
Two Approaches to Implementing Metacognition

Emily Hand∗, Darsana Josyula∗†, Matthew Paisner∗, Elizabeth McNany∗, Donald Perlis∗, and Michael T. Cox ∗
∗Department of Computer Science

University of Maryland, College Park, College Park, Maryland 20742
†Department of Computer Science

Bowie State University, Bowie, MD 20715
Email: {emhand, darsana, mpaisner, beth, perlis, mcox}@cs.umd.edu

Abstract—Metacognition, the ability to monitor and regulate
cognition, is important for an agent to adapt to novel situations
and fix discrepancies in its knowledge base. In this paper, we
discuss two different approaches to implementing metacognition
in artificial systems: internally and externally. In the internal
approach, metacognition is built into the agent, and thus,
is combined with its cognitive reasoning abilities. The same
Knowledge Base (KB) is fully shared between the metacognitive
and cognitive processes of the artificial system. In the external
metacognition approach, only portions of the agent’s KB are
shared between the agent and the external metacognition. We
describe the implementation of external metacognition using our
own Metacognitive Loop (MCL2) and internal metacognition
using active logic in the context of a dialog agent called Alfred.
We discuss how the two systems handle long pauses in dialog and
compare the pros and cons of each. Our experiments show that for
a system with time-related expectations, it is more efficient to use
interleaved metacognition rather than an external metacognition
module as the internal metacognition has access to the entire KB
of the agent.

Keywords–Metacognition; Dialog Management.

I. INTRODUCTION

Humans are capable of reasoning about situations and
developing expectations about themselves as well as the world
around them. They are also able to handle anomalies. Humans
can recognize that an expectation has been violated, decide on
the best response, and then, implement that response to restore
the desired state. Intelligent agents situated in the real world
should also have these capabilities. An agent must possess
some form of cognitive abilities in order to make decisions. In
order to make an agent more intelligent, metacognitive abilities
must be added to the system. Metacognition is the ability of
an agent to explicitly monitor, evaluate, and improve upon its
own internal processes. One approach to providing the agent
with the capability to recognize and correct problems is to
have the agent maintain some set of expectations about itself
and its environment. These expectations would be a part of the
metacognition used by the agent in order to properly reason
about its situation. There has been some promising work in
the fields of Artificial Intelligence and Cognitive Science with
metacognition, including [3] and [16].

When faced with anomalies in dialog, humans are able to
note the anomaly, assess the anomaly and determine how to
handle it, and finally guide a response to resolve the anomaly.
This is called the N-A-G cycle [6]. In our previous work, we
have found that a N-A-G cycle works quite well in detecting
and correcting anomalies in an intelligent agent.

Figure 1. N-A-G Cycle.

Figure 2. The MCL2 architecture.

We call the algorithm that implements the note-assess-
guide-repeat cycle to deal with anomalies as the metacognitive
loop (MCL); this basic algorithm is shown in Figure 1.
We have developed a domain-independent implementation of
MCL, referred to here as MCL2, (Figure 2) which can
be used as an external module [5][20]. MCL2 uses three
ontologies organized as a Bayes net [5]: indications nodes
representing different types of expectation violations; failure
nodes indicating the probable type of problem that is being
experienced, and response nodes associated with solutions that
can be suggested to the host system. Periodically, a system is
expected to send its current set of observations to MCL2 using
a “monitor” call. If an expectation violation is noted, MCL2
responds with a suggestion of corrective action for the host to
implement.

Figure 3. The host system connected to a metacognitive component with
only cognitive internal capabilities (left) and the host with full metacognitive
and cognitive internal capabilities (right).

45Copyright (c) IARIA, 2014. ISBN: 978-1-61208-340-7

COGNITIVE 2014 : The Sixth International Conference on Advanced Cognitive Technologies and Applications

In this paper, we will discuss how to incorporate the N-
A-G cycle into a cognitive system. Figure 3 shows the two
implementations of metacognition. The agent could implement
this process internally in conjunction with its regular cognition,
allowing it to perform reasoning as well as reasoning about its
reasoning. The agent could instead have only cognitive capabil-
ities and be in communication with an external metacognitive
module like MCL2. We investigate the two design approaches
in detail, and discuss their performance when integrated with
a dialog agent Alfred [12][13].

We discuss recent work in dialog agents, as well as
metacognition, in Section II. Section III highlights the chal-
lenges associated with metacognition in dialog and our agent
Alfred. Section IV discusses external metacognition, while
Section V describes internal metacognition. Section VI com-
pares the two implementations of metacognition.

II. RELATED WORK

In recent years, there has been a great deal of work in
the use of metacognition as a tool for monitoring and regu-
lating cognitive activities including natural language dialog.
Monitoring and controlling cognitive activities has been a
popular topic, with researchers focusing on explicitly setting
time limits for deliberation [10], or limiting the size of current
knowledge used for deliberation [18], or both [1][2][17]. Fox
and Leake proposed to focus the cognitive activities of an
agent by narrowing the knowledge base the agent uses to the
subset relevant to the circumstances [9]. They showed that
the reduced focus set enables the agent to spend the available
deliberation time to produce the optimal action by adapting
to the current circumstances. A hybrid approach, where the
deliberative process simultaneously produces an immediate
action and a strategy, has also been used [8]. Since the action is
immediately available, the component of the agent responsible
for taking action does not need to wait for the strategy in
circumstances that do not permit doing so. This approach
implies that the action component is intelligent enough to
determine when to wait for a strategy.

McNany et al. [14] discusses metacognition as an integral
part of natural language dialog in an artificial agent. The
importance of metareasoning has been shown in linguistics.
One such example is in [11], where Hymes expresses the idea
of communicative competence. This idea was expanded by
Canale [7], by detailing four different types of communicative
competence. Before the aforementioned work in linguistics,
Rieger [19] showed that metareasoning in a natural language
dialog can improve deficiencies, and McRoy agreed with this
in [15] further stating that in dialog, the ability to handle
mistakes is essential. In more recent work on metareasoning
in natural language dialog, Anderson and Lee [4] found that a
large part of dialog involves metareasoning in order to properly
handle misunderstandings, as well as references to previous
utterances. Metareasoning and metacognition are a very large
part of an intelligent dialog agent.

As metacognition and metareasoning have been identified
as essential in an intelligent dialog agent, the next natural
question is how to properly integrate these into the agent.
Recently, Anderson, Oates, Chong, and Perlis [4] developed a
metacognitive system, called MCL, to be used as an external

module by an intelligent agent. Continuing with this idea,
Schmill et al. [20] extended MCL to use metacognition to
reason about and handle anomalies. In our work we extend
MCL to handle anomalies in a dialog agent. We adapt MCL
to reason about time-related expectations and anomalies and
we compare a version of Alfred with internal metacognitive
capabilities to Alfred connected with the adapted MCL.

III. METACOGNITION TO HANDLE PAUSES IN DIALOG

In this paper, we discuss handling expectations and anoma-
lies using metacognition in a dialog system. We believe this to
be a good example for testing the two approaches to metacog-
nition because we are dealing with time-related expectations
and the work we present here is applicable to any system with
time-related expectations, not simply dialog agents. Agents
situated in a real-world environment must interact with humans
and other agents. These interactions require that the agent has
some concept of time, and some expectation for the amount
of time certain interactions will require. We discuss these
expectations in the context of a dialog agent, but they are
generalizeable to any intelligent agent situated in the real
world. To motivate our work, let us consider a few examples:

Example 1: Suppose we have two participants in a dialog
P1 and P2. P1 says something to P2 expecting a response. If
P2 leaves the room without responding, a human would under-
stand that something strange was occurring in the conversation.
Perhaps P2 was offended, or simply had to leave. In either
case, a human P1 would recognize the anomaly and not simply
sit around waiting for a response. To simulate this behavior,
an intelligent dialog agent should have some expectation for
the length of conversational pauses associated with a particular
user, so that it understands that an anomaly has occurred when
P2 fails to respond in a reasonable time period. Otherwise, it
will not understand that there is a problem, and thus, will take
no steps to correct it.

Listing 1. Example 1 Dialog in Alfred without Metacognition

(t=0) Alfred: "Welcome."
(t=1) ...
...
(t=100) Alfred: "Please tell me what to do now."
(t=101) ...
...
(t=200) Alfred: "Please tell me what to do now."

Listing 2. Example 1 Dialog in Alfred with Metacognition

(t=0) Alfred: "Welcome."
(t=1) ...
...
(t=100) Alfred: "Are you there?"
(t=101) ...
...
(t=200) Alfred: "Goodbye."

Example 2: We have the same dialog participants from
Example 1. P1 says something to P2 and P2 is thinking of
something to say. While P2 is thinking, there is a pause in
the conversation. Now P1 does have an expectation of the
length of a typical pause, and it notices when the normal
pause length has been exceeded. P1 has an expectation that P2

will respond within 100 seconds. P2 is still thinking and 100

46Copyright (c) IARIA, 2014. ISBN: 978-1-61208-340-7

COGNITIVE 2014 : The Sixth International Conference on Advanced Cognitive Technologies and Applications

seconds pass. P1 then says “Do you still want to talk?” Now,
101 seconds have passed since P1 initially started waiting, and
P2 has still not responded. If P1 does not take into account
that it has recently spoken and that P2 may need more time to
respond, then since its expectation has been violated, P1 would
ask again “Do you still want to talk?” This exchange would
continue in this way with P1 continuously asking “Do you
still want to talk?” until P2 responds. An intelligent dialog
agent would need to understand that there is a difference
between an initial prompt and a prompt issued as a response
to an expectation violation. P1 should understand that when it
prompts P2 that P2 will need more time to respond.

Listing 3. Example 2 Dialog in Alfred without Metacognition

(t=0) Alfred: "Welcome."
(t=1) User: "Send Metroliner to Baltimore."
(t=2) Alfred: "Command sent to domain."
(t=3) Alfred: "Please enter another command."
...
(t=103) Alfred: "Please tell me what to do now."
(t=104) Alfred: "Please tell me what to do now."
(t=105) Alfred: "Please tell me what to do now."
...

Listing 4. Example 2 Dialog in Alfred with Metacognition

(t=0) Alfred: "Welcome."
(t=1) User: "Send Metroliner to Baltimore."
(t=2) Alfred: "Command sent to domain."
(t=3) Alfred: "Please enter another command."
...
(t=103) Alfred: "Please tell me what to do now."
...
(t=150) User: "Send Northstar to Richmond."
...

Example 3: We have the same dialog participants from
Example 1. Now, the dialog agent P1 has an expectation for
a typical pause associated with P2 of 100 seconds. It also
understands how to revise its expectations. If P1 asks P2 a few
questions and for each of the questions, P2 took longer than
P1 expected to respond, P1 recognizes a pattern. P1 realizes
that P2 responds more slowly in general than it had expected
and so it revises its expectation, noting that P2 has a longer
typical pause length for conversations.

Listing 5. Example 3 Dialog in Alfred without Metacognition

(t=0) Alfred: "Welcome."
(t=1) User: "Send Metroliner to Baltimore."
(t=2) Alfred: "Command sent to domain."
(t=3) Alfred: "Please enter another command."
...
(t=103) Alfred: "Please tell me what to do now."
(t=104) Alfred: "Please tell me what to do now."
...
(t=150) User: "Send Northstar to Richmond."
(t=151) Alfred: "Command sent to domain."
(t=152) Alfred: "Please enter another command."
...
(t=252) Alfred: "Please tell me what to do now."
(t=253) Alfred: "Please tell me what to do now."
...
(t=300) User: "Send Bullet to Washington."
(t=301) Alfred: "Command sent to domain."
(t=302) Alfred: "Please enter another command."
...
(t=402) Alfred: "Please tell me what to do now."
(t=403) Alfred: "Please tell me what to do now."
...

Listing 6. Example 3 Dialog in Alfred with Metacognition

(t=0) Alfred: "Welcome."
(t=1) User: "Send Metroliner to Baltimore."
(t=2) Alfred: "Command sent to domain."
(t=3) Alfred: "Please enter another command."
...
(t=103) Alfred: "Please tell me what to do now."
...
(t=150) User: "Send Northstar to Richmond."
(t=151) Alfred: "Command sent to domain."
(t=152) Alfred: "Please enter another command."
...
(t=252) Alfred: "Please tell me what to do now."
...
(t=300) User: "Send Bullet to Washington."
(t=301) Alfred: "Command sent to domain."
(t=302) Alfred: "Please enter another command."
...
(t=450) User: "Send Metroliner to Buffalo."

We implemented our two metacognition techniques using
a particular dialog agent, Alfred. Alfred acts as an interface
between a human user and a task-oriented domain. As input,
it accepts English sentences which it then parses and takes
as commands to be sent to a specific domain. We consider
the problem of Alfred encountering conversational pauses of
varying length when interacting with a human user. Alfred has
expectations about the typical pause length associated with a
particular user, and is able to detect when an expectation has
been violated.

We have implemented a version of Alfred which uses
metacognition to handle situations similar to the three exam-
ples above. We are presently focused on Alfred’s expectations
concerning interaction with the human user.

We will focus on the implementation of the two systems
with Alfred, but much of the following discussion is appli-
cable to any host system. In our implementation of internal
metacognition, we combine the cognitive and metacognitive
capabilities, creating an interleaved cognitive and metacogni-
tive reasoning within Alfred. For our external implementation
of metacognition, we used our MCL2, which Alfred commu-
nicates with through monitor calls.

IV. EXTERNAL METACOGNITION USING MCL2

First, we will discuss the architecture where the host is
connected to an external metacognitive system. In this archi-
tecture, the host initially gives the metacognitive system its set
of expectations. The metacognitive system then determines (via
observations also provided by the host) when expectations have
been violated and recommends how the host should respond
to such violations.

One important design problem in this architecture involves
knowledge sharing. Initially, the host sends its expectations to
the metacognitive system, and the host must also send updates
about the current state of the world in order for it to reason
about possible violations. A key question arises: how often
should the host system send information to the metacognitive
system? As the host sends more information, there is more
overhead incurred in sending information between the host and
the metacognitive component.

We have a particular implemented metacognitive module
called MCL2. MCL2 is capable of accepting expectations

47Copyright (c) IARIA, 2014. ISBN: 978-1-61208-340-7

COGNITIVE 2014 : The Sixth International Conference on Advanced Cognitive Technologies and Applications

and information about the current state of the world from a
host, reasoning about expectations, and sending suggestions
to the host when it notes an expectation violation. The host
communicates with MCL2 through monitor calls in which it
shares information about particular sensor readings. The host
can perform monitor calls at any time; there is no specified
frequency of monitor calls from the host.

In our implementation, Alfred provides MCL2 with an
expectation for a typical pause length, expected pause(100);
at each step, Alfred increments its current waiting time,
curr wait time(t), and sends this information to MCL2. When
the current waiting time exceeds the expected pause length
(curr wait time(101)), MCL2 notes that an expectation has
been violated and provides the host with a suggestion as to how
to respond. Currently, MCL2’s suggestion is for the host to
prompt the user, so Alfred then prompts the user with “Please
tell me what to do now.” Since Alfred is sending information
to MCL2 at every time step, Alfred now sends the current wait
time (curr wait time(102)) to MCL2. MCL2 only keeps track
of the expectation and the current information being sent to it
by the host. It receives curr wait time(102) from Alfred and
treats it as a new expectation violation so MCL2 again sends
a suggestion to prompt the user. This happens at every time
step until the user enters a command to Alfred, at which time
Alfred would reset its wait time (assert curr wait time(0)) and
send that to MCL2. This is not the desired behavior of an
intelligent agent. When a user is prompted, the system should
give the user time to respond to the prompt before prompting
again. Therefore, MCL2 needs to maintain another expectation
for an appropriate response time associated with a prompt
(expected response time(100)).

Another design problem which is even more complicated
is that of deciding what exactly it means to implement a
suggestion given to the host by the metacognitive system.
In the case of MCL2 and Alfred, when MCL2 sends the
suggestion to Alfred that it should prompt the user, MCL2
expects a response from Alfred indicating if the suggestion
was a success or a failure. However, this does not make
sense in the context of time-related expectations. If MCL2
tells Alfred to prompt the user, and Alfred does so, then
MCL2’s suggestion has been implemented, but both MCL2
and Alfred must wait in order to see if the suggestion was a
failure or a success, that is, if the effect occurs. The suggestion
is a failure if after the prompt, the user does not respond
within the expected response time and it is a success if the
user responds within that amount of time. However, is this
truly a failure if the user simply takes longer to respond
than expected? After all, if the user responds at step 102, the
expected response time has been exceeded, but the prompting
was successful.

In order to handle Examples 1-3 when connect-
ing Alfred with MCL2, we used two expectations:
in set(sensor pause id, num pause violations, 0, 1, 2, 3),
and discrete range(sensor pause id, pause length, 0, 100,
add(1)). The first expectation states that the value for
num pause violations can only be 0, 1, 2, or 3. If it is any
other value, there is a violation. The second expectation says
that the value for pause length must be between 0 and 100
in increments of 1. The value of num pause violations is
incremented for each user input which required a prompt.

If Alfred starts up and the user walks away, Alfred will
prompt the user at step 101, and again at step 202, and so
on. If we consider each one of these a violation; then, at
step 404, Alfred would change its expectation. There is no
need for Alfred to change its expectation if there is no user
there. So, we do not consider repeated prompts for the same
user input to be separate violations. If a user requires two
prompts before a response, then that would be one violation
and num pause violations would be incremented by one.
On the fourth violation of the expectation for pause length,
the expectation for num pause violations is violated. When
this expectation is violated, it means that Alfred has been
repeatedly noticing the same expectation violation and the
most probable source of the problem is a model error, so the
expectation must be revised. This system of two expectations
works well because it accounts for user error. If a user walks
away, Alfred will not change its expectation, and if a user is
distracted in some way and takes a long time to respond to one
prompt, but from then on continues responding in a reasonable
amount of time, Alfred will not change its expectation. This
is generally a good idea as an agent should not change its
expectation based off of one violation. More information is
needed in order to determine if there is an internal or external
error occurring.

Figure 4. Amount of knowledge being shared between Alfred and MCL2 in
Examples 1-3 from left to right.

This implementation of Alfred with MCL2 is fully func-
tioning with the pause time example. However, Alfred is doing
most of the reasoning. Alfred is keeping track of the current
waiting time, as well as the number of pause violations,
and sending all of this information to MCL2 at each time
step. In this framework, MCL2 is doing very little to add to
the overall system, and it is not doing anything Alfred, or
any similar host, could not do itself. The design problem of
knowledge sharing becomes very complex when connecting a
host system with an external metacognitive module. External
metacognition requires that the host decide what to share with
the external component and when to share it. Figure 4 shows
the knowledge sharing between Alfred and MCL2 in Examples
1 through 3 discussed earlier. The figure shows Alfred’s KB
overlapping with MCL as the portion which is being shared.
The orange portion of Alfred’s KB that is overlapping with
MCL is the general knowledge the Alfred shares with MCL,
which is not related to pause time. The orange dotted portion
of Alfred’s KB is Alfred’s knowledge about pause time. In
Example 1, there is no overlap between the orange part of
Alfred’s KB and MCL. In the second example, Alfred sends
some of its KB concerning pause time to MCL2 and in the

48Copyright (c) IARIA, 2014. ISBN: 978-1-61208-340-7

COGNITIVE 2014 : The Sixth International Conference on Advanced Cognitive Technologies and Applications

final example even more of the pause time knowledge is shared
with MCL2.

As implemented, MCL2 requires the host to periodically
send a subset of its observations using monitor calls. Thus,
whether an expectation violation gets noted in a timely manner
depends on whether the appropriate observations are being sent
to MCL2 and the frequency at which the host issues monitor
calls. If the host shares very little information with MCL2,
such as in Alfred’s pause time example, then flaws in the
host’s initial knowledge base cannot be found or corrected by
MCL2. For these reasons, we decided to focus on designing
and implementing the second framework (Figure 3), where
the host has cognitive and metacognitive internal capabilities.

V. INTERLEAVED METACOGNITION USING ACTIVE LOGIC

In this version, Alfred has full metacognitive and cognitive
abilities, including expectations about itself and the world in
which it is situated. Alfred has expectations that the user will
respond to a prompt, that a user will respond with a certain
type of answer, and that the user will respond within a specified
amount of time. Alfred’s expectations for interleaved metacog-
nition are similar to those when connected with MCL2. It has
an expectation for user pause length (or when it should receive
user input), and an expectation for an appropriate number of
violations before revising its expectation.

Alfred’s expectations concerning the amount of time asso-
ciated with a particular result are represented as time intervals,
because Alfred expects a user response between two time
steps. Initially, Alfred has the expectation of user input within
100 steps, represented in a predicate in its knowledge base
as in set(pause sensor id, user input, 0, 100, add(1)). The
predicate specifies the start and end points of the interval
in which the user should respond. If the current time step
exceeds the endpoint of the expected pause interval, Alfred
notes that its expectation has been violated. When Alfred’s
expectation is violated, it prompts the user with “Please tell
me what to do now.” This is Alfred taking action to fix
the expectation violation, but the violation will not be fixed
until the user responds to Alfred’s prompt. When Alfred
prompts, it must wait for user input, so now the expectation is
in set(pause sensor id, user input, 100, 200, add(1)), giving
the user another 100 steps to respond to the prompt.

Alfred also has expectations about its expectation
violations which look like in set(sensor pause id,
num pause violations, 0, 1, 2, 3), exactly the same as with
MCL2. Each time a violation of the expectation associated with
user input is violated, then the property num pause violations
is increased. Once num pause violations reaches a value
greater than 3, the expectation is violated, and Alfred
knows that it needs to revise its expectation for the property
user input so that it can more effectively communicate with
the human user.

Interleaved metacognition has lesser communication over-
head than external, as all knowledge is shared between the
cognitive and metacognitive components. With all information
being shared, all expectations can be monitored properly
and all expectation violations can be detected. Interleaved
metacognition is implemented in time-tracking Active Logic
[5], so the metacognition and cognition processes proceed in

parallel, step-by-step. In Active Logic, a step is the funda-
mental measure of time passage. Since both the cognition and
metacognition are being processed internally, the same concept
of a step is shared by both, and therefore new observations
are handled at the same time by both the metacognition and
cognition processes.

VI. COMPARING INTERLEAVED AND MCL2

Consider a more general situation in which we either
have interleaved metacognition or MCL2, where we are no
longer just considering the pause time example. If in the
case of MCL2, say we have a host with three sensors and
it is sharing 60% of its initial belief set with the external
module. If there is one anomaly detected, the knowledge being
shared by the host is the same as prior to the anomaly. If
there are several anomalies, the percentage of knowledge being
shared is the same. This is counter-intuitive and not necessarily
the behavior that we want from the connection between the
host and an external metacognitive module. If an anomaly
occurs, the host should share more information with MCL2
in order for MCL2 to better correct the problem. Another
problem is even if there are anomalies not detected by MCL2
- because they are a part of the 40% not being shared - the
amount of knowledge sharing remains the same. Therefore,
these anomalies can never be corrected, and this, in principle,
is against the entire point of the metacognitive component.
In order for the metacognitive process to be effective, the
host must be able to share any part of its KB with it, so
that all anomalies can be detected and corrected appropriately.
Interleaved metacognition provides just that very easily. The
metacognitive external module, MCL2, however, is limited by
its reliance on the host to share the required parts of its KB
in a timely manner.

Figure 5 shows different scenarios of knowledge sharing
for external metacognition. The shaded region is the portion
of the knowledge base that is being shared with the external
module for each scenario. The 10th scenario shares 100% of
the KB, making it equivalent to interleaved metacognition.
Only the violations that occur in the shaded area of the KB
will be noticed when using an external module. Any violations
that occur in the KB above the shaded area will go unnoticed
with external metacognition.

Figure 5. Different knowledge sharing scenarios vs the amount of knowledge
being shared.

We note that the effectiveness of MCL2 is also dependent
on the frequency of “monitor” calls. Going back to the pause

49Copyright (c) IARIA, 2014. ISBN: 978-1-61208-340-7

COGNITIVE 2014 : The Sixth International Conference on Advanced Cognitive Technologies and Applications

time example, if Alfred only sent updates to MCL2 every 100
timesteps, MCL2 would only have available that information
about the user’s response. If Alfred had the expectation of
a response within 100 timesteps, and the user consistently
responded late, MCL2 would be unable to tell the difference
between a 1-timestep delays and 99-timestep delays. Inter-
leaved MCL does not have a dependency on the host to specify
when to process information, and so can note and act upon any
anomalies without waiting for a host to signal. We are currently
working on an improved version of MCL2 that does not have
these constraints.

One significant benefit to using external MCL with MCL2
is that the external metacognitive component does not need to
be rewritten for each host system. MCL2 can be connected
to any host system. Internal metacognition requires that the
metacognitive portion be rewritten for each host system, which
is quite a bit of work. The entire N-A-G cycle must be rewritten
inside of the host system; but, with MCL2, it can just be
interfaced with the host system with very few changes being
made to the host system.

VII. CONCLUSION AND FUTURE WORK

In our research, we have found that an interleaved imple-
mentation of metacognition is much more useful than an ex-
ternal connection with MCL2. An external connection requires
that a large amount of information be shared between the host
and the metacognitive module in order for external metacog-
nition to work properly with our current implementation of
MCL2. However, if the host must communicate to the external
metacognitive component a large portion of its knowledge
base, then there seems to be little to no advantage to using an
external metacognitive component like MCL2. A host-initiated
data sharing model like MCL 2, causes significant overhead
for timely sharing of information by the host to MCL. Instead,
the host could easily perform metacognition interleaved with
the cognition and not waste time and space with external
metacognition. An external metacognitive module could be
useful if the host only needed to share a small amount of
information with it, but in this case, flaws in the hosts initial
knowledge base (unshared) could not be exposed with that
limited metacognition, as that information is not being shared
with the external module. Another option would be to have
a KB that is completely shared between the metacognitive
component and the host without the host initiating the sharing.
An agent with internal metacognitive capabilities allows for
100% knowledge sharing and therefore the ability of the agent
to detect all expectation violations.

ACKNOWLEDGMENT

This material is based upon work supported by ONR Grant
N00014-12-1-0430.

REFERENCES

[1] N. Alechina, B. Logan, H. N. Nguyen, and A. Rakib, ”Logic for
coalitions with bounded resources,” Journal of Logic and Computation,
2009, vol. 21, no. 6, pp. 907-937.

[2] G. Alexander, A. Raja, and D. Musliner, ”Controlling Deliberation
in a Markov Decision Process-Based Agent,” in Proceedings of the
7th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2008), Estoril, Portugal, 2008, pp. 461-468.

[3] G. Alexander, A. Raja, E. Durfee, and D. Musliner, ”Design Paradigms
for Meta-Control in Multiagent Systems,” Proceedings of AAMAS 2007
Workshop on Metareasoning in Agent-based Systems, 2007, pp. 92-103.

[4] M. Anderson and B. Lee, ”Metalanguage for Dialog Management,”
in 16th Annual Winter Conference on Discourse, Text and Cognition,
2005.

[5] M. Anderson, T. Oates, W. Chong, and D. Perlis, ”The metacognitive
loop I: Enhancing reinforcement learning with metacognitive moni-
toring and control for improved perturbation tolerance,” Journal of
Experimental and Theoretical Artificial Intelligence, vol. 18, no. 3,
2006, pp. 387-411.

[6] M. Anderson and D. Perlis, ”Logic, self-awareness and self-
improvement: The metacognitive loop and the problem of brittleness,”
Journal of Logic and Computation, vol. 15, no. 1, 2005, pp. 21-40.

[7] M. Canale, ”From Communicative Competence to Communicative
Language Pedagogy,” in Language and Communication, J. Richards
and R. Schmidt, Ed., New York: Longman, 1983, pp. 2-27.

[8] F. Dylla, A. Ferrein, E. Ferrein, and G. Lakemeyer, ”Acting and
Deliberating using Golog in Robotic Soccer - A Hybrid Architecture,”
in Proceedings of the 3rd International Cognitive Robotics Workshop
(CogRob 2002), Edmonton, Alberta, Canada, 2002.

[9] S. Fox and D. Leake, ”Using Interospective Reasoning to Refine Index-
ing,” in Proceedings of the Fourteenth International Joint Conference on
Artificial Intelligence, Montreal, Quebec, Canada, 1995, pp. 391-397.

[10] E. A. Hansen and S. Zilberstein, ”Monitoring and control of anytime
algorithms:A dynamic programming approach,” Artificial Intelligence,
2001, vol. 126, no. 1-2, pp. 139-157.

[11] D. Hymes, ”On Communicative Competence,” in Sociolinguistics:
Selected Readings, J. B. Pride and J. Holmes, Ed., Harmondsworth:
Penguin Books, 1972, pp. 269-293.

[12] D. Josyula, ”A Unified Theory of Acting and Agency for a Universal
Interfacing Agent,” Ph.D. dissertation, University of Maryland, College
Park, 2005.

[13] D. P. Josyula, S. Fults, M. L. Anderson, S. Wilson, and D. Perlis,
Application of MCL in a Dialog Agent, in Papers from the Third
Language and Technology Conference, 2007.

[14] E. McNany, D. Josyula, M. T. Cox, M. Paisner, and D. Perlis, ”Metacog-
nitive Guidance in a Dialog Agent,” The Fifth International Conference
on Advanced Cognitive Technologies and Applications, IARIA, 2013,
pp. 137-140.

[15] S. McRoy, ”Abductive Interpretation and Reinterpretation of Natural
Language Utterances,” Ph.D. dissertation, University of Toronto, 1993.

[16] A. Nuxoll and J. Laird, ”Enhancing intelligent agents with episodic
memory,” Cognitive Systems Research, 2012, pp. 17-18, 3448.

[17] A. Raja and V. Lesser, ”A Framework for Meta-level Control in Multi-
Agent Systems,” Autonomous Agents and Multi-Agent Systems, 2007,
vol. 15, no. 2, pp. 147-196.

[18] U. Ramamurthy and S. Franklin, ”Memory Systems for Cognitive
Agents,” in Proceedings of the Symposium on Human Memory for
Artificial Agents, AISB’11 Convention, York, United Kingdom, 2011,
pp. 35-40.

[19] C. Rieger, ”Conceptual Memory: A Theory and Computer Program
for Processing the Meaning Content of Natural Language Utterances,”
Ph.D. dissertation, Stanford University, 1974.

[20] M. Schmill, M. T. Cox, and A. Raja, ”The Metacognitive Loop
and Reasoning about Anomalies,” in Metareasoning: Thinking about
Thinking, Cambridge, MA: MIT Press, 2011, pp. 183-198.

50Copyright (c) IARIA, 2014. ISBN: 978-1-61208-340-7

COGNITIVE 2014 : The Sixth International Conference on Advanced Cognitive Technologies and Applications

