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Abstract—Robotics in the 21st century will progress from 

scripted interactions with the physical world, where human 

programming input is the bottleneck in the robot’s ability to 

sense, think and act, to a point where the robotic system is able 

to autonomously generate adaptive representations of its 

surroundings, and further, to implement decisions regarding 

this environment.  A key factor in this development will be the 

ability of the robotic platform to understand its physical space.  

In this paper, we describe a rationale and framework for 

developing spatial understanding in a robotics platform, using 

knowledge representation in the form of a hybrid spatial-

ontological model of the physical world.  While such a system 

may be implemented with classical ontologies, we discuss the 

advantages of non-hierarchical modes of knowledge 

representation, including a conceptual link between 

information processing ontologies and contemporary cognitive 

models.  

Keywords-Human Robot Interaction; Autonomous Navigation; 

Knowledge Representation; Spatial Ontology   

 

I. INTRODUCTION 

 

The process of transitioning away from hard-coded 

robotics applications, which carry out highly pre-determined 

actions such as the traditional manufacturing robot, is 

already well underway.  With notions such as cloud robotics 

[1] entering the zeitgeist, and highly publicized events such 

as the DARPA Robotics Challenge (Dec 19-21 2013, Miami 

FL) bringing public attention to these advances, it is 

foreseeable that robots will be entering the mainstream 

realm of human activity – more than in fringe applications 

(robotic vacuum cleaner; children’s toys), but in key areas 

such as caring for the aged [2], operating vehicles [3], 

disaster management [4], and undertaking autonomous 

scientific investigation [5]. 

The hurdles that must be overcome in reaching these 

goals, however, are neither few nor small.  This can be 

plainly seen, for example in the aforementioned 2013 

Robotics Challenge, in which simple spatial tasks that are 

routine for a human being (open a door, climb a ladder) are 

still critically difficult for even the most advanced and 

highly funded robotics projects.  While the state-of-the-art is 

impressive, it is evident that physical robotics hardware is 

far in advance of the control systems that are in place to 

guide the robot.  The challenge is, thus, to develop systems 

whereby a robot can perceive a physical space and 

understand its position in that space, the components that 

exist within the space, and how it can or should interact with 

these components in order to achieve implicit or explicit 

goals.  This is furthermore impacted by the requirement that 

robotic systems be able operate in outdoor environments 

where distributed connections may not be available; 

however, describing the development of long-range data 

networks for robotic communication is beyond the scope of 

this paper.  

While there are a number of ways that the problem of 

providing a robot with a spatial understanding can be 

approached (e.g., neuro-fuzzy reasoning [6], dynamic 

spatial relations via natural language [7]) it is our 

proposition that leveraging the current advancements in 

knowledge representation via ontologies [8][9], in 

combination with an understanding of human spatial-

cognitive processing [10][11], and enabled by real-time 

scene modeling [12]  will provide a powerful and accessible 

methodology for enabling spatial understanding and 

interaction in a mobile robotics platform. As argued by  

Sennersten et al. [13], the advantage of using cloud-based 

repositories of perceptual data annotated with ontology and 

metadata information is to take advantage of humanly-

tagged examples of sense data (e.g., images) to overcome 

the symbol grounding problem. Symbol grounding refers to 

the need for symbolic structures to have valid associations 

with the things in the world that they refer to. Achieving 

symbol grounding is an ongoing challenge for robotics and 

other intelligent systems (see, for example, Brooks, 1999 

[14]). Using cloud-based annotations attached to sensory 

exemplars takes advantage of the human ability to ground 

symbols, obviating the need for robots to achieve this 

independently of human symbolic expressions. 

This paper provides a conceptual overview of how 

spatial understanding can be developed in a robotics 

platform.  We discuss traditional knowledge representation 

(classical information processing ontologies), describe the 

development and use of “cognitive” ontologies, and how 

this may be transitioned into the development of a physical-

spatial ontology, including a possible system of 
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comprehension for spatial position. Finally, we discuss the 

notion that truly non-hierarchical systems such as complex 

chemical structure, and such as the human cortex, may 

require the development of systems of knowledge 

representation that transcend the structural limits of today’s 

systems.   

 

II. KNOWLEDGE REPRESENTATION 

 

The development of specific nomological hierarchies for 

concept representation is currently taking place across many 

fields of academic endeavor (e.g., genetics, medicine, 

neuroscience, biology, chemistry, physics).  Under the guise 

of the philosophical concept of an Ontology, such 

applications seek to outline the knowledge which exists 

within a domain at three levels of representation: Classes, 

Properties, and Relationships. These nomological 

hierarchies provide a way of describing the precise 

relationship that terms in a given domain have to one 

another. As an information processing construct, the 

definition of an ontology is refined as an “explicit formal 

specification of the terms in the domain and relations among 

them”, or more concisely, “a specification of a 

conceptualization” [15]. 

A system that operates with such knowledge 

representation within its core functionality may be 

considered to be ‘knowledge-based’. A knowledge-based 

system is a computer program that stores knowledge about a 

given domain (also known as an “expert system”, when the 

knowledge is considered to be from a highly specialized 

domain). However, an ontology does not intrinsically 

represent the kinds of truth-functional mappings or 

procedures captured by rules in more complete knowledge 

bases. Hence, an ontology provides classifications and the 

ability to infer associations via subclass/superclass 

relationships. More complex forms of reasoning required for 

most forms of useful cognitive task performance require 

task-oriented rules.  As such, the domain knowledge in a 

knowledge base includes ontology representations, while 

most task-oriented reasoning is achieved by the use of rules 

that refer to ontological constructs in the form of domains 

within rule tuples. 

The system attempts to mimic the reasoning of a human 

specialist by conducting reasoning across rules and in 

reference to a database of atomic facts. Matching sense data 

against metadata/ontology-annotated sense data on the web 

can provide a method of automatically mapping a current 

sensed situation to the annotations of past situations stored 

in the cloud.  This allows the system to retrieve 

representations of the situation in an atomic form, as 

statements formulated using the symbolic forms of 

annotations which are retrieved by matching against 

associated sense data. Ontologies hold the potential, 

therefore, to provide the constructs for symbolic atomic fact 

expressions that rule-sets can then process for automated 

cognitive task performance. 

A. Cognitive Ontologies 

 

An increasing number of ontologies are available on-line 

that can potentially support this symbolic structure 

generation process. Knowledge representation via 

ontological structure has been applied to the field of 

cognitive science, both in relation to terminology used 

within the domain (e.g., DOLCE - Descriptive Ontology for 

Linguistic and Cognitive Engineering [16][17]) and for 

concepts relevant to empirical testing paradigms (e.g., 

CogPo [18]).  Indeed, several cognitive ontologies have 

been developed in the recent years, including DOLCE, 

WordNet [19], CYC [20], and CogPo. 

WordNet is an online lexical knowledgebase system, 

whose design is inspired by current psycholinguistic 

theories of human lexical memory, where each cognitive 

artifact can be semantically classified into English nouns, 

verbs, and adjectives, with different meanings and 

relationships in real-world scenarios.  DOLCE is developed 

by Nicola Guarino and his associates at the Laboratory for 

Applied Ontology (LOA) [21].  It captures the ontological 

categories underlying natural language and human common 

sense. DOLCE, however, does not commit to a particularly 

abstract level of concepts that relate to the world (like 

imaginary thoughts); rather, the categories it introduces are 

thought of as cognitive artifacts, which are ultimately 

dependent on human perception, cultural imprints and social 

conventions. 

The Cyc project goal is to build a larger common-sense 

background knowledgebase which is intended to support 

unforseen future knowledge representation and reasoning 

tasks. The Cyc knowledgebase contains 2.2 million 

assertions (fact and rules) describing more than 250,000 

terms, including nearly 15,000 predicates.   

Finally, the Cognitive Paradigm Ontology (CogPo) is 

developed based on two well-known databases, namely, the 

Functional Imaging Biomedical Informatics Research 

Network (FBIRN) Human Imaging Data base [22] and the 

BrainMap database [23]. The CogPo Ontology has 

categorized each paradigm in terms of (1) the stimulus 

presented to the subjects, (2) the requested instructions, and 

(3) the returned response. All paradigms are essentially 

comprised of these three orthogonal components, and 

formalizing an ontology around them is a clear and direct 

approach to describing paradigms. This well-formed 

standard ontology guides cognitive experiments in 

formalizing the cognitive knowledge.  

While these ontologies are of great value to the 

community of researchers, and while the knowledge-based 

mapping of concepts within particular domains may enable 

robotic systems to rapidly access the linguistic identity of 

physical objects and their relations within the domain, they 

do not provide a means whereby the robot may become 

spatially aware.  To achieve this goal, we will need to 

provide the robot with the ability to identify the spatial 

characteristics particular to an identified object, and the 
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physical relations between these objects and the surrounding 

environment.  A robot requires an internal representation of 

three-dimensional space. It could access two dimensional 

images on the web, by content-matching those images with 

contents of its own visual system. The matching process, 

and especially the ongoing three dimensional interpretation 

of the images, could be greatly aided if the 

ontology/metadata associated with images includes 

representation of the three dimensional context of image 

capture. The “ontological” schema of knowledge 

representation for images may provide this means if it is 

extended to include three dimensional spatial annotations.  

 

III. REPRESENTING RELATIONSHIPS IN THREE 

DIMENSIONS:  SPATIAL ONTOLOGIES 

 

We propose here that this same methodology for 

specifying semantic relationships between concepts (the 

ontological structure of knowledge representation, i.e., 

Classes, Properties, and Relationships) may also be useful in 

specifying spatial relationships between physical objects.  

While a traditional ontology will hierarchically represent a 

concept and its relation to other concepts in a domain, a 

spatial ontology (e.g., Figure 1) will represent an object, 

(class), its spatial properties including a detailed 3d 

representation in a language such as the X3D XML-based 

file format, and its positional relation (x,y,z) to other objects 

existing within the scene by using the datatype properties.  

   

 
 

Figure 1. Example of a simple spatial ontology 
(Note that the relations between objects are represented via “Data 

Properties” here.) 

 

An entity (the “individual”) in a prototypical ontology is 

comparable to an entity in a spatial ontology, being an 

object in the physical world.  Class indicates the category 

into which the individual falls, for example “person”, or 

“boat”.  Attributes traditionally describe the individual – 

features, properties, or characteristics of the object: a person 

has arms; a boat has a hull.  In a spatial ontology this 

information will be appended with configural information 

regarding the object, for example the parent-child node 

relationship of a human body, including torso, appendages, 

etc.  The relation between individuals is where the power of 

the traditional ontology arises, by specifying the precise 

ways in which different individuals relate to one another 

(e.g., “a catamaran is a subclass of boat”).  Once again, in a 

spatial ontology the relation will be a precise indicator (a 

reference, or an ‘object index’) of the relative positionality 

of items in the physical space, as described in the following 

section.  By thus, leveraging the existing functionality of 

ontological representation, augmented with relevant and 

necessary spatial referencing information, we may develop a 

knowledge-based system that enables a level of spatial 

awareness in a robotic platform. 

 

A. A system of comprehension for spatial position 

Following the above discussion about relationships in 

3D space, we look into how coordinate systems can be 

synchronized. The physical scale requirement that a robot 

needs to have can be measured by the accuracy the robot 

needs to operate in via its navigation system. An 

autonomous robot must be able to determine its position in 

order to be able to navigate and interact with its 

environment correctly (e.g., Dixon and Henlich, 1997 [25]). 

When the Class of “robot” navigates from A to B it is a 

basic motion, which is similar to the movement of an in-

game character via a default keyboard set-up where the key 

“W” moves the character forward, turning left using key 

“A”, turning right using key “D” and go backwards using 

key “Z”. The 3D digital world uses the X, Y, Z coordinate 

system called the Cartesian Coordinate Method (CCM) and 

is expressed in meters (m). To measure distance between 

two spherical points; X¹, Y¹, Z¹ and X², Y², Z² we take the 

Euclidean distance using a Cartesian version of Pythagoras’ 

Theorem (1). The distance is the sum of their individual 

point differences in square. 

 

 (1) 

 

To determine a position in the physical world and 

navigate the robot in map-referenced terms to a desired 

destination point from A to B, Dixon and Henlich use what 

they call 1) Global Navigation. The positioning accuracy 

with a standard consumer Geographical Positioning System 

(GPS) is accurate within a range of 8 feet which is 

approximately 284 centimeters.  This does not give high 

fidelity position accuracy.  As such, when the robot has to 

operate in a typical indoor manufacturing environment, it 

needs detailed position support in order to create 3D 

reference points within the space. What Dixon and Henlich 

call 2) Local Navigation, is to determine one’s own position 

relative to the objects (stationary or moving) in the 

environment, and to interact with them correctly. If we think 
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of Human Robot Interaction (HRI) and the robot arm and its 

gripper(s) (hand/s), the gripper(s) must via eye(s) be able to 

recognize the object it will manipulate and how it shall be 

manipulated. The spatial centre points for individual objects 

are of importance, as well as group of objects and the 

robot’s own centre point in relation to actual manipulation 

centre point for gripper.  From a spatial ontology point of 

view, the centre points have to be able to change 

dynamically depending on interaction purpose. 

For example, the Puma robot arm series has three 

different arms with slightly different sophistication and 

these are Puma 200, Puma 500, and the Puma 700 Series. 

These robot arms execute 3) Personal Navigation [D&H] 

which make the arm aware of the positioning of the various 

parts, its own positioning, and also in relation to each other 

and in handling objects. The Puma 200 Series has been used 

for absolute positioning accuracy for CT guided stereotactic 

brain surgery [26]. The Puma 200 robot has a relative 

accuracy of 0.05 mm. There are already 3D Spatial Vision 

Systems for robots out on the market which are driven via 

several cameras. This creates a local world solution for 3D 

vision robot guidance where the software first make the user 

calibrate the cameras and the robot and then loading 

standard CAD files of parts the system shall track. 

 

IV.  BEYOND ONTOLOGIES – COMPLEX 

RELATIONSHIPS, AND ALTERNATIVES TO 

HEIRARCHICAL DATA REPRESENTATION 

 

As we move from relatively canonical data sets for 

which the information processing ontology was designed 

(i.e., semantic relations within a particular knowledge base) 

to more complex relationships (such as ad-hoc physical 

relations) in which the hierarchical order is not nearly so 

explicit, or potentially non-existent, will the classical 

ontology suffice?  Or alternately, will something more 

adaptive need to take its place?  Because relationships in the 

physical world are multifaceted and multidirectional, it is 

useful to have a schema which can represent this 

interconnectedness.  The key strength of an ontology is that 

it provides a concrete nomological environment from which 

to operate within the chosen domain.  Table 1 summarizes 

the traditional information processing ontology. 

  
TABLE 1: TRADITIONAL ONTOLOGY CHARACTERISTICS 

 

- allows a common understanding of the structure of information 
- enables reuse of domain knowledge 
- makes domain assumptions explicit 
- separates domain knowledge from operational knowledge 
- defines a common vocabulary for researchers 
- provides machine readable definitions of basic concepts and the 
relationships among them 

 

However, there are instances (albeit few as of this 

writing) in which it is being recognized that the intrinsic 

limitations of the “ontology” such it is commonly 

understood in 2014, (e.g., OWL-based [Web Ontology 

Language]) are sufficient as to demand a modification 

whereby the innate complexities of a real-world 

phenomenon may be modeled.  That is: complex, potentially 

non-hierarchical relationships. 

For example, it has been noted in the field of chemical 

molecular informatics that while ontologies are able to 

represent tree-like structures, they are unable to represent 

cyclical or polycyclical structures [27].  Similarly, the 

difficulty in building classifications of nano-particles has led 

some researchers to begin to look into taxonomies based on 

“physical / chemical / clinical / toxic / spatial” 

characteristics of an object, supplemented by structural 

information, in order to account for shapes, forms and 

volumes [28].  Other examples of representing complex 

structural relations which stretch the boundaries of 

ontological representation include using Description Graph 

Logic Programs (DGLP) to represent objects with arbitrarily 

connected parts [29], and a hybrid formalism whereby the 

authors propose a “combination of monadic second order 

logic and ordinary OWL”, where the two representations are 

bridged using a “heterogeneous logical connection 

framework” [30]. 

It is evident that the potential applications of a 

formalism such as the ontological method of information 

representation far outreach the initial conceptualizations of 

the language. While it may be possible to model 3 

dimensional spatial information within the constraints of a 

hierarchical ontology, it is also to be considered that this 

notion, as well as applications such as those described 

above, may require the development of progressive, flexible 

alternatives, which capture the strengths of the ontology 

(i.e., the points from Table 1), while managing to represent 

arbitrary or non-hierarchical relationships. 

 

A. Cognitive Models and Ontologies 

One information system where a non-hierarchical 

organization may be necessary, when attempting to map the 

internal structural relations, is the human brain.  For more 

than half a century, researchers across many fields (e.g., 

Cognitive Psychology, Neuroscience, Cognitive Science) 

have been using models to posit and test hypothetical 

interpretations of how the human brain is structured.  These 

range from the very simple (e.g., Baddely’s working 

memory model, [31]) to complex neurological models (e.g., 

[32]), though no current model has even begun to approach 

the actual complexity of the human brain.  On a neuronal 

level, and certainly even on a functional level such as 

between brain regions, this is a non-hierarchical system. 

It is remarkable that at a superficial level, the 

development of ontologies draws a strong parallel with 

some theoretical interpretations of how the human cognitive 

system might be structured (see Table 2).  This relation is 

further discussed in Sennersten et al. [13]. 
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TABLE 2:  COMPARISON OF CLASSIC  

ONTOLOGY, OAR, AND ACT-R MODELS 

 

 

 

 

 

 

 

In OAR (Object, Attribute, Relation) Wong [10] 

develops a model which most certainly shares conceptual 

roots with ontological knowledge representation.  Likewise, 

parallels may be drawn with Anderson’s ACT-R model [11] 

and Trafton’s “embodied” version [32] ACT-R/E.  In each 

model, Objects in the real world possess characteristics (i.e., 

attributes, or properties) and also relations with one 

another.  If we can augment these heretofore largely 

semantic components with a functional representation of 

three dimensional space (e.g., at the 3 levels Global, Local, 

and Personal), we may have the fundaments of a system of 

Spatial Understanding for a robotic platform.   

 

V. SUMMARY 

 

One of the few certainties regarding the immediate 

future is that robotic control technology will advance from 

systems which are coded for specific applications, to 

systems which are designed with an innate adaptability to 

unexpected environmental situations.  This will require new 

methods of providing on-the-fly relational information to 

the robot, in order for it to gain an understanding of both its 

spatial position, and the position of other objects in the 

vicinity, their characteristics, and the ways in which it can 

relate to them.  A reworking of the traditional OWL-based 

ontology, with an eye for 3-dimensional spatial relations on 

1) Global, 2) Local, and 3) Personal levels of specificity 

may be sufficient to this end. 

It is also noted that as data sets become more complex, 

and especially as we begin to consider that most complex of 

biological control systems, the human cognitive system, it 

may very well become necessary to develop hybrid 

ontological-type systems of knowledge representation which 

1) encompass the full realm of advantages provided by the 

use of specific nomologial hierarchies, and 2) enable the 

encoding of arbitrary or non-hierarchical relationships. The 

development knowledge-based systems that can account for 

abstract, non-hierarchical relations could potentially 

facilitate the next generation of spatially aware robotics 

applications. 
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