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Abstract—In this paper, we conduct two word learning ex-
periments to study the human word learning and generalization
behaviour. The participants are shown abstract figures that form
the positive examples of a word concept. All the positive examples
have a common defining feature. The participants are then
asked whether the word applies to various test examples. We
vary several independent variables across our two word learning
experiments. Our results show that the word generalization
behaviour is based on the similarity of a test example with the
positive examples of a word. The generalization behaviour is not
based on the defining features. This is true even when enough
examples exist from which the defining features can be inferred.
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I. INTRODUCTION

Humans have the ability to learn a new word after seeing a
few examples of the word. Carey [1] named this phenomenon
as fast mapping. Xu and Tenenbaum [2][3] demonstrate that
fast mapping can be accurately modelled using a similarity-
based generalization. In similarity-based generalization, the
probability of generalization becomes higher for the test exam-
ples that are more similar to the positive examples of a word.
Xu and Tenenbaum use a hierarchical clustering tree as their
hypothesis space. Each node in the tree forms a hypothesis for
a word concept.

Abbott, Austerweil and Griffiths [4] describe an approach
for constructing a hypothesis space for word learning. The
hypothesis space they use is also similarity based where the
similarity is derived from the relationship between images
and words in ImageNet [5] and WordNet [6] respectively.
Abbott, Austerweil and Griffiths show that their similarity
based generalization matches the empirical data.

The word categories used in the above papers [2][3][4]
do not have a well-defined set of necessary and sufficient
conditions. If the word categories have a set of necessary and
sufficient conditions, will the generalization still be similarity
based? Our hypothesis is that the generalization behaviour
will be similarity based even when the word categories are
well-defined. By well-defined, we mean that the necessary
and sufficient conditions for the word category can be easily
deduced from the positive examples.

We use artificial word concept categories defined using
boolean features. Each word concept can be represented as

Fig. 1. The figure shows six objects that occur in a boolean world. Each
figure can be represented using a set of boolean features.

TABLE I. THE TABLE LISTS THE OBJECTS SHOWN IN FIGURE 1. THE
’X’ MARK DENOTES THAT AN OBJECT HAS A BOOLEAN FEATURE.

star red spike-wheel square green

1 X X X
2 X X X X
3 X X X
4 X X
5 X X
6 X X

a formal concept. We study the generalization behaviour of
the human participants after showing them a few examples of
a word concept.

In Section II, we describe our definition based hypothesis
space. Section III explains how we construct our similarity
based hypothesis space. The details of the two word learn-
ing experiments are given in Section IV and Section V. In
Section VI, we discuss how our work relates to other works.
Finally, we list our conclusions and point to future directions
of our work in Section VII.

II. DEFINITION BASED HYPOTHESIS SPACE

Formal concepts form our hypothesis space of definition
based concepts, i.e., the concepts that have a set of necessary
and sufficient conditions. Here we follow the intuition that
the set of boolean features that always occur together provide
information about the categories present in the boolean world.
For example, consider the six objects depicted in Figure 1.
Table I lists these six objects along with the boolean features
present in them. The ’X’ mark denotes that an object ’has a’
boolean feature.
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Fig. 2. The figure shows the complete lattice constructed from all the closed
sets in Table I. Each node forms a hypothesis in the definition based hypothesis
space.

We use the abbreviations s, r, w, sq and g to denote
the presence of boolean features ’has a star’, ’is red’, ’has
a spike wheel’, ’has a square’ and ’is green’, respectively.
All the objects also have one feature in common, namely, the
decagon shape of the figures. But this feature is omitted here
for the sake of brevity. In Table I, we notice that the sets
of features {s, r, w}, {w, g} etc., occur together in the world.
These sets of features should provide information about the
concept categories present in the boolean world.

We call a set of features A, a closed set if there does not
exist a feature f such that the set of features A∪{f} have the
same frequency of occurrence. In other words, if A is a closed
set then for any feature f the set of features A∪{f} occurs with
a frequency strictly less than that of set A. By this definition
the set of features {r, w} is not a closed set because {r, w}
occurs with frequency two and so does the set {s, r, w}. On
the other hand, {w, g} is a closed set with frequency three.
This is because we cannot add a boolean feature to {w, g}
such that its frequency of occurrence remains the same. Every
closed set of features has an extension that contains the set of
objects that have those features. The extension of closed set
{w, g} is the set {3, 5, 6} because w and g is present in all
the three objects. Every closed set of boolean features along
with its extension form a formal concept.

The notion of a closed set of features is useful because
they carry all the information about the features that co-
occur. Considering only the closed sets in a boolean world
is advantageous because the closed sets of features are usually
much lesser in number compared to all possible subsets of
boolean features.

The formal concepts in Table I are the following—{}:6,
{w}:5, {s, r}:3, {w, g}:3, {w, sq}:2, {s, r, w}:2, {w, sq, g}:1,
{s, r, w, sq}:1 and {s, r, w, sq, g}:0. The number after the
colon represents the frequency of occurrence of each formal
concept. Note that {} (null set) and {s, r, w, sq, g} (set of all
features) are also closed sets in the boolean world shown in
Table I. The formal concepts satisfy a partial order relation ⊃
(superset of), and therefore, can be arranged in the form of a
complete lattice [7]. The complete lattice in Figure 2 depicts

all the formal concepts in Table I. Each node in Figure 2 forms
a hypothesis in the definition based hypothesis space of word
concepts.

Ganter and Wille [7] explain the theoretical aspects of
formal concept analysis in great detail. For a brief introduction
to formal concept analysis refer Krötzsch and B Ganter [8].
Formal concept analysis has been successful in a wide area of
applications ranging from linguistics and software engineering
to artificial intelligence [9].

The lattice of formal concepts discussed in this section
forms our hypothesis space of definition based word concepts.

III. SIMILARITY BASED HYPOTHESIS SPACE

In order to construct a similarity-based hypothesis space,
we need a notion of similarity. Xu and Tenenbaum [2][3]
construct a hierarchical clustering tree using the average sim-
ilarity ratings between the various images. These ratings were
provided by the human participants. Abbott, Austerweil and
Griffiths also use a tree structured hypothesis space where the
notion of similarity between the hypothesis is derived from
WordNet and ImageNet [4].

Tversky [10] discusses the similarity measures that can
be used to emulatex human similarity judgments. Tversky
introduces a similarity measure called Ratio model which is
as follows:

S(X,Y ) =
f(X ∩ Y )

f(X ∩ Y ) + αf(X \ Y ) + βf(Y \X)
(1)

where X ,Y are the sets of boolean features for the two objects
to be compared and α, β ≥ 0. The α and β values determine
the weights given to the features in X and Y while computing
the similarity.

We use a simplified form of Tversky’s Ratio model, where
α = 1, β = 1 and f(Z) = |Z|, where Z is a set. We let
α = β = 1 so that the features present in both the objects get
equal weights while computing the similarity. The simplified
form of Tversky’s Ratio model becomes :

S(X,Y ) =
|X ∩ Y |

|X ∩ Y |+ |X \ Y |+ |Y \X|
(2)

This simplified form is just another way of writing the Jaccard
similarity coefficient [10]:

J(X,Y ) =
|X ∩ Y |
|X ∪ Y |

(3)

where X and Y are the sets of boolean features corresponding
to the two objects to be compared.

Figure 3 shows the hierarchical clustering tree constructed
from all the objects in Figure 1 using the Jaccard similarity
coefficient (3). Each node in the tree forms a hypothesis in
the similarity based hypothesis space. The hypothesis that are
present in Figure 2 need not be present in Figure 3, and
vice versa. This is because objects that satisfy a definition in
Figure 2 need not be very similar to form a cluster, and the
objects that form a cluster in Figure 3 need not have a set of
defining features.

Which hypothesis space do humans use for the learning
and generalization of word concepts? We try to answer this
question in the following two sections.
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Fig. 3. The figure shows the hierarchical clustering tree constructed from all
the objects in Figure 1 using the Jaccard similarity coefficient (3). Each node
forms a hypothesis in the similarity based hypothesis space.

Fig. 4. A sample stimulus for the word learning experiment. Objects 7, 8
and 9 form the positive examples, and the objects 1, 2 and 3 form the test
examples.

IV. FIRST WORD LEARNING EXPERIMENT

In this experiment, 23 participants were shown 3 positive
examples of a word and asked whether the word generalizes
to a test example. We used a random four letter word in
our experiment having consonants and vowels in alternating
positions. The positive examples in our experiment always
correspond to a formal concept.

Figure 4 shows a sample stimulus. The participants were
told that a novel word applies to objects 7, 8 and 9 in Figure 4.
They were then asked whether the word applies to objects
1, 2 and 3. The rectangular bounding box and the star are
the features that are common to objects 7, 8 and 9. If the
generalization behaviour is based on a formal concept, then
we would expect the participants to generalize a word to both
objects 1 and 2. This is because both the objects 1 and 2 have a
rectangular bounding box and a star. On the other hand, if the
generalization behaviour is based on similarity, then we would
expect the participants to generalize the word more often to
object 2 compared to object 1. This is because object 2 is more
similar to objects 7, 8 and 9.

Figure 5 shows another sample stimulus. The participants
were told that a word applies to objects 7, 8 and 9. They were
then asked whether the word generalizes to objects 4, 5 and 6.
The only feature that is common to objects 7, 8 and 9 is the red
colour. If the generalization behaviour is based on necessary
and sufficient conditions then we would expect the participants
to generalize the word to both objects 5 and 6 equally often.

Fig. 5. Another sample stimulus for the word learning experiment. Objects
7, 8 and 9 form the positive examples, and the objects 4, 5 and 6 form the
test examples.

This experiment is designed to study human word
learning ability.
You will be given three examples of a word.
Based on this information you need to judge
whether the word applies to another example.
Respond to the questions as quickly and accu-
rately as you can.

Fig. 6. Instruction for the first word learning experiment.

On the other hand, if the generalization behaviour is based on
similarity then we would expect that the word is generalized
to object 6 more often.

There were six stimuli similar to Figure 4 and Figure 5.
Each stimulus had three test questions associated with it. The
test questions varied in their degree of similarity—very similar,
less similar and not similar—with the positive examples of a
word. The first two types of the test examples (i.e., very similar
and less similar) also satisfied the formal concept.

Participants were first given five trial questions to famil-
iarize them with the task. The participants were then asked
to respond to 18 generalization questions. Figure 6 shows the
instructions that were given to the participants.

A. Similarity Measure Used

We use the Jaccard similarity coefficient (3) to find the
similarity between any two objects. We did the following
experiment to see how well the Jaccard similarity coefficient
matches the human similarity judgments. We asked a different
set of 24 participants to rate the similarity between 50 pairs
of abstract figures similar to those shown in Figure 4 and
Figure 5. We found that the Spearman rank correlation coeffi-
cient [11] between the Jaccard similarity coefficient and aver-
age similarity ratings was significant (r(48) = .77, p < .001).

B. Results

For each participant, if the generalization behaviour is
based on formal concepts, then, we would expect that the word
gets generalized to the less similar test example as often as it
does to the more similar example. This is because both the
types of test examples belong to the extension of the same
formal concept.
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Fig. 7. The test example that satisfy the formal concepts were taken, and
divided into two groups—less similar and more similar. More similar group
received significantly higher percentage of word generalizations.

Fig. 8. The figure plots the percentage of participants that generalize a word
to a test example against the average similarity of the test example with the
positive examples. The correlation was found to be significant (p < .005).

We divided the test examples that satisfy the formal concept
into two groups—more similar and less similar. The test
examples in the more similar group had a higher average
similarity with the positive examples. Figure 7 shows the
average percentage of trials in which a word was generalized
to a test exemplar in each of the two groups. We see that this
percentage is much higher for the more similar group. We also
found the frequencies with which each participant generalized
a word to a very similar and to a less similar test example
group. The difference between the two frequencies for each
participant was found to be statistically significant using the
Wilcoxon signed ranks test [11] (W (23) = 5.5, p < .001).
This shows that the generalization behaviour was not based
on formal concepts. The reason is that both the groups—more
similar and less similar—satisfied the formal concept, and yet
had a significantly different percentage of generalization.

Figure 8 shows how the percentage of trials in which a
word was generalized to a test example varies with the average

Fig. 9. Figure shows the stimulus corresponding to the anomalous spike in
Figure 8 at X=0.2.

Jaccard similarity with the positive examples. The figure shows
that the percentage increases with the increase in the average
similarity of a test example. The Spearman rank correlation
coefficient between the two variables in the figure was found
to be statistically significant (r(16) = .85, p < .005).

The above two results show that the generalization be-
haviour for the experiment is better modelled using the simi-
larity based generalization compared to a formal concept based
generalization.

C. Discussion: The Anomalous Spike in Figure 8

Figure 8 shows the data for the first word learning ex-
periment. The figure plots the percentage of participants that
generalize a word to a test example against the average
similarity of the test example with the positive examples. In
Figure 8, we see that there is a sudden spike in the graph at
the value X=0.2 along the X-axis.

Figure 9 shows the stimulus corresponding to the anoma-
lous spike in Figure 8. In the word learning experiment,
participants were told that a word applies to objects 7, 8 and 9
in Figure 9. The formal concept corresponding to the positive
examples was the presence of a star shape. After showing
the positive examples the participants were asked whether the
word applies to object 6 in Figure 9. Sixty-four percent of
participants preferred to generalize the word to object 6 even
though its average Jaccard similarity coefficient was only 0.2
(See Figure 8).

One reason for this could be the fact that the star shape
present in object 6 and in the positive examples is visually
more salient. This is because the star feature has more edges
and corner points compared to the other boolean features.
The Jaccard similarity coefficient in (3) does not take into
account the visual saliency of any of the boolean features.
The Tversky’s ratio model in (1) also does not allow individual
boolean attributes to take on different weights depending on its
visual saliency. For this reason, we used a different similarity
measure for our second word learning experiment in Section V.

V. SECOND WORD LEARNING EXPERIMENT

Our first word learning experiment in Section IV used only
a few boolean features. Due to this, we could not have test
examples that were very similar to the positive examples,
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TABLE II. THE FOUR TYPES OF TEST EXAMPLES FOR EACH STIMULUS

Similar to positive examples? Satisfies the formal concept?

Type 1 Yes Yes
Type 2 Yes No
Type 3 No Yes
Type 4 No No

Fig. 10. The figure shows a sample stimulus. The top row, middle row, and
the bottom row list the positive, negative, and test examples respectively. All
the positive examples have a five pointed blue star with a red border.

and yet did not satisfy the formal concept. In our second
word learning experiment we increase the number of boolean
features, so that we can have four distinct types of test
examples as shown in Table II. We also increase the number of
positive examples and introduce negative examples of a word.
We wanted to investigate whether increasing the number of
positive examples would help the participants infer the defining
features, and generalize based on it.

The second word learning experiment was conducted as
follows. Each participant was shown six positive and six
negative examples of a word. The participant was then asked
whether the word generalizes to a test example. We used a
random four letter word having consonants and vowels in
alternating positions. Just like the previous experiment, the
positive examples always corresponded to a formal concept.
We had 24 participants in our experiment.

Figure 10 shows a sample stimulus that was used. The
top row lists the positive examples of a word. The middle
row lists the negative examples. The bottom row contain the
test examples for which we want to study the generalization
behaviour. The test examples are shown to the participant one
at a time.

In Figure 10, all the positive examples contain a five
pointed star with a blue background and a red border. This
is the only feature that is common across all the positive
examples. If the generalization behaviour is based on formal
concepts then we would expect that the word will be gener-
alized to both test examples C and D with equal frequency.
This is because both C and D have a five pointed star with
a blue background and a red border. On the other hand, if
the generalization behaviour is based on similarity then we
would expect that the word is generalized to A and D more
frequently compared to B and C. This is because A and D are
more similar to the positive examples of the word.

Figure 11 shows the positive, negative and test examples for
another stimulus. The positive examples in Figure 11 contain

Fig. 11. The figure shows another sample stimulus. The top row, middle row,
and the bottom row list the positive, negative, and test examples respectively.
All the positive examples have an eight pointed star with a white background
and orange border.

The experiment is designed to study the general-
ization behaviour in human word learning task.
You will be shown three sets of figures on the
screen. First set will contain six positive examples
of a novel word. The second set will contain six
negative examples of the same novel word. The
third set will contain a single figure for which you
need to decide whether the word applies or not.
You will have 12 seconds to answer each ques-
tion. Please be as fast and as accurate as you can
be.

Fig. 12. Instruction for the second word learning experiment.

an eight pointed star with a white background and an orange
border. This is the only feature that is common to all the pos-
itive examples. If the word generalization is based on formal
concepts then we would expect the word to be generalized to
examples B and C with the same frequency. On the other hand,
if the generalization behaviour is based on similarity then we
would expect the word to be generalized to examples C and
D more often.

There were six stimuli as shown in Figure 10 and Figure 11.
Each stimulus had four test examples, and hence there were
24 test examples in total. Table II shows the four types of
test examples that were used in each stimulus. There were
24 test examples in total. The participants were given five trial
questions to familiarize them with the task. Figure 12 shows
the instruction that was given to the participants.

A. Similarity Measure Used

We need a notion of similarity for this experiment also. As
discussed in Section IV-C, the Jaccard similarity coefficient
does not take into account the visual saliency of any of the
boolean features. To solve this problem, we use a linear
regression model. A linear regression model can learn the
appropriate weights that needs to be assigned to each of the
boolean features to account for its visual saliency.

In order to train the linear regression model, we conducted
the following experiment. We asked a different set of 20
participants to rate the similarity between two figures that were
randomly generated by our Python program. The figures were
the same as those used as objects for the second word learning
experiment. Each participant was asked to provide similarity
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measures for 40 pairs of randomly generated figures. This gave
us 800 (20 × 40) data-points to train our linear regression
model.

The Spearman rank correlation coefficient between the user
similarity ratings and those predicted by the trained linear
regression model was found to be .70. The trained linear
regression model was used to obtain the similarity measures
for our second word learning experiment.

B. Result

If the similarity based generalization dominates the formal
concept based generalization then we would expect a word
to generalize to type 2 test examples more often than type
3 test examples (See Table II). The participants generalized a
word to a type 2 test example 75% (108 of 144) of the trials
but this percentage was only 37% (53 of 144) for the type
3 test examples. The difference between the type 2 and type
3 generalization frequencies for each participant was found
to be statistically significant using the Wilcoxon signed ranks
test (W (21) = 24, p < .001). Here df = 21 because for 3
participants the difference between the frequencies was zero.
The statistical significance of the difference in frequencies
shows that the generalization behaviour is not based on formal
concepts.

Figure 13 shows the 24 test examples divided into two
groups—those that satisfy the formal concept and those that
do not. We find the average percentage of participants who
generalize a word to the test examples in each of these two
groups. If the generalization behaviour is based on formal
concept, then we would expect the average percentage to be
closer to 100% for one group and closer to zero for the other.
Figure 13 shows the average percentage of participants who
generalized a word to the test examples in each group. We
see that for both the groups the average percentage is closer
to 50%. Spearman rank correlation coefficient between the
generalization made by the participants and the generalization
based on definition was found not to be statistically significant
(r(574) = .15, ns). Here df = 574 because we have 24
participants and 24 trial questions (N = 24× 24 = 576).

Figure 14 shows the 24 test examples divided into two
groups based on their similarity to the positive examples of
a word. If the participant generalization behaviour is based
on similarity, then, we would expect this percentage to be
closer to 100% for one group and closer to zero for the
other. The data in Figure 14 confirms this. Spearman rank
correlation coefficient between the generalization made by the
participants and the generalization based on similarity was
found to be statistically significant r(574) = .51, p < .001).
Here df = 574 because we have 24 participants and 24 trial
questions (N = 24× 24 = 576).

Figure 15 shows how the percentage of participants who
generalized a word to a test example varies with the average
similarity between the test example and the positive examples.
In the figure, we see that the percentage increases with the
average similarity. The Spearman rank correlation coefficient
between the two variables was found to be significant (r(22) =
.87, p < .005). Here df = 22 because there are 24 test
examples.

Fig. 13. The 24 test examples are divided into two groups—those that
satisfy the formal concept and those that do not. There is no significant
difference between the two groups when it comes to the average percentage
of participants, who generalized the word to the test example.

Fig. 14. The 24 test examples are divided into two groups based on their
average similarity with the positive examples. The figure shows that the more
similar group has a significantly greater percentage of word generalization.

The above results show that the generalization behaviour
for the second word learning experiment is better modelled
using the similarity based generalization compared to a formal
concept based generalization.

VI. DISCUSSION

Our results show that the word generalization behaviour
is similarity based even when the word category has a set
of defining features. This result is consistent with earlier
results [2][3][4] that show that the word generalization in fast-
mapping is similarity based. Our word learning experiments
are different from previous works because we ensure that
a word in our experiment always corresponds to a formal
concept.

Tenenbaum et al. [12] discuss the importance of abstract
knowledge in helping humans do fast learning. The represen-
tation of this abstract knowledge is domain specific, and varies
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Fig. 15. The figure shows how the percentage of generalization for at test
example varies with its average similarity with the positive examples. The
correlation was found to be significant (p < .005).

widely from a tree structure to a directed acyclic graph [12].
In our work, we have tried to explore the nature of this
knowledge representation for human word learning. Human
word learning is usually modelled using Bayesian inferencing
on a structured hypothesis space [3][4]. Selecting the right
knowledge representation is important because it implies qual-
itatively different set of hypotheses, for a probabilistic model
to choose from [13].

Laurence and Margolis [14] review the various, major
theories on concept formation. Formal concepts are more like
the classical theory of concepts, while the similarity-based
generalization conforms more to the prototype theory [15].
Laurence and Margolis [14] also discuss other theories of
concepts that try to combine the classical and prototype theory.
M. Freund [16] proposes a formal model that combines the
notion of typicality from the prototype theory with the formal
concept analysis.

We have used abstract figures as examples in our word
learning experiments. This ensures that the generalization
behaviour is not influenced by the background knowledge that
the participants might have about the examples used in our
experiments. The features present in the examples can only be
visual features; therefore, it becomes easier to ensure that the
positive examples correspond to a formal concept.

We have changed several independent variables in our
two word learning experiments. These include the stimuli,
number of boolean features, number of positive examples,
and the presence of negative examples. Despite changing
several independent variables, we found that the generalization
behaviour (dependent variable) was based on similarity, and
not on defining features. We speculate that the reason for this is
that abstracting out a definition from a set of positive examples
puts a greater cognitive load on the participants, compared to
judging the similarity between a test example and the positive
examples.

VII. CONCLUSION AND FUTURE WORK

We have conducted two word learning experiments that
show that the generalization behaviour during fast mapping is
based on similarity, and not on a set of defining features. This
is true even when enough positive examples exist from which
the defining features can be inferred.

The two experiments used different sets of stimuli and
had different sets of participants. We increased the number
of boolean features, the number of positive examples and
introduced negative examples, for our second word learning
experiment. Despite changing several independent variables,
our results consistently show that the generalization behaviour
is not based on formal concepts.

Currently, the knowledge representations used in the lit-
erature are domain specific, and not stimuli specific. In our
future work, we want to investigate whether the same word
concept representation can be used to model word learning
across different stimuli conditions.
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