF standard and SPARQL filter;

Figure 6. HORUS inside Semantic Turkey

70Copyright (c) IARIA, 2014. ISBN: 978-1-61208-340-7

COGNITIVE 2014 : The Sixth International Conference on Advanced Cognitive Technologies and Applications

 Being aware of why each new triple was inferred by
consulting a graphical representation or by reading a
logging file containing all the motivations for each
decision taken by the logger.

Possible applications are foreseen in context as:

 Educational use, to teach ontologies and inferences;

 Understanding why inferred triples were generated;

 Understanding which axioms should be changed or
deleted in the ontology to prevent an undesired
inference.

In fact, knowledge representation and reasoning
techniques can be used for modeling background
knowledge (e.g., in the form of ontologies) and to reason
over them for logic-based verification.

REFERENCES

[1] W3C, Resource Description Framework (RDF), 2004. [Online].
Available: http://www.w3.org/RDF/ [retrieved: Apr, 2014]

[2] Description Logic Reasoners. [Online].
http://www.cs.man.ac.uk/~sattler/reasoners.html [retrieved: Apr,
2014]

[3] M. Horridge, J. Bauer, B. Parsia, and U. Sattler, "Understanding
Entailments in OWL," in Fifth OWLED Workshop on OWL,
Karlsruhe, Germany, 2008.

[4] J. Gennari, et al. "The evolution of Protégé-2000: An environment for
knowledge-based systems development," International Journal of
Human-Computer Studies, 2003, vol. 58, n. 1, pp. 89–123.

[5] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, "Pellet: A
practical owl-dl reasoner," Web Semantics: science, services and
agents on the World Wide Web, 2007, vol. 5, no. 2, pp. 51-53.

[6] Pellet FAQ: Single Page Version [Online].
http://clarkparsia.com/pellet/faq/single-page#rules [retrieved: Apr,
2014]

[7] SWRL: A Semantic Web Rule Language Combining OWL and
RuleML. [Online]. http://www.w3.org/Submission/SWRL/ [retrieved:
Apr, 2014]

[8] D. Tsarkov and I. Horrocks, "FaCT++ Description Logic Reasoner:
System Description," in Proceedings of the Third International Joint
Conference on Automated Reasoning, Seattle, WA, Springer-Verlag,
2006, pp. 292-297.

[9] A. Farmer, A. Gill, E. Komp, and N. Sculthorpe, "The HERMIT in the
Machine: A Plugin for the Interactive Transformation of GHC Core
Language Programs," in Proceedings of the 2012 Haskell Symposium
(Haskell '12), New York, NY, USA, 2012, pp. 1-12.

[10] SPARQL Query Language for RDF. [Online].
http://www.w3.org/TR/rdf-sparql-query/ [retrieved: Apr, 2014]

[11] Official OWL ART API website. [Online].
http://art.uniroma2.it/owlart/ [retrieved: Apr, 2014]

[12] J. Broekstra, A. Kampman, and F. van Harmelen, "Sesame: A Generic
Architecture for Storing and Querying RDF and RDF Schema," in The
Semantic Web - ISWC 2002: First International Semantic Web
Conference, Sardinia, Italy, 2002, pp. 54-68.

[13] M. T. Pazienza, N. Scarpato, A. Stellato, and A. Turbati, "Semantic
Turkey: A Browser-Integrated Environment for Knowledge
Acquisition and Management," Semantic Web, Jan 2012, vol. III, no.
3, pp. 279-292.

[14] Semantic Turkey Homepage. [Online].
http://semanticturkey.uniroma2.it [retrieved: Apr, 2014]

[15] Firefox Homepage. [Online]. http://www.mozilla.org/en-
US/firefox/new/ [retrieved: Apr, 2014]

[16] Apache Felix Homepage. [Online]. http://felix.apache.org/ [retrieved:
Apr, 2014]

[17] HORUS Homepage. [Online]. https://code.google.com/p/reasoner
[retrieved: Apr, 2014]

Figure 7. Inferred RDF triples in a graph

71Copyright (c) IARIA, 2014. ISBN: 978-1-61208-340-7

COGNITIVE 2014 : The Sixth International Conference on Advanced Cognitive Technologies and Applications

