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Abstract— The brain is both a thermodynamic system and an 

information processor. Cognition is described well in terms of 

information-based models and brain activity as a physical 

process, is accurately addressed via a thermodynamic 

approach. A connection between information theory and 

thermodynamics in neuroscience is currently lacking in the 

literature. The aim of this paper is to propose an integrative 

approach regarding information and energy as two related 

magnitudes in the brain, and to discuss the main connections 

between information theory and thermodynamics that may be 

helpful for understanding brain activity. In this sense, the link 

between both approaches is based on the concepts of entropy 

and negentropy, the Boltzmann formula, the Landauer’s 

Principle and the energetic cost for the observation of 

information proved by Szilard. This set of connections enables 

us to show that information and energy are two strongly 

related and interchangeable magnitudes in the brain with the 

possibility of making this relationship explicit, as well as the 

possibility of translating the quantities from one to the other. 

This view also contributes to a better understanding of the 

fundamental relationship between cognition and physical brain 

activity. Finally, we propose new conjectures and future lines 

to work concerning the study of spontaneity of the brain 

activity from this integrative perspective. 
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I.  INTRODUCTION  

The brain is both a thermodynamic system and an 

information processor. Hence, it is indeed subjected to the 

main constraints of both theories, i.e., the second law of 

thermodynamics as well as Shannon’s source coding 

theorem, which states that a message cannot be compressed 

below its entropy bound [1]. It is well known that there 

exists a set of connections between information theory and 

thermodynamics. These are essentially its respective 

entropies and negentropies, as well as the Boltzmann 

formula, the Landauer’s Principle [1][11] and the energetic 

cost for the observation of information proved by Szilard [2].  
Several attempts have been made to find a tenable 

explanation for brain activity from the framework of 
thermodynamics, as well as from the information theory 
perspective [3]. The first perspective describes well the 

physical brain activity, and the second is able to explain 
several cognitive aspects (perception, learning, action, active 
inference, etc.) [4][5]. On the one hand, we consider the 
contribution of Prigogine [6] to the field of the 
thermodynamics of the open dissipative systems, in which 
the brain fits well. In this sense, the concept of negentropy is 
essential [7], and its flow can be expressed by an ordinary 
differential equation that describes the energetic 
income/outcome of the brain [8]. Following the 
thermodynamic stream, La Cerra [9] proposed a physically-
principled model of the mind, embedded in an energetic 
framework. It regards the brain as the machine in charge of 
ensuring by means of adaptive behavioral responses the 
optimal ratio of costs/benefits in energetic terms for the 
entire system. From this perspective, the second law of 
thermodynamics is considered the main principle that rules 
human brain activity. On the other hand, Friston [4] presents 
an information-based brain model embedded in Bayesian 
variational analysis and hierarchical generative dynamics. 
This model describes well the learning, perception and 
inference cognitive processes. From this viewpoint, it is 
legitimate to expect that if there exists a set of connections 
between thermodynamics and information theory, these must 
preserve the validity of the statements and principles that 
underlie each of the above models, and will show, indeed, a 
high degree of consistency when we transform the quantities 
and magnitudes from one model to the other by using such 
links. That is to say, if a certain model predicts the change of 
the system in one direction basing its prediction on energetic 
measures, we expect to find the same outcome in an 
information-based model if we translate these energetic 
quantities into its equivalent information magnitudes.  

In Section II, we expose the main connections between 
thermodynamics and information theory that may be useful 
for understanding the exchange between energy and 
information in the brain. In Section III, we introduce, analyze 
and connect some of the most relevant brain and cognitive 
models formulated from the scope of thermodynamics as 
well as from the information theory viewpoint. Thereafter, 
we give insight for a new integrative approach to the brain 
activity considering the points commented before. Finally, 
we make some conjectures referred to the possibility of using 
this new view of brain modeling in order to study the 
spontaneity of the cognitive and brain processes.  
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II. CONNECTIONS BETWEEN INFORMATION THEORY AND 

THERMODYNAMICS 

A selection of the connections between information 

theory and thermodynamics that may be helpful for 

understanding brain activity is presented in this section.  

A. The thermodynamic and Shannon’s entropies and 

negentropies 

A core concept appears in both theories, the so-called 

entropy. The meaning of the thermodynamic entropy and 

Shannon’s entropy -from information theory- is not exactly 

the same, but the intuitive ideas behind both are very similar, 

as Boltzmann formula evidences. 

The meaning of the physical entropy S is essentially the 

degree of disorder of the system, namely the energy 

dissipated in the form of molecular vibration that cannot be 

used to produce work. Its difference ΔS between two states 

a1 and a2 can be computed as follows [10] 
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where Q is the heat function and T the absolute temperature 

of the system. 
From entropy, its complementary concept appears 

naturally, namely negentropy or free energy [7]. It 

corresponds to the amount of energy that can be used to 

produce work. For instance, there is negentropy present in a 

system that has an electrical or a pressure gradient, like a 

neuron before spiking. In the physical sense, it can be 

described as the Helmholtz free energy FH [6] 
 

                     TSUFH                                  (2) 

 

where U is the internal energy of the system. 
Before describing Shannon’s entropy, we must first 

define the information I contained in one character xi [11]:  
 

    )(log)( 2 ii xpxI                          (3) 

 

where p(xi) is the probability of the occurrence of the 
character xi. 

The information expected in one message X composed of 
one character from the set of all possible {xi}, i=1,...,n is 
known as Shannon’s entropy H: 

 

  )(log)()( 2 ii xpxpXH                 (4) 

B. The Boltzmann formula 

The first statistical formulation of thermodynamic 
entropy was provided by Boltzmann in 1877, giving an 
absolute interpretation of this quantity (no longer as a 
measure of the entropy difference between two states). 
Historically, this work was done about 70 years before 
Shannon’s entropy was introduced. In particular, the latter 
was thought of an abstraction of the former. 

The physical entropy S of a system can be computed as 
follows [10] 

)ln(WkS                                 (5) 

 

where W is the number of possible microstates of the system 
(assuming that all are equiprobable) and k is the Boltzmann 
constant (approximately 1.38·10

-23
). 

C. Landauer’s principle and the information observation 

Szilard [2] proved that there is a minimum energetic cost 
of T·k·ln(2) J (or equivalently, an increase of physical 
entropy of k·ln(2) J/K ) that every system must pay in order 
to observe one bit of information, namely if we want to 
know whether it is a “0” or a “1”. Here, k is the Boltzmann 
constant. Brillouin generalized this principle stating that 
negentropy can always be transformed into information and 
vice versa [12].  

Likewise, Laundauer’s principle states that the same 
minimal quantities are to be paid for encoding (or erasing) 
the same bit of information [1]. This energetic cost for both 
procedures is due to the very nature of them, which are, in 
turn, the most optimal possible.   

III. THE THERMODYNAMIC AND THE INFORMATION-

BASED MODELS OF THE BRAIN AND COGNITION 

A selection of thermodynamic models is considered for 

our work. These can be regarded together as a simple set of 

equations and principles that describes brain activity in 

energetic terms. Thereafter, we briefly illustrate the main 

ideas of Friston’s model [4], which describes cognition in 

terms of information theory. Since it is not the aim of this 

paper, we will leave out the mathematical details of this 

theory and will focus on the intuitive concepts behind it. 

Nevertheless, we want to stress that the mathematical 

treatment of this model is fundamental in order to connect 

the two theories. Moreover, an important part our current 

work is based on the mathematical definitions of the 

respective entropies and free energies present in both 

theories.  

A. Thermodynamic models of the brain activity 

A fundamental constraint to which all thermodynamic 

systems are subject is the second law of thermodynamics. It 

states that the entropy for every isolated system can only 

increase (except for small random fluctuations, according to 

its probabilistic formulation). Thus, this principle restricts 

the spontaneous processes (i.e., those that occur without 

external help) to only one possible direction, namely the one 

which implies a gain of entropy, or, equivalently dS/dt ≥0. 

By using the above links, the second law of 

thermodynamics can be reformulated into informational 

terms as: “our information about an isolated system can 

never increase (only by measurement can new information 

be obtained). Reversible processes conserve, irreversible 

ones (mostly spontaneous) loose information.” [13] 

The brain is a thermodynamic device characterized by 

being an open dissipative system, isothermal, isobaric and 

with a constant flow of negentropy [8]. In order to study the 

entropy exchange between the inside and outside of the 
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brain (and the same can be applied to a single neuron or 

every biological system), we must split the dS into two 

terms, making the distinction between the entropy produced 

within the system di S, and the transfer of entropy across its 

boundaries deS [6]. Therefore, since the second law of 

thermodynamics must hold, after every cognitive task diS > 

0 is always obtained. This initial increase of entropy within 

the system is always followed by a removal of entropy 

through its frontiers in order to preserve the structure and 

functionality [3][9]. Moreover, so as to recover the capacity 

of producing work (e.g., to transmit an electric impulse) 

there must be an inflow of negentropy (adenosine 

triphosphate (ATP), for instance). Hence, this 

energy/entropy flow for the brain can be expressed by the 

following ordinary differential equation [8] obtained by 

differentiating (2). 
 

2211 cici
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T

dt

dF
                       (6) 

 

Here, Ji  and Jc denote the radiation and chemical energy 

flows respectively, and the subscripts 1 and 2 refer to the 

incoming and out coming flows [8]. 

From this perspective, the brain activity is driven by the 

quest to consume free energy in the least possible time [14].  

That is to say, the flows of energy (i.e., electric activity) 

themselves will search for the paths of transduction, 

selecting those that consume free energy in the least time. 

The transduction paths are established when an experience, 

encoded in some sort of energy, is recorded. These paths for 

energy dispersal within the neuronal network constitute 

memory, i.e., the register of remembrance that can be 

consolidated or reorganized when a certain path is activated 

again by an energy flow. 

B. Information-based model of cognition 

Friston’s model is embedded in machine learning 

framework and regards the brain as an inference machine 

ruled by the “free energy minimization principle”. Here the 

so-called free energy is defined as an upper bound for what 

Friston defines as “surprise”, i.e., how unlikely it is for the 

system to receive a certain input. In short and skipping 

mathematical content, the free energy function F can be 

expressed conceptually as: 

 

(i) F = Cross Entropy + Surprise 

 

At the moment, we just notice that the “cross entropy” is a 

positive  term (the  so-called  Kullback-Liebler  divergence). 

Equivalently, by algebraic rearrangement of its 

mathematical formulation the following equation is obtained 

 

(ii) F = Expected Energy – Entropy 

 

where “expected energy” corresponds to the surprise of 

observing an input jointly with its cause, and “entropy” is 

equivalent to the Shannon’s entropy of the variable causes 

(i.e., what caused input). Interestingly, notice that (ii) 

resembles the Helmholtz free energy in the physical sense. 

Via free energy minimization, neuronal networks [4] 

always tend to optimize the probabilistic representations of 

what caused its sensory input, and therefore the prediction 

error is minimized. This free energy minimization in the 

system can be performed by changing its configuration to 

change the way it samples the environment, or by modifying 

its expectations [4]. Therefore, hypothetically the system 

must encode in its structure a probabilistic model of the 

environment, and the brain uses hierarchical models in order 

to construct its prior expectations in a dynamic context. In 

this sense, this model is capable of explaining a wide variety 

of cognitive processes. 

C. Connections between the two approaches 

A close look at Friston’s and La Cerra’s models yielded a 

finding of the following functional similarities: 

(1) The system (brain) must avoid phase transitions, i.e., 

drastic changes in its structure and properties, and (2) the 

system encodes a probabilistic relationship between: the 

internal state of the organism, specific sensory inputs, 

behavioral responses, and the registered adaptive value of 

the outcomes of these behaviors. 

Interestingly, we notice that the principles that underlie 

both the thermodynamic model of the brain and the 

information-based model of cognition are consistent in the 

sense that they steer the system in the same direction. Let us 

consider the case where both the Friston’s and the 

thermodynamic free energies are large within a certain 

neuronal population. In the Friston’s case, this indicates that 

the input received is highly “surprising” (e.g., facing a novel 

or dangerous situation). According to this model, the system 

will react by taking some action as well as by updating its 

perception, yielding to free energy minimization (ΔF< 0). 

The same will occur under the same situation if we think in 

terms of thermodynamics models. The physical free energy 

is also large due to the initial blood and energetic inflow that 

accompanies a novel situation, but this amount will be 

rapidly reduced by the activation of neuronal paths that 

consume free energy in the least possible time (ΔFH < 0). By 

doing so, the brain is carrying out a codification task in the 

sense that a smaller amount of free energy will be necessary 

to activate the same neuronal path on subsequent occasions. 

Analogously, Friston’s model prescribes a subsequent 

prediction error reduction (i.e., a better encoding of the 

causes of the input) following this free energy minimization. 
In order to provide some insight into how the information 

must be encoded, let us suppose that we are set the task of 
memorizing a random number between 0 and 256. It is 
obvious that we have to encode it somewhere in our neuronal 
network. Due to Shannon’s source coding theorem, we 
cannot codify it using fewer bits than the information 
contained in it. Thus, at least 8 bits (I= log2(256) = 8 bits), 
namely 8 “places” in our brain circuitry with 2 possible 
combinations in each one. Of course, we must consider that 
some numbers can be compressed by using some heuristics. 
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The former statement can be generalized to every behavior 
or cognitive task, considering that these are nothing but an 
“algorithm” that our brain has to encode in our neuronal 
network, even if it is not a permanent, but rather, a temporal 
encoding in our working memory.  

Clearly, the Szilard and Landauer principles shed some 

light on the theoretical bounds for the exchange between 

information and energy present in the brain activity. 

Nevertheless, these are not realistic quantities in this context, 

since the encoding mechanisms in the brain are far from 

being entirely efficient. Moreover, there are also important 

noise and redundancy factors [15]. Laughlin has shown that 

considering a consumption of 10
6 

ATP molecules for each 

neuronal spike and the fact that a sensory spike carries 

between 1 and 10 bits of information, then, the metabolic 

cost for processing 1 bit of information is about to 10
5
 ATP 

molecules [16], or equivalently 5·10
-14

 Joules. This means 

that the human brain is operating about 10
7
 times above the 

thermodynamic limit of k·T·ln(2) J per each bit encoded, 

which is still more efficient than the modern computers. We 

want to highlight the fact that these quantities refer to the 

energetic cost of visual perceptive processing, and therefore, 

these cannot be extrapolated neither to all the brain areas 

nor to all cognitive processes, since the redundancy and 

noise factors are topographic and population-size dependent 

[15]. In general, the larger the neuronal ensembles, the 

greater the number of redundant interactions between 

neurons. We hypothesize that the exchange between energy 

and information in the brain is performed at a constant rate, 

similar to Landauer’s limit, but this constant depends on the 

redundancy factor of a particular neuronal ensemble as well 

as on the type of neurons it contains. This limit would be 

given by the very nature of the neuronal encoding 

procedures. Besides, it is clear that higher level visual areas 

like for instance the MT (responsible of motion perception) 

are processing, at most, the whole amount of bits received 

from the sensory neurons plus some extra information that 

is already stored in our neuronal network (i.e., our pre-

knowledge or expectations about the world) which is 

necessary to integrate the new input. For our conscious and 

deliberate thinking (e.g., solving a problem that affects our 

life), there is no external sensory information to integrate, 

and therefore all the information processed comes from the 

internal representations stored in our neuronal network. 

From this, we can conclude that a measure of the energetic 

expense during a certain cognitive task obtained by means 

of electroencephalography (EEG) or functional magnetic 

resonance (fMRI) (ideally a combination of both) would 

provide a reliable measure of the processing complexity of 

this task, as well as about its information content. For the 

conversion from observed energy into its information 

content we must have previous knowledge about the 

redundancy factor of the involved brain areas, as well as its 

energetic cost of processing (as Laughlin computed for the 

visual sensory coding). Conversely, the model could also be 

checked the other way around, that is estimating first the 

necessary information to compute a certain cognitive 

operation (e.g., a mathematical mental computation) and 

then comparing the energy expense seen in fMRI and/or 

EEG during the task with the predicted quantity. From 

machine learning and computational approaches, the 

prediction of the information content of a certain cognitive 

operation could be obtained by computing an equivalent 

algorithm which carries out the same process in a computer. 

Indeed, an integrative model must incorporate the referred 

energetic-informational correspondence so as to allow 

making predictions by using both magnitudes. We suggest 

that the empirical validation of the model should be done in 

the direction described in the above lines. 
We consider that a challenging aspect of the neuronal 

activity to explore is the concept of spontaneity. Namely the 
direction in which the transformations of the system occur, 
and which necessary (but not sufficient, due to the non-
deterministic inherent character of brain activity) conditions 
are to be held for the occurrence of these changes. Currently, 
the Gibbs free energy function G describes this well in terms 
of thermodynamics, being the spontaneity possible only if 
ΔG < 0 [10], where  STHG   and H is the enthalpy. 

However, with the previous considerations of the 
interrelationship between information and energy 
magnitudes, we consider the possibility of enhancing the 
characterization given by Gibbs into spontaneous processes 
in the brain by adding information quantities.  

IV. CONCLUSIONS AND FUTURE WORK 

A first sketch of an integrative approach to studying brain 
activity was presented here. We provided a set of useful 
tools, namely the links between information theory and 
thermodynamics that can be used to connect the cognition 
described in informational terms with the physical activity of 
the brain modeled by thermodynamics. Nevertheless, from a 
theoretical point of view, there are still several points to be 
connected between the two main models, such as, for 
instance, the free energy present in Friston’s model with the 
thermodynamic measure equally termed. Our main current 
work is focused on further elaborating the connections 
between the thermodynamic and information-based models 
of the brain, aiming to present the explicit form of the 
equations that permit us to relate and unify both theoretical 
approaches in the near future. The possibility of validating 
the model empirically in the future in the way we indicated 
above is suggested. We also aim to inspire more researchers 
to contribute further to this new integrative approach, as well 
as to empirically studying its consequences. 
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