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Abstract-In the current industrial practice, optimisation of 
maintenance schedules is typically done using expert 
judgement but not via exhaustive exploration of all possible 
options for scheduling. Recently, it has been shown that search 
heuristics such as genetic algorithms can be used in 
conjunction with stochastic reliability prediction to optimise 
the maintenance schedules of components in a system. In this 
paper, we extend this framework to include the optional 
modelling of informed decisions by experts in terms of the time 
at which maintenance actions could be performed on 
components and decisions about which implementations of 
components should be in the final design. With this method, 
useful human knowledge and experience can be incorporated 
in a process that allows extensive exploration of the space of 
possible options for optimal or near optimal architecture and 
maintenance scheduling. The approach is demonstrated on a 
simplified model of fuel system. 

Keywords-maintenance; expert judgement; optimisation; 
genetic algorithm. 

I.  INTRODUCTION 

Typically, during components inspection, more attention 
is given to components that have shown signs of poor 
condition. Such signs may be wear and tear, looseness, 
stiffness, low or high level of content, etc as it applies to the 
component in question. In a case where the component is 
viewed by maintenance personnel as repairable, such 
component undergoes maintenance actions otherwise 
replacement is performed. Preventive maintenance promotes 
carrying out maintenance intervention even before 
components show sign of poor condition. The time at which 
such intervention (maintenance actions) is performed is, 
however, difficult to determine. 

Preventive Maintenance (PM) is normally performed 
periodically which implies a constant maintenance interval. 
The interval at which maintenance actions are performed on 
a given component is termed PM time �� . Hence each 
component of the system will have a PM time ���, where i = 
1..m, m being the number of components of the system that 
have been identified for PM. Nggada et al. [1] used 
probabilistic method to determine the time at which a given 
component is maintained using the Proportional Age 
Reduction (PAR) model [2]. This method uses component 
failure data and ensures that the PM time ���  for the i-th 
component is (i) not too early, incurring unnecessary cost, 

and (ii) not late when component reliability has significantly 
dropped. The probabilistic evaluation is proportional to the 
shortest PM time � of the system. The shortest PM time of 
the system is chosen such that � is less than the mean time to 
failure (or mean time between failures as appropriate) of the 
component that fails most often within the system. Hence 
each ��� is a multiple of � as shown in Equation 1 [3]. 

 
 ��� = ���																																																																							(1) 

where: ��is the coefficient of maintenance interval CoMI 
of the i-th component. 
 
The CoMI �� is an integer value ranging from 1 to ��
��where ��
�� is obtained from Equation 2 below [1]. 
 

��
�� =	
��
��� ������� �												 ; 	����� ≤ ��
� ���� �																	 ; 	����� > �� 												(2) 

 
where: � is the integer quotient of the division; 
RT is the system risk time, also referred to as useful life; 
MTTFi is the mean time to failure for the i-th component; 
 
However, a scenario may exist where the failure pattern 

of a given component becomes familiar over a long period of 
use under same condition. Another scenario that may exist is 
the lack of failure data which could be used to determine the 
PM time via probabilistic method. Under either or both 
scenarios, the use of expert opinion, which is informed by 
knowledge and experience becomes helpful.  

Similarly, at the design stage of a system, each of its 
constituent components may have several options of its 
implementation. It is possible to consider all the 
implementation options of all the components at the system’s 
design stage; giving rise to variants of the system. Nggada et 
al. [1] demonstrated how such system variants (architectures) 
could be optimised. The optimised set of the system variants 
consists of those implementation options that meet system 
requirements. Similar to the case of component failure, a 
better implementation option which should be included in 
the system design may be known to the expert.   

38Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-340-7

COGNITIVE 2014 : The Sixth International Conference on Advanced Cognitive Technologies and Applications



The use of a stochastic method and expert opinion in 
deciding PM time and implementation option of selected 
components and the overall evaluation of the system model 
is the focus of this paper. Hence, the reminder of the paper is 
structured as follows. Section II discusses expert judgement 
in PM time while Section III discusses expert judgement in 
implementation option. Section IV discusses the effect of 
expert judgement on the system and maintenance scheduling 
optimisation algorithm and process. The modelling and 
system optimisation process have been implemented in HiP-
HOPS, a state-of-the-art tool [11] that is the result of more 
than fifteen years of research on model-based system 
dependability analysis and architecture and maintenance 
optimisation. A case study on maintenance scheduling using 
this tool is presented in Section V. Evaluations are presented 
in Section VI, while conclusions are drawn in Section VII. 

II. EXPERT JUGDEMENT IN MAINTENANCE TIME 

Expert judgement as defined in this paper refers to the 
elicitation of informed opinions from persons with particular 
expertise. Expert judgement has been applied in several 
areas. For instance, expert judgement has been utilised in 
specifying the number of failures for a component within 
time interval. The elicitation of such lifetime data from 
several experts are combined into a consensus distribution 
which is then updated with failure data. Such combination is 
done through defined procedures [4]. Another area where 
expert judgement has been used is reliability prediction in 
early stages of product development process. Elicitation of 
expert opinion on lower bound (belief) and upper bound 
(plausibility) of failure time interval is performed [5]. An 
increased use of risk assessment in organisations has also 
increased the role of expert judgement in providing 
information for safety related decision making. Under such a 
decision making, expert judgement is required in most of the 
steps of risk assessment, for instance hazard identification, 
risk estimation, risk evaluation and analysis options [6]. 

Under preventive maintenance as used in this paper, 
expert opinion is used in determining the regular time 
interval for which a component is to be maintained. In this 
paper, the time specified by an expert at which a given 
component is to be maintained is referred to as Expert PM 
time (����). In complying with the expert judgement it is 
considered appropriate for the PM time of the component to 
be less or equal to its ����; ��� 	≤ ����� . The rationale 
for this is straightforward: so that the likelihood of the 
component to experiencing unplanned maintenance is 
minimised. The definition is thus as shown in Equation 3.  
 
 

���� 	≤	 ������ 				; ����� ≤ ��
	��				; 	��� > ��													�																																(3)	 

 
 

where: �����  is the expert PM time specified for 
the i-th component  

 

In order to follow a similar pattern of evaluation as for 
components with non-expert specified PM times, the 
maximum CoMI for the i-th component under expert 
judgement is obtained as shown in Equation 4.  

 

��!
�� =	
��
��� ������� �													 ; 	����� ≤ ��				
� ���� �													 ; 	����� 	> 	��																	(4) 

 
where: ��!
��  is the maximum CoMI of the i-th 
component under expert judgement.  

 
Therefore, the PM time of a component under expert 
judgement is evaluated similar to Equation 1 shown in 
Equation 5. 
 ��� = ��!
���																																																																					(5) 
 

III.  EXPERT JUDGEMENT IN IMPLEMENTATION OPTION 

Assume the following sub-system with two components 
shown in Fig. 1. X1 and Y1 are the implementations of their 
respective component types X and Y. Fig. 2 shows a variant 
of Fig. 1 where each component type consists of 3 
implementation options.   

 
 
 
 
Figure 1. Two components sub-system 
 
 
 
 
 
 
 
 
 
Figure 2. Two sub-system with implementation options 
 
In Fig. 1, X = {X1} and Y = {Y1} while in Fig. 2, X = 

{X 1, X2, X3} and Y = {Y1, Y2, Y3}. In Fig. 2 X1 is the active 
implementation of component X and similarly Y1 is the 
active implementation of component Y. The set of 
components {X2, X3} and {Y2, Y3} are the alternative 
implementations of components X and Y respectively. Fig. 2 
implies that the sub-system is a possible combination of any 
of the implementation options in X and Y. Thus, if the sub-
system is represented by Ssub, then the potential design 
models of the sub-system are shown below. 

 
Ssub =  { {X 1, Y1}, {X 1, Y2}, {X 1, Y3}, 
              {X2, Y1}, {X 2, Y2}, {X 2, Y3}, 
              {X3, Y1}, {X 3, Y2}, {X 3, Y3} } 
 

X2 

in X1 Y1 
out 

in 
X1 Y1 

out 

X3 

Y2 

Y3 
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Each of the subsets of potential sub-system design 
models is referred to as a variant of the sub-system. This 
scenario also applies to a full system model. At the infancy 
design stage of a system, as illustrated by Nggada et al. [1], a 
stochastic process could be used in determining the set of 
variants which meet design requirements. The engineer 
could then select one (or more as appropriate) of these 
variants which will be implemented. 

In certain scenarios, the engineer would like to specify 
which components are to be included in the system model. 
Such action is an expert opinion that is informed by the 
engineer’s knowledge and, or experience of the system over 
time. Hence, in addition to stochastically determining the 
implementation option of a given component type it is also 
helpful to provide the engineer with an option to specify 
which of the implementation options should be included in 
the system model. To achieve this, the engineer would 
simply select the active implementation of the component 
while the alternative options are excluded by using a flag. 

IV.  EFFECT OF EXPERT JUDGEMENT ON OPTIMISATION 

An optimisation problem could have single or multi 
objective, depending on the problem and the approach to 
optimising the solutions. The work in this paper is multi-
objective in nature and maintains a multi-objective approach 
to optimising the solutions. In general a multi-objective 
optimisation problem is defined as follows [7][ 8]. 

 
max F(x) = { f1(x), f2(x), f3(x), .., f z-1(x), f z(x) } 
such that: 
x ϵ X 
gj(x) ≤ bj; j = 1..k 
 
where: f1, f2, f3, .., fz-1, fz are objective functions. 

X is the solution space of all potential 
solutions. 
x = (x1, x2, .., xm-1, xm). In genetic 
algorithm terminology x is referred to as 
decision variable vector, while each xi is 
referred to as decision variable. 
gj(x) ≤  bj is referred to as constraint, 
where k is the number of constraints 
imposed on the optimisation. 

 
The left hand side of the constraint; gj(x) is a real value 

function, whereas bj could either be a predefined value or the 
result of another real value function. F(x) is referred to as 
decision vector. The goal of the optimisation problem could 
be either maximisation (max) or minimisation (min) of the 
decision vector. The decision vector consists of objective 
functions as seen in the definition. The objective functions 
are attributes of the system design and normally include cost 
and one or more of the following: reliability, availability, 
safety, weight, etc. The equation gj(x) ≤ bj is known as the 
inequality constraint. If this is in the form gj(x) = bj, then it is 
referred to as equality constraint [8]. When a constraint is 
present, the optimisation must conform to it. A solution x ϵ X 
which satisfies the constraints is said to be a feasible 

solution. A collection of all potential feasible solutions 
defines the feasible region. 

Hence, to define the PM optimisation in this paper, the 
effect of expert judgement will be considered as constraints 
to the optimisation. The constraints are defined in the next 
section. 

A. Constraints of the optimisation 

The constraints guide search algorithm towards the 
feasible region. When an expert specifies PM time or what 
implementation option is active and excludes the rest in the 
optimisation, the size of the feasible region is altered. The 
size of the feasible region is resizable and without any 
defined constraint the size is same as the solution space. 
Firstly, the constraint under PM time is defined followed by 
component substitution. 

B. PM Time Constraints 

Constraints guide the selection of individuals within 
feasible region, where solutions meeting design requirements 
exit. The constraint of PM time under expert judgement is 
simply a modification of Equation 3. The time at which 
maintenance actions are performed when an expert specifies 
time is the product of the maximum CoMI and the system’s 
shortest PM interval. Thus, the following constraint applies. 

 

$��� 	≤	 ������ 				; ����� ≤ ��
	��				; 	����� > �� %

⇔ '(()*(+,_./01(2(3,�= ,+/()˄	(����� ≥ �)6					(71)		 
 
where: expert_judgementi is a Boolean variable 

that is flagged true for a component that is 
identified for expert judgement and false 
otherwise. 

 
When an expert specifies a PM time, Equation 3 ensures 

that this time is a multiple of �, and if not then converted to 
such. Additionally constraint 71 is enforced if the expert PM 
time is not less than the system’s shortest PM interval. 
Constraint 71 only applies to components that are subjected 
to expert judgement. Thus for other components the 
constraint is same as those defined in [10] also shown below. 

 T	9	 1
λH 																																																																															(72) 

αiT	≤	 1
λi 																																																																												(73) 

Where: λH is the failure rate of the component that 
fails most frequently. 
λi is the failure rate of the i-th component.  

 
Constraint 72  implies that the shortest PM interval � 

must be smaller than the mean time to failure (MTTF) of the 
component that fails most often in the system. The second 
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constraint defines that for every component i, its PM interval 
must be smaller than its MTTF. These two constraints ensure 
that maintenance is effective and is not scheduled too late 
when the reliability of components has dropped too much. 

C. Component Substitution Constraint 

Component substitution refers to the process of replacing 
the current active implementation with one of its alternative 
options. The role of expert judgement under component 
substitution is to select and to specify the active 
implementation of the component, and disable such 
substitution. The constraint used by Nggada et al. [1], which 
was implemented in HiP-HOPS, could be reused to achieve 
this, and is as shown below. 

 </=<,>,/,(_?@2*@3(3,�>, B�	
⇔	$�</=<,>,/,(� � ,+/(	˄�B� � 0	 %																																			 �74	 

Component substitution is performed by a function called </=<,>,/,(_?@2*@3(3, and has two parameters. The first is 
the index i of the component under consideration, and then a 
second index ki of its current active implementation. The 
details of the function are contained in Nggada et al. [1]. 
Constraint 74 implies that a component is substituted if and 
only if the i-th component’s Boolean parameter </=<,>,/,(� 
is flagged true and that there exist at least one alternative 
implementation option. This therefore entails that during 
component failure annotation in HiP-HOPS the engineer 
would simply disable substitution for the i-th component 
once an active implementation is selected. Hence for a 
component which the expert has selected to be fixed 
throughout the optimisation, the </=<,>,/,(� � ,+/(  is 
replaced with </=<,>,/,(� � DEF<(. 

D. Defined PM Optimisation 

Having defined the optimisation constraints, the 
optimisation is, therefore, defined as follows. 

minF(α) = { U(α), C(α) } 

such that: α ∈	A,	71, 72,	73, 74. 

 
Where:G  is a decision variable vector consisting of 

CoMIs of constituent components of the system. 
A is the PM solution space 71, 73, 73 and 74 are the defined constraints. 
U and C are the objective functions; unavailability 
and cost respectively. 
The goal of the optimisation is to minimise the 
objective functions. 

V. CASE STUDY 

The case study used in Nggada et al. [1] is adopted on 
which the defined PM optimisation problem is evaluated. 
The case study is a simplified model of the fuel oil service 

system (FOSS) which supplies fuel to the main engine of a 
ship. The FOSS is shown in Fig. 3 and its description is same 
as in [1]. The system incorporates a service tank which 
contains stored fuel oil. The booster pump conveys fuel oil to 
the mixing tank through a filter and flow meter. If the 
pressure level in the mixing tank exceeds a threshold level, 
fuel oil is released back into the service tank through a pipe 
connecting the two. The circulation pump then conveys fuel 
oil to the main engine through a heater, viscosity meter and a 
filter. Excess fuel oil not used in the main engine is released 
to the service tank via the mixing tank. 

In order to analyse the model of the fuel oil service 
system, its constituent components were annotated with HiP-
HOPS failure behaviour data. Due to space limitation, a 
detailed presentation of the annotations is impossible, 
however the component failure behaviour is simple; each 
component has a single failure mode which causes omission 
of outputs while input failures propagate to the outputs of the 
components.  

 

 
  
 
Figure 3. Fuel oil service system (FOSS) 
 
Similarly due to space limitation, short names are also 

used to represent the actual component names for the FOSS. 
These short names are as shown in Table I. 

 
TABLE I.  COMPONENTS AND THEIR 

RESPECTIVE SHORT NAMES 
Component Short Name 
Automatic filter af 
Booster pump bp 
Circulation pump cp 
Flow meter fm 
Heater ht 
Indicator filter if  
Main engine me 
Mixing tank mt 
Service tank st 
Viscosimeter vm 

 
Table II shows the components that were subjected to 

expert judgement on PM time. The table also shows the 
corresponding EPMTs. 

 
 
 

Heater 
Circulation 

pump 
Monitoring 

tank 
Flow 
meter 

Automatic 
filter 

Booster 
pump 

Service 
tank 

Main engine 

Indicator 
filter 

Viscosimeter 
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TABLE II. COMPONENTS AND EXPERT PM TIMES 

Components Expert PM Time 
Main engine 1500 
Service tank 1260 
Viscosimeter 870 

 
All the components have implementation options; 

however, those that were subjected to component 
substitution are shown in Table III. 

 
TABLE III. COMPONENTS, IMPLEMENTATIONS AND 

SHORT NAMES 
Component Implementations Short Name 

Heater 

Heater_1 ht_1 
Heater_2 ht_2 
Heater_3 ht_3 
Heater_4 ht_4 

   

Mixing tank 

Mixing_tank_1 mt_1 
Mixing_tank_2 mt_2 
Mixing_tank_3 mt_3 
Mixing_tank_4 mt_4 

   

Flow meter 

Flow_meter_1 fm_1 
Flow_meter_2 fm_2 
Flow_meter_3 fm_3 
Flow_meter_4 fm_4 
Flow_meter_5 fm_5 

 
The components which the expert specified as fixed 

throughout the optimisation are shown in Table IV. 
 
TABLE IV – FIXED COMPONENTS THROUGHOUT 

THE OPTIMISATION 
Component Short Name 
Automatic filter af 
Booster pump bp 
Circulation pump cp 
Indicator filter if  

 

VI.  EVALUATIONS  

In order to evaluate the defined PM optimisation on the 
case study, the evaluation models for the objective functions 
need to be defined. Similarly the optimisation algorithm that 
would incorporate the constraints needs to be defined. These 
definitions are discussed next.  

A. Objective Functions Model 

The maintenance policy assumed in this paper is perfect 
preventive maintenance and therefore same evaluation 
models found in [1] is used. Equation 6 is used to evaluate 
component reliability where its failure characteristic is 
assumed to follow the Weibull distribution [1]. 
 

H�I�,	 � 1 − 	()* K−3 ���Ѳ�MN ()* K− �, − 3��Ѳ �MN					(6) 
nTp ≤ t ≤ (n+1)Tp 

where: Upc is component unavailability under PPM 
 t is the age of the component 
 n is the number of PM stages 
 P is the Weibull shape parameter 
 Q is the Weibull scale parameter 
The system unavailability (U) is evaluated using the 

Esary-Proschan approximation [12]. The total PM cost of 
the system is the summation of the individual components’ 
cost as shown in Equation 7. 

7 =	R'3�7��
� +	7I�6

� 																																																			 (7) 

Where: m is the number of system components 
 7	is the system cost under PPM 7��
� 	is the cost of performing PPM for the i-th 

component 
 7I� is the unit cost of the i-th component 3� is the total number of PM stages for the i-th 

component, ni is evaluated using Equation 8 
 

The number of PM stages n for each component is 
evaluated using Equation 8. 

3 = 	
��
��� U������ V								 ; 	���� ≤ ��				
� U���� V															 ; 	����	 ≥ 	��																										(8) 

 
Additionally, the following parameter values were 

assumed. 
 
Weibull shape parameter P = 2 
Weibull scale parameter Q = 1500 
FOSS shortest PM interval T = 180 
Maintenance improvement factor f  = 0.875  
Maximum optimization generation = 5120 
 
The improvement factor is simply the effectiveness of the 

maintenance action. The details of which could be found in 
Nggada et al. [10]. 

B. Optimisation Algorithm 

To optimise the PM schedules of the FOSS, a variant of 
the Non-dominated Sorting Genetic Algorithm (NSGA) II 
[13] is developed. It takes into account the defined 
constraints and objective functions. The mechanics of the 
adapted algorithm using HiP-HOPS are here discussed. The 
algorithm first generates a random initial population P of N 
number of PM individuals, with each individual represented 
as p. The following steps are then executed: 
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1. Set population index t = 1. 
2. Set front index i = 1. 
3. Randomly generate an initial population Pt of N number 

of PM individuals. This is performed in any of two steps 
as follows (1) If a given component i qualifies for 
component substitution, then ��,XY = </=<,>,/,(_?@2*@3(3,(>, B�) , (2) if the 
component qualifies for expert judgement then ��,XY =	��!,XY else ��,XY = +E30@2(1. . ��
��,XY). 

4. ∀p ϵ Pt, configure the variant of the system model with p 
by using the encoding to set the CoMI of each 
component and then evaluate the unavailability and cost 
(objective functions) of the system by calling the 
automatic fault tree synthesis and analysis functions of 
HiP-HOPS. 

5. ∀p ϵ P, find np number of solutions that dominate p, and 
Sp set of solutions for which p dominates. 

6. Add all p with np = 0 into the set Fi (the i-th front) and 
assign domination rank Rp = i. 

7. For each p ϵ Fi assign crowding distance to p. 
8. Increment front index by 1; i.e. i = i + 1. 
9. For each p ϵ Fi-1, visit each q ϵ Sp and decrement nq by 1, 

if by doing so, nq becomes 0 then add q into the set Fi (q 
belonging to front i, Rq = i). 

10. Repeat step 8 to find subsequent fronts. 
11. Perform recombination as follows (“a – j” below) 

(a) Set child population Qt = ∅. 
(b) Use binary tournament selection to select two 

parents from population Pt. 
(c) With probability Pc, perform uniform crossover on 

the selected parents to evolve with a child p. 
(d) With probability Pm, perform mutation in one of 

the following ways; (1) if the selected locus i corresponds to 
a component that has been flagged for expert judgement (i.e. 
expert_judgementi = true) and ETi ≥ T then exit to step “e” 
below, else (2) perform normal mutation. 

(e) Add p to Qt; i.e. Qt  = Qt ∪ p. 
(f) If the size of Qt is not equal to N, then go to step 

“b”. 
(g) ∀p ϵ Qt, configure the variant of the system model 

with p. The values of objective functions (unavailability and 
cost) are also calculated. 
(h) Pt and Qt are combined into Bt; i.e. Bt = Pt ∪ Qt and 
Bt is sorted based on non-domination. 

(i) From 2N solutions (combination of Pt and Qt) in 
Bt, N best solutions are selected using the crowding 
calculation and comparison to form Pt+1. 

(j) Increment population index by 1; i.e. t = t + 1. 
12. If maximum generation is not reached then go to step 4 

else terminate giving the set of PM individuals in the 
first front F1 as the solution. 

C. Results 

The Pareto frontier of the optimisation is shown in Fig. 4. 
A total of 206 optimal PPM schedules were found, with the 
last found in generation 1722. For the components subjected 
to substitution Heater_2, Mixing_tank_2 and Flow_meter_3 
dominated the optimal solutions. The result indicates that an 
engineer could choose an optimal design option relative to 
cost and unavailability requirements. Typically, the 
optimisation is done manually, which, therefore presents 
only fewer options.  

 
 
Table V shows the first and last 5 out of the 206 PPM 

schedules. It shows that the components Main_engine, 
Service_tank and Viscosimeter subjected to expert 
judgement have fixed CoMIs in all the optimal PPM 
schedules. Similarly none of the alternative options of the 
components that were not subjected to component 
substitution appears in the optimal set.  

 

 
Figure 4. Pareto frontier of FOSS PPM schedules 
 

 
TABLE V. A SUBSET OF OPTIMAL PPM SCHEDULES; A TABULAR REPRESENTATION 

Optimal PPM Schedule Cost Unavailability 
Gener
ation af(8)		bp(4)		cp(6)		ft.ft_3(4)		ht.ht_2(1)		if(3)		me(8)		mt.mt_2(5)		st(7)		vm(4)	 21866	 0.099808	 26	af(8)		bp(4)		cp(6)		ft.ft_3(4)		ht.ht_2(3)		if(3)		me(8)		mt.mt_2(5)		st(7)		vm(4)	 21746	 0.102454	 26	af(6)		bp(4)		cp(6)		ft.ft_3(4)		ht.ht_2(2)		if(3)		me(8)		mt.mt_2(4)		st(7)		vm(4)	 22217	 0.094253	 29	af(5)		bp(3)		cp(6)		ft.ft_3(4)		ht.ht_2(2)		if(3)		me(8)		mt.mt_2(4)		st(7)		vm(4)	 22678	 0.089516	 29	af(6)		bp(3)		cp(6)		ft.ft_3(4)		ht.ht_2(2)		if(3)		me(8)		mt.mt_2(5)		st(7)		vm(4)	 22237	 0.093825	 30	
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Constraint
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af(6)  bp(4)  cp(6)  ft.ft_3(4)  ht.ht_2(1)  if(3)  me(8)  mt.mt_2(4)  st(7)  vm(4) 22307 0.092919 1439 

af(1)  bp(1)  cp(1)  ft.ft_3(1)  ht.ht_2(1)  if(1)  me(8)  mt.mt_2(2)  st(7)  vm(4) 34859 0.048226 1453 

af(8)  bp(4)  cp(6)  ft.ft_3(4)  ht.ht_2(2)  if(3)  me(8)  mt.mt_2(8)  st(7)  vm(4) 21600 0.105751 1463 

af(1)  bp(1)  cp(1)  ft.ft_3(1)  ht.ht_2(2)  if(1)  me(8)  mt.mt_2(1)  st(7)  vm(4) 36001 0.047708 1631 

af(8)  bp(3)  cp(6)  ft.ft_3(4)  ht.ht_2(2)  if(3)  me(8)  mt.mt_2(5)  st(7)  vm(4) 21972 0.098662 1722 

    

VII.  CONCLUSION AND FUTURE WORK 

In the design of engineering systems it is generally 
helpful to enable systematic and automated exploration of 
design options using heuristics whilst maintaining the 
possibility of certain decisions to be taken by informed 
expert opinion. This paper has illustrated an approach to this 
in which expert judgement can be integrated in system 
architecture and maintenance optimisation method where 
optimisation is driven by dependability and cost. Constraints 
to represent expert judgement on maintenance time and 
selection of components were developed and a variant of the 
NSGA II was adapted within the HiP-HOPS tool to enable 
the proposed approach. Initial results suggest that the 
approach is valid and promising. The method is currently 
being extended to enable more sophisticated ways for 
incorporating important maintenance constraints related to 
the geometry and topology of the system.  
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