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Abstract—Models of the human driving behavior are essential
for the rapid prototyping of assistance systems. Based on
psychological studies, various percepts and measures have been
proposed for the lateral and longitudinal control in driver
models without demonstrating the generalizability of results
to natural settings. In this paper, we present the learning of a
probabilistic driver model. It represents and mimics the lateral
and longitudinal human driving behavior on virtual highways
by performing situation-adequate lane-following, car-following,
and lane changing behavior. Because there is considerable
uncertainty about the relevant percepts in natural driving
behavior, we select hypothetically relevant percepts from the
variety of possibilities based on their statistical relevance.
This is a new approach to generate hypothesis about the
relevant percepts and situation-awareness of drivers in dynamic
traffic scenes. The percepts are revealed in a structure-learning
procedure using a discriminative scoring criterion based on
the Bayesian Information Criterion. Discriminative learning
maximizes the conditional likelihood of probabilistic models,
whereas the traditional generative learning maximizes the
unconditional likelihood. This way, it attempts to find the
structure with the best performance for the intended use, which
in our application is the best prediction of driving actions given
the available percepts.

Keywords–Probabilistic Driver Models; Bayesian Autonomous
Driver Models; Machine-Learning; Structure-Learning; Discrim-
inative Learning.

I. INTRODUCTION

The Human Centered Design of intelligent transport
systems requires computational models of human behavior
and cognition. Particularly models of the human driving
behavior (i.e., driver models) are essential for the rapid
prototyping of error-compensating assistance systems [1].
Various authors proposed control-theoretic models (e.g.,
[2]), closely related perception-action models (e.g., [3][4]),
and production-system models implemented in cognitive
architectures (e.g., [5]). Due to the variability of human
cognition and behavior, the irreducible lack of knowledge
about underlying cognitive mechanisms, and the irreducible
incompleteness of knowledge about the environment [6],
we conceptualize, estimate, and implement models of hu-
man drivers as probabilistic models: Bayesian Autonomous
Driver (BAD) models.

In earlier research [7], we developed a BAD model
with Dynamic Bayesian Networks (DBNs), based on the
assumption that a single DBN representing a single skill is
sufficient for lateral and longitudinal control. Later, we re-
alized that for modeling the complex competence of human
drivers, a skill hierarchy (e.g., Figure 1) is necessary. We
developed a hierarchical modular probabilistic architecture
that allows to construct driver models by decomposing
complex behaviors into pure behaviors and vice versa:
Bayesian Autonomous Driver Mixture-of-Behaviors (BAD
MoB) models [8][9][10].

Based on psychological studies (e.g., [11][12][13]
[14][15]), various percepts and measures have been recom-
mended for the lateral and longitudinal control in driver
models. These proposals are partly contradictory and often
depend on special experimental settings, like straight roads,
winding roads, low speed, and/or the absence of other traffic
participants. Other and more natural scenarios may provide
and require different perceptual cues that are not yet fully
understood or formalized. A general computational vision
theory of driving behavior is still pending.

Because there remains considerable uncertainty about the
relevant percepts in natural driving behavior, we propose the
use of structure-learning procedures to select hypothetically
relevant percepts from the variety of possibilities based on
their statistical relevance. We used the proposed procedure
to learn the relevant percepts for a BAD MoB model that
represents and mimics the lateral and longitudinal human
driving behavior on virtual two-lane highways according
to the skill hierachy shown in Figure 1. We assume that
the overall complex driving behavior can be decomposed
into the simpler behaviors lane-following, car-following,
performing lane changes to the left and lane changes to the
right.

Highway

Lane-Following Car-Following Lane
Change Left

Lane Change
Right

Figure 1. Skill hierarchy representing the human driving behavior on
virtual two-lane highways.
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The paper is organized as follows. In the following
section we give a brief overview of percepts and measures
that have been recommended in the literature for modeling
the lateral and longitudinal human control behavior. Section
III introduces the fundamentals of BAD MoB models. In
Section IV, we describe a structure-learning procedure for
selecting the pertinent percepts from a universe of hypotheti-
cally available percepts, using a discriminative version of the
Bayesian Information Criterion. In Section V, we present a
resulting BAD MoB model that mimics the human driving
behavior on virtual highways and discuss the meaningfulness
of the learned percepts with respect to the literature. Finally,
we conclude with Section VI.

II. A UNIVERSE OF PERCEPTS

For the most part, the literature considers three types
of percepts as important for lateral control: bearing angles
[13][14][3][16], splay angles [13][14][17], and the optic flow
[13][14][17] (Figure 2).

Bearing angles are defined as the angles between the
driver’s heading (the driver’s body axis, assuming that he is
belted in) and the direction to specific reference points in the
driver’s field of view (Figure 2a) [14]. If available, obvious
choices for such reference points are the lane edges. When
aligned with the course of the road, a conceivable strategy
for lane-keeping on a straight path is to keep the bearing
angle to a reference point on the left lane edge and the
bearing angle to a reference point on the right lane edge
constant [14].

Bearing angles to single reference points that drivers tend
to visually target are also known as visual direction angles
[13]. Notable proposed examples for such targeted reference
points are points on the future path of the driver, the
centerline, lead-cars, and for curved roadways, the tangent
point [3][18][19].

Splay angles are defined as the optical projections of
lane edges or the centerline around a reference point on the
driver’s retina relative to a vertical line in the driver’s field of
view, e.g., the heading [14] (Figure 2b). Similar to bearing
angles, when aligned with the course of the road, a valid
strategy for lane-keeping would be to keep the splay angle
to the left lane edge and the splay angle to the right lane
edge constant.

The optic flow denotes the global image motion of the
environment projected on the retina when one moves in the
world [14][16]. Similar to bearing and splay angles, we can
define flow angles as the angles between the driver’s heading
and the direction of the optic flow of reference points in the
driver’s field of view (Figure 2c). A simple strategy for lane-
keeping using the optic flow would be to align the focus of
expansion (specified by the intersection of two flow angles)
with the intended target direction.

For longitudinal control, the literature mainly discusses
the time-to-contact/collision (TTC) [13][20][21] and the
time-headway (THW) [21][22]. The TTC of a vehicle A
with a speed vA, following a vehicle B with a speed vB ,
in a distance d, is defined as TTC = d/(vA − vB) and
denotes the remaining time until A reaches B. As a special
case of the TTC, the THW denotes the remaining time until

A will reach the current position of B and is defined as
THW = d/vA.

III. BAYESIAN AUTONOMOUS DRIVER
MIXTURE-OF-BEHAVIOR MODELS

Throughout this paper, we will be concerned with prob-
ability distributions over sets of discrete random variables.
Variables and set of variables will be denoted by capital let-
ters, while specific values taken by those (sets of) variables
will be denoted by lowercase letters. For time series, we
assume that the timeline is discretized into time-slices with
a constant granularity of 50ms. We will index these time-
slices by non-negative integers and will use Xt

i to represent
the instantiation of a variable Xi at time t. A sequence
Xj
i , X

j+1
i , . . . , Xk

i will be denoted by Xj:k
i and we will

use the notation xj:ki for an assignment of values to such
sequences.

A Bayesian Network (BN) is an annotated directed
acyclic graph (DAG) that encodes a joint probability over
a set of variables X = {X1, . . . , Xn} [23]. Formally, a
Bayesian Network B is defined as a pair B = {G, θ}.
The component G is a DAG, whose vertices correspond to
the random variables X1, . . . , Xn, and whose arcs define
the (in)dependencies between these variables, in that each
variable Xi is independent of its non-descendants given
its (possibly empty) set of parents Pa (Xi) in G. The
component θ represents a set of parameters that quantifies
the probabilities of the network. We assume that θ contains a
parameter θx|pa(X) = P (x|pa (X)) for each possible value
x ∈ X and pa (X) ∈ Pa (X). Given G and θ, a Bayesian
network B defines a unique joint probability distribution
(JPD) over X as:

PB (X) =

n∏
i=1

P (Xi|Pa (Xi)) . (1)

DBNs extend BNs to model the stochastic evolution
of a set of variables X = {X1, . . . , Xn} over time [24].
A DBN D is defined as a pair D =

(
B1, B→

)
, where

B1 =
(
G1, θ1

)
is a BN that defines the probability dis-

tribution P
(
X1
)

and, under the assumption of first-order
Markov and stationary processes, B→ = (G→, θ→) is a
two-slice Bayesian network (2TBN) that defines the CPD
P
(
Xt|Xt−1) for all t. The nodes in the first slice of the

2TBN do not have any parameters associated with them,
but each node in the second slice of the 2TBN has an
associated CPD which defines P (Xt

i |Pa (Xt
i )), where a

parent Xj ∈ Pa (Xt
i ) can either be in time-slice t or t− 1.

The JPD over any number of T time-slices is then given by:

PD(X
1:T ) =

T∏
t=1

n∏
i=1

P
(
Xt
i |Pa

(
Xt
i

))
. (2)

A. Definition of BAD MoB models
In essence, a BAD MoB model is a combination of

several DBNs, whose functional interaction allow the gener-
ation of context dependent driving behavior by sequencing
and mixing simpler behaviors according to a skill hierarchy
[9][10] (e.g., Figure 1).
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Figure 2. Illustration of bearing angles (a), splay angles (b) and flow angles (c).

Let A denote a set of discrete random variables rep-
resenting the lateral and longitudinal control actions of a
driver. In this paper, we assume the use of steering wheel
angles for lateral control and the position of a combined
acceleration and braking pedal for longitudinal control. P =
{P1, . . . , Pm} denotes a set of discrete random variables
representing hypothetical percepts that could be available to
the driver due to foveal and ambient vision [25]. Given a skill
hierarchy, decomposing a complex behavior in a number of
n simple behaviors, B denotes a discrete random variable
with n values for the n simple behaviors.

We assume, that the sensor-motor schema of each of the
n simple behaviors in the skill hierarchy can be modeled
by a distinct DBN πi that defines a JPD Pπi

(
A1:T , P 1:T

)
.

Due to their purpose, we refer to these models as action-
models. In addition, we assume that the appropriateness of
the simple behaviors in a given situation can be modeled by
a DBN πB that defines a JPD PπB

(
B1:T , P 1:T

)
, which we

refer to as a behavior-classification-model.
A BAD MoB model π is then defined as a DBN that

combines both action- and behavior-classification-models,
using a technique called behavior-combination [26]. The
combination is achieved by specifying the CPDs of π
as queries to be inferred by the action- and behavior-
classification-models. Under the assumption of first-order
Markov and stationary processes, the JPD of π for any
number of T time slices is defined as:

Pπ
(
A1:T , B1:T , P 1:T

)
=

T∏
t=1

P
(
P t
)
P
(
Bt|Bt−1, P t

)
P
(
At|At−1, P t, Bt

)
. (3)

The CPD P
(
Bt|Bt−1, P t

)
represents the appropri-

ateness of each simple behavior in the given situation
and is defined as a query PπB

(
Bt|Bt−1, P t

)
to be in-

ferred by the behavior-classification-model πB . Each CPD
P
(
At|At−1, P t, Bt = i

)
represents the motor-output of a

specific behavior in a given situation and is defined as a
query Pπi

(
At|At−1, P t

)
to be inferred by the action-model

πi that realizes the sensor-motor-schema of the correspond-
ing behavior. We would like to emphasize that the structure
of π itself is predefined and fixed. In contrast, the structures
of action- and the behavior-classification-models will be
obtained via structure-learning procedures.

B. Definition of component-models
Action- and behavior-classification-models are defined in

the same manner, and we will therefore simply refer to them

as component-models. Each component-model πc is a dis-
tinct DBN that defines a joint distribution Pπc

(
X1:T , P 1:T

)
and will be used to infer the query Pπc

(
Xt|Xt−1, P t

)
(where X = A in the case of action-models and X = B in
the case of behavior-classification-models).

We model component-models in the fashion of state-
observation models [23], in that they consist of a transition
model P

(
Xt|Xt−1) and an observation model P (P t|Xt).

We rely on the assumption that not all of the available
percepts P are necessarily relevant for the realization or
classification of driving behaviors. Accordingly, we can
separate P into two mutually exclusive sets PR ⊆ P and
PI ⊆ P , where PR consists of the relevant percepts and PI
consists of the irrelevant percepts.

This allows us to decompose P (P t|Xt) to
P (P tR|Xt)P (P tI ). For P (P tR|Xt), we assume that
the percepts are conditionally independent given Xt:
P (P tR|Xt) =

∏
Pi∈PR

P (P ti |Xt). As the irrelevant
percepts PI have no influence on the estimation of X , we
can replace the CPD P (P tI ) by

∏
Pj∈PI

P
(
P tj
)
.

A schematic graph-structure of component-models is
shown in Figure 3. The JPD over all variables for any
number of T time-slices is then given by:

Pπ(X
1:T , P 1:T )

=

T∏
t=1

P (Xt|Xt−1) ∏
Pi∈PR

P
(
P ti |Xt

) ∏
Pj∈PI

P
(
P tj
) . (4)

The query Pπc(X
t|Xt−1, P t) needed for the specifica-

tion of the BAD MoB model can be inferred by:

Pπc(X
t|Xt−1, P t)

=

P
(
Xt|Xt−1) ∏

Pi∈PR

P (P ti |Xt)∑
xt∈Xt

P (xt|Xt−1)
∏

Pi∈PR

P (P ti |xt)
. (5)

As each component-model is a distinct DBN, each may
use a different set of relevant percepts. The problem is
to decide, which of the available percepts Pi ∈ P are
relevant and which are irrelevant. Due to the considerable
uncertainty about the relevant percepts for realization and
classification of natural driving behaviors, we use machine-
learning methods to learn the graph structure of component-
models and obtain the statistically relevant percepts in natu-
ral driving behaviors from the variety of proposed percepts.
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IV. LEARNING BAD MOB MODELS

We derive the structures of component-models by a
machine-learning method, based on the score and search
paradigm, where a search in the space of possible graph
structures is guided by a scoring function that evaluates the
degree of fitness between the model and a set of experi-
mental data. From a Bayesian perspective such a scoring
criterion can be defined as P (Gπ|δ), the probability of a
graph structure Gπ of a model π given a dataset δ [23].
Using the Bayes’ rule, P (Gπ|δ) is given by:

P (Gπ|δ) = P (δ|Gπ)P (Gπ) /P (δ) , (6)

where P (δ|Gπ) is the likelihood of the data given the
graph structure, P (Gπ) is a prior over possible graph
structures, and P (δ) is a constant that does not depend on
the actual graph structure and can therefore be neglected
[23]. The likelihood of the data given a graph structure can
be computed by integrating over all possible parameters θπ
of π [23][24]:

P (δ|Gπ) =
∫
P (δ|Gπ, θπ)P (θπ|Gπ) dθπ, (7)

where P (δ|Gπ, θπ) is the likelihood of the data given π and
P (θπ|Gπ) is a prior distribution over the possible parameter
values for a graph structure Gπ . A common approach for
evaluating the integral, is to use an approximation derived
from the asymptotic behavior of (7) for infinite datasets,
which results in a scoring criterion known as the Bayesian
Information Criterion (BIC) [23][24][27][28].

Although their structure is fixed, we derive our structure-
learning approach for component-models from the hypo-
thetically learning of BAD MoB models. Let δ denote a
complete database consisting of n samples δi = (ai, bi, pi),
θ̂π denote the maximum likelihood estimator, and Dim [π]
denote the number of independent parameters, the BIC score
for a BAD MoB model π is defined as:

BIC (Gπ : δ) = logP
(
δ|Gπ, θ̂π

)
− Dim [π]

2
log n. (8)

For a BAD MoB model π, the log-likelihood
logP (δ|Gπ, θ̂π) is given by logPπ(a

1:n, b1:n, p1:n : θ̂π) (in

X1 Xt−1 Xt

P 1
1 P t1

...
...

P 1
i P ti

P 1
i+1 P ti+1

...
...

P 1
m P tm

PR

PI

Figure 3. Schematic structure of action- and behavior-classification-
models, defined by a BN and a 2TBN.

the following we will drop θ̂π for clarity). Using (3) this can
be rewritten as a sum of terms:

logPπ
(
a1:n, b1:n, p1:n

)
=

n∑
i=1

logP
(
bi|bi−1, pi

)
+

n∑
j=1

logP
(
aj |aj−1, bj , pj

)
+

n∑
k=1

logP
(
ki
)
. (9)

As the structure of a BAD MoB model is predefined, its
score only depends on the structure of its component-models
and their consequential ability to infer their corresponding
queries. This translates the task of learning a BAD MoB
model into the task of learning the graph structure for each
component-model individually. Consequently, using (9), we
can decompose (8) in order to define a scoring criterion for
component-models.

A. Discriminative learning of component-models
Let δc denote a subset of δ consisting of only the nc

samples δi = (xi, xi−1, pi) related with a component-model
πc, the portion of the BIC score for πc would be given by:

nc∑
i=1

logPπc

(
xi|xi−1, pi

)
− Dim [πc]

2
· log n. (10)

In contrast to maximizing the unconditional log-
likelihood in (8), we now aim to maximize a conditional
log-likelihood CL

(
θ̂πc

: δc

)
=
∑nc

i=1 logPπc

(
xi|xi−1, pi

)
.

Learning in order to maximize a conditional (log-)likelihood
is known in the literature as discriminative learning
[23][28][29][30][31]. Accordingly we will refer to the scor-
ing criterion for component-models as a Discriminative BIC
(DBIC).

For discriminative learning based on the BIC, it has
been recognized that its penalty term tends to have a too
high impact on the score, resulting in too simple model
structures [29][30]. As a consequence, [30] propose to adjust
the penalty by multiplying it by a parameter β < 1, they
proposed as β = 1/10. Following this, the DBIC for a
component-model is then defined as:

DBIC (Gπc : δc) = CL
(
θ̂πc : δc

)
−βDim [πc]

2
·log n. (11)

B. Learning Procedure
For each component-model, the goal of the learning

procedure is to find the graph structure from the space of
possible graph structures that maximizes the DBIC. Even
given the severe structural constraints of component-models
(cf. Section III-B), there exist 2m possible graph structures
for a number of m available percepts. As it is not feasible to
evaluate all these possibilities, we rely on heuristic methods
to find a good but not necessarily optimal solution.

By now, we use a common greedy hill-climbing search
procedure [23]. We start with an initial “blind” model that
does not utilize any percepts (hence with the observation
model P (P t|Xt) =

∏m
i=1 P (P ti )) and compute its DBIC.

For each available percept Pj ∈ P , we then construct
a model in which we utilize Pj by adding an edge in

22Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-340-7

COGNITIVE 2014 : The Sixth International Conference on Advanced Cognitive Technologies and Applications



the graph from Xt to P tj (therefore replacing P
(
P tj
)

in
the observation model with P

(
P tj |Xt

)
) and compute its

DBIC score. Intuitively, a percept P tk leading to the highest
improvement of the DBIC when utilized can be seen as the
most pertinent percept of the given possibilities and will be
permanently added to the initial model. The process is then
repeated until no further added percept improves the DBIC.
Eventually, this learning procedure selects a minimal set of
relevant percepts.

V. A BAD MOB MODEL REPRESENTING THE HUMAN
DRIVING BEHAVIOR ON VIRTUAL HIGHWAYS

We used the described method to learn the relevant
percepts for a BAD MoB model based on the skill hierarchy
shown in Figure 1, representing the lateral and longitudinal
human driving behavior on virtual highways. For this, we
selected approx. 800 percepts that hypothetically could be
relevant for the human lateral and longitudinal driving
behavior.

Primarily, we selected bearing, splay, and flow angles
(c.f. Figure 2), utilizing a variety of possible reference
points. Reference points were placed in different fixed
(25m, 50m, . . . , 250m) and time-dependent (i · speed, i =
{1s, 2s, . . . , 10s}) distances, both relative to the driver’s
current lane (on the lane edge or centerline left to the
driver, on the middle of the driver’s lane, and on the lane
edge or centerline right to the driver) and absolute (on the
left lane edge, the middle of the fast lane, the centerline,
the middle of the slow lane, and the right lane edge).
As additional reference points only applicable for bearing
angles, we selected the far point, as proposed by [3] (placed
on the tangent point if available and on the vanishing point
otherwise), and traffic participants in the vicinity of the
driver (the nearest cars in front and behind the driver on
the two lanes of the highway).

To enable the possible use of strategies that utilize two
angles resp. reference points simultaneously (cf. Section
II), we considered percepts that represent the differences
between bearing, splay, and flow angles of the reference
points on the left and right lane edges or one of these lane
edges and the centerline.

From the percepts obtainable from traffic participants
in the vicinity of the driver, we selected distances, speed
differences to the driver, TTCs, and THWs of the nearest
cars in front and behind the driver on the two lanes of the
highway.

As further percepts that obviously could have an effect,
esp. on longitudinal control, we included the driver’s speed
vego, the prescribed speed limit vlimit, and the combination
of both, which we will refer to as the speed potential,
representing the allowed speed gain (resp. prescribed speed
reduction) defined as vpot = vlimit − vego.

A. Experimental Data
The database needed for the learning procedure was

obtained in a simulator study using a fixed based driving
simulator that comprises a mockup of the driver’s cab of
a real car, positioned amidst three projection surfaces for

a simulated 3D-environment, providing a realistic field of
view of 170◦ (Figure 4).

The study was conducted with eight participants (four
male, four female) between the age of 24 and 30 and
with normal or corrected-to-normal vision. The scenario
comprised approximately 37 km of a four-lane highway
based on a section of the German highway A1, with two
lanes in each direction and moderate traffic, generated by
a number of non-controlled automated vehicles traveling
at varying desired speeds and able to pass other vehicles
(including the driver’s car).

The experimental procedure consisted of three phases.
In the first phase, each participant was introduced to the
simulator and performed a training session. In the second
phase, the participants drove one trial without other traffic.
They were instructed to obey the shown speed-limits (100-
130 km/h) and perform lane changes when being asked by
the instructor. In the third phase, the participants drove two
trials with other traffic. They were instructed to obey the
German traffic rules. For the second trial with other traffic,
left-hand curvatures were inverted to right-hand curvatures
and vice versa. A single participant (participant 1, male)
attended two times and in each case performed an additional
third trial with other traffic.

During the trials, with a frequency of 60 Hz, we recorded
the values of all defined percepts, the steering wheel angle,
and the position of a combined acceleration-braking pedal.
This led to an experimental database of approx. 1900000
data samples δi = (ai, pi) comprising a total time of approx.
525 minutes. In order to define the missing behavior values,
we manually completed each sample δi with the shown
behavior bi according to the skill hierarchy (Figure 1).

B. Results and Discussion
By now, we used the experimental data of participant

1 (male, approx. 550000 data samples) to learn a BAD
MoB model representing an individual driver. In total, twelve
percepts were selected during the learning procedure (Table
I). In the following, we will attempt to discuss their mean-
ingfulness with respect to the literature.

1) Lane-Following: A single percept was learned as
relevant for lateral control, representing the bearing angle

Figure 4. Fixed based driving simulator.
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TABLE I. PERTINENT PERCEPTS FOR ACTION-MODELS REPRESENTING THE BEHAVIORS FOR LANE-FOLLOWING,
CAR-FOLLOWING, LANE CHANGES TO THE LEFT, AND LANE CHANGES TO THE RIGHT.

Behavior Relevant Percepts for Lateral Control Relevant Percepts for Longitudinal Control

Lane-following 1. Bearing angle between the heading and a reference point on the
middle of the driver’s lane in a distance of vego · 5s

1. Speed potential

Car-following 1. Flow angle between heading and the optic flow direction of a
reference point on the centerline in a distance of vego · 3s

1. TTC to the lead-car (bumper-to-bumper distance, allowing
positive and negative values)

Lane changes to the left 1. Bearing angle between the heading and a reference point on the
middle of the right lane in a distance of 100m

1. TTC to the lead-car on the fast lane (bumper-to-bumper distance,
only positive values)

2. Bearing angle between the heading and a reference point on the
left lane edge in a distance of vego · 2s

Lane changes to the right 1. Flow angle between the heading and the optic flow direction of
a reference point on the middle of the right lane in a distance of
75m

1. TTC to the lead-car on the fast lane (bumper-to-bumper, only
positive values)

2. Bearing angle between the heading and a reference point on the
right lane edge in a distance of vego · 3s
3. TTC to the lead-car on the fast lane (bumper-to-bumper distance,
allowing positive and negative values)
4. TTC from the car behind on the slow lane (Euclidean distance,
only positive values)

between the driver’s heading and a reference point on the
middle of the driver’s lane in a distance of vego · 5s. Under
the assumption that the middle of the lane can be seen as an
approximation of the future path of the driver, this percept is
consistent with the proposals of [13] for roads with gentle
curvatures, and findings of [19] and [32], who report that
drivers often fixate the center of the road resp. the future
path. In contrast, the far point, as proposed by [3] for lane-
following, was only the 114th highest-rated percept.

The single relevant percept selected for the longitudinal
control represents the speed potential. This seems reason-
able, as it should be sufficient for a driver to keep an intended
target speed as implied by the current speed limit. However,
as German traffic rules prohibits to overtake on the right,
we expected a second percept, associated with the lead-car
on the lane left to the driver. Indeed, the percept that would
have been selected as the second relevant percept (but was
rejected due to the increasing penalty) represents the distance
to the lead-car on the fast lane.

2) Car-Following: The single percept learned for the
lateral control in car-following represents the angle between
the driver’s heading and the optic flow direction of a
reference point on the centerline in a distance of vego · 3s.
This is in contrast to [33], who found that drivers tend to
primarily fixate the lead-car during car-following. Based on
these findings, [3] concluded that in the presence of a lead-
car, the lead-car would act as the primary reference point
and consequently proposed the angle between the heading
and the lead-car as the most relevant percept for lateral
control during car-following. Maybe surprisingly, this angle
was only the 353th best-rated percept.

However, the single relevant percept for longitudinal
control in car-following represents the TTC to the lead-car.
This is consistent with the proposals of [20] and [21] and
would imply that the driver indeed primarily focuses the
lead-car. Our model would therefore imply that during car-
following, the driver primarily depends on ambient vision for
lateral control, while using the foveal vision for longitudinal
control.

3) Lane Changes: For the lateral control during lane
changes to the left, two percept were selected. They rep-
resent the bearing angle to the middle of the right lane in
a distance of 100m and the bearing angle to the left lane
edge in a distance of vego · 2s. These percepts are consistent
with findings of [34], who report that during lane changes to
the left lane, drivers direct their gazes primarily and almost
equally to the left and the right lane.

In contrast, during lane changes to the right, drivers
direct the majority of their gazes to the right lane, while
dividing the rest of their gazes equally between the left
lane and the mirror [34]. As shown in Table I, the selected
percepts are indeed consistent with these findings. The
two most relevant percepts represent the angle between the
heading and the optic flow direction of a reference point on
the middle of the right lane and the bearing angle between
the heading and a reference point on the right lane edge.
The third percept represents the TTC to the lead-car on the
fast lane, which implies a certain attention to the left lane.
The last percept represents the TTC to the car behind on the
slow lane, which implies a certain attention to the mirror.

Concerning the longitudinal control, for both lane
changes to the left and to the right, the single selected
percept represents the TTC to the lead-car on the fast
lane. This may be explained by a rare and unpredictable
tendency of non-controlled traffic participants to surprisingly
and recklessly change lanes, which enforced the participant
to perform all-out brakings during lane changes. However,
this also gives us a hint to explore the use of separated skill
hierarchies for lateral and longitudinal control in our future
research.

VI. CONCLUSION

We presented the learning of a hierarchical and modular
probabilistic driver model that represent and mimics the lat-
eral and longitudinal human driving behavior on virtual high-
ways. Its relevant percepts were selected in a discriminative
structure-learning procedure from a set of hypothetical per-
cepts proposed in literature. The performance of the learned
BAD MoB model is very promising (videos available at
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http://www.lks.uni-oldenburg.de/46350.html). The selected
percepts are sufficient for the modeling and simulation of the
lateral and longitudinal human driving behavior on virtual
highways, including situation-adequate lane-following, car-
following, and lane changing behavior. The selected percepts
seem reasonable and for the most part consistent with find-
ings reported in psychological studies. This indicates that the
proposed method can be used to generate hypothesis about
the relevant percepts and situation-awareness of drivers in
dynamic traffic scenes to be validated by experiments with
human drivers.

In our future work, we will expand our selection of
hypothetical percepts and will explore the use of different
and separated skill hierarchies for lateral and longitudinal
control.
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