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Abstract—Cognitive robotics can take advantage of 

distributed, web-based information as a foundation for 

comprehending 3D objects in a 3D scanned world. The 

proposed CogOnto model makes possible grounding a 

cognitive computing system with sensor data gathered from 

diverse and heterogeneous sources, associated with humanly 

crafted symbolic descriptors. The system supports cognitive 

embodiment within the totality of an information ecology, and 

not just within the physical world where an individual robot, 

essentially a mobile peripheral device, is located. The informed 

system uses 3D objects as common denominators for shared 

world comprehension.      

Keywords-Cognitive Modelling; Eye Tracking/Steering; 

Human Robot Interaction; Knowledge base; Ontology.   

I.  INTRODUCTION 

Field robotics technology has matured to the point where 
commercial robotics platforms are available for diverse 
applications, such as surveillance, sample and data 
collection, analysis and return, construction, agriculture and 
mining operations. Communications links with robots now 
have high data capacities. A consequence of these advances, 
however, is that human operators receive increasing amounts 
of data streamed from robots that they must perceptually and 
cognitively process, often in real time, in order to perform 
real-time tele-robotic tasks. This data input is often of an 
overwhelming volume and complexity. One approach to 
dealing with this task performance demand is to offload 
some or all of the required cognitive processing onto the 
robot platform itself. Hence cognitive robotics aims to 
develop intelligent software capable of performing highly 
automated cognitive task performance by robots in order to 
optimize their use and take best advantage of the latest 
hardware developments. Artificial Intelligence (AI) has long 
sought solutions for making robots more intelligent, with 
rather limited success. 

The formation and use of representations, and the 
possibility of making representations meaningful, is a key 
attribute of intelligence, and is one of the areas where AI has 
met challenges due to the human authorship of 
representations in traditional AI systems; the representations 
are too abstract to be grounded for the technical artifact, do 

not change with their contexts, require human interpretation 
to provide their meaning, and have arbitrary bounds [1].  

Grounding the formation of symbolic representations in 
dynamic and embedded processes as biological systems do 
provides one approach to trying to avoid these issues in 
knowledge representation. However, the increasing 
availability of extensive broadband communications 
networks, high capacity computer memory and processing 
services, and extensive on-line data, suggests an alternative 
approach to symbol grounding and embedded cognition. 
This is by the use of repositories of previously captured 
sensor data together with real-time sensor data that have 
labels and semantic annotations supporting their discovery 
and reuse in AI systems. A cognitive robotics system 
realized on this basis can have the following features: 

 

 Agency can be nested, where a robot consists 

minimally of a hardware platform.  

 The on-board processing ability of a robot can 

scale, from low level interfaces for sensor 

transmission and command reception, through 

increasing levels of on-board autonomy, to full 

autonomous operation [2]. 

 Intelligence in the system does not need to be 

physically encapsulated or localized.  

 Intelligent agency can be mapped across one or 

more robot platforms and hardware processing 

networks, with cognitive processing that is partially 

or wholly cloud-based. 

 An intelligent agent can use the cloud-based 

memory of past perceptions of other robotic and 

human sensory data as a technical analog of human 

episodic memory. 

 All ongoing and past sensor streams, decision 

processes and generated actions (i.e. the 

‘experiences’) of agents can be stored for analysis 

and application in ongoing and future task 

performance. 

 The scope of an agent can be scaled in proportion 

to the task that it is performing and the 

environment in which the task is performed. 

220Copyright (c) The Government of Australia, 2014. Used by permission to IARIA.     ISBN:  978-1-61208-340-7

COGNITIVE 2014 : The Sixth International Conference on Advanced Cognitive Technologies and Applications



Robotics research is beginning to explore ideas like these 
in a number of scenarios [3]. In this paper, we focus on the 
use of robotic 3D object perception and propose the use of a 
cloud-based infrastructure to implement a machine vision 
paradigm inspired by Marr’s theory [4] of visual cognition. 
We also propose a method of using 3D simulation integrated 
with this perceptual approach. The derivation of 3D model 
data from perception provides world state information as 
input to an ongoing world simulation. The simulation 
provides predictions about future states. Those predictions 
facilitate rapid processing in future perception. The 
comparison of predicted states with perceived states also 
provides foundations for tuning the simulation and its 
parameters, that can also be represented declaratively to 
support higher level reasoning. The proposed CogOnto 
model described below stores the process and object(s) 
information in a knowledge system that can guide the robot 
in physical collaboration, manipulation and navigation. 

The structure of the paper brings you as a reader from a 
‘high level architecture’ to ‘3D visual processing’ and 
thereafter to ‘intelligent action in a structured world’. The 
actual contribution of this paper is presented in the section 
‘proposed model’, followed by ‘integrating semantic web 
concepts, resources, and technologies to the final summary.  

II. HIGH LEVEL ARCHITECTURE 

When the robot is operating in the physical world it may 
be controlled by a cognitive agent residing off-board, see 
Fig. 1. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Robot hardware assisted by the cognitive agent where real 
time 3D object perception and recognition are supported by the 3D virtual 

world and knowledge cloud. 

 
If the robot shall observe and manipulate a 3D object, it 

must have real time perception, comprehension and memory 
recall so that the robot knows how to execute the 
manipulation task(s) via motor action. The linked data cloud 
is operatively called to match already stored 3D object 
information parallel to real time 3D object extraction from 
the scanned physical world: this is the recognition phase. The 
3D world state model constitutes a virtual world derived 
from a scanned volume of view where objects and object 
motions are captured, digitized and recorded. The recorded 
information is fed into memory and can be used for 
simulation scenarios and prediction of scenario events. 

Notice in relation to ‘first order predicate calculus’ [5] that 
3D objects here are both subjects and objects, while 
adjectives and verbs are predicates. 

III. 3D VISUAL PROCESSING 

The ability to scan a real world environment makes it 
possible to extract digital information about the physical  
world and how it functions. Three dimensional perception is 
a key technology for robotics applications where obstacle 
detection, mapping and localization are core capabilities for 
operating in unstructured environments. Laser scanning 
creates a surface point cloud of a 3D physical environment 
[6] making it possible to map any environment in a rather 
short time (the Leaning Tower of Pisa was scanned in 20 
minutes). This technology can be used in a robotic 
intelligence system for Simultaneous Localization Mapping 
(SLAM) and higher level reasoning regarding location and 
position. However, object recognition and manipulation 
requires deriving 3D object information from the overall 
point cloud and building cognitive models with task 
reasoning for using object and scene data in real time.     

 
Object extraction [7][8][9] makes it possible to know 

what a robot is looking at, supporting manipulation or 
collection actions. This can be achieved by an Environmental 
Scanning-Object Extraction (ES-OE) engine. For human-
robot collaboration, a robot can be enabled to use deictic 
visual references from human gaze by integrating an eye 
tracker with the ES-OE engine.  

A. Background 

In a previous work [10], a 3D simulation engine was 
integrated with an eye tracker. The integrated system allows 
the human point of gaze on 3D objects within a 3D digital 
world projected onto a computer screen to be tracked 
automatically. This development made it possible to log gaze 
in various task-related environments in a simulated world. 
From a Human Factor’s perspective, the simulation and 
human observation can be investigated, including 
collaborative actions performed by groups with various 
workloads, stressors and decisions. There have been several 
studies made using the technological framework with 
different stimuli [11][12][13], but no substantial theoretical 
framework has been developed in relation to this object-
based approach per se. A bottleneck in relation to this visual 
approach has been that 2D image, film and visual stimuli 
have not met the requirements for incorporating a 
knowledge-based approach for dynamic 3D worlds, whether 
the real physical world or a digitized 3D world. The object 
approach needs to address how both modeled and real world 
objects can be perceived and manipulated [14] by a robot, 
allowing the system to sense, think and act in real time: the 
computer needs to understand how to define an object and 
how to ontologically and semantically make sense out of 
such an object in a dynamic spatial world. 

 

1) 3D objects in a 3D world 
In [10], a simulation engine integrated with an eye tracker 

took a gaze fixation (x and y screen coordinates) and ray 
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casted/traced from that position onto the underlying 3D 
virtual object’s collision box, a volume corresponding with 
the shape of a virtual object as recognized and processed by 
a physics engine that is also used to designate objects by 
interface devices, like a mouse. This made it possible to track 
gazed objects in real time every 17 ms (using a 60Hz eye 
tracker). The same principle can be used in a physical world 
context where an ES-OE engine could be integrated with eye 
tracking glasses to allow a computational system to know 
what object a person wearing the glasses is looking at. 

 

2) Structuring a noisy world 
The 3D world scenario, simulated or physically real, 

constitutes an event or scene. A scenario includes objects 
that are instances of their classes. A class could be something 
like a CarClass, HumanClass, FlowerClass, etc. 

In a constrained world, we can name all objects 
beforehand so when they are logged we know what they are 

and what position (x, y, z, 1, 2, 3) they are in. In an 
unconstrained environment that is scanned and has extracted 
objects, we must also have a capability to know what the 
objects are and to be able to classify them. A cloud-based 
approach of the kind proposed in this paper presents a middle 
ground, being more open than a highly constrained 
environment, but still being limited to objects of types that 
are represented and labeled within the cloud. 

IV. INTELLIGENT ACTION IN A STRUCTURED WORLD 

Knowledge by definition is “1. Facts, information, and 
skills acquired through experience or education; the 
theoretical or practical understanding of a subject and 2. 
Awareness or familiarity gained by experience of a fact or 
situation.” [15]. To gain an understanding of how robots 
might learn and operate on knowledge, we have looked at 
several established models that can fit within an initial 
architecture that enhances these established models by the 
ingestion of information from the web.  Our overall aim is to 
build a computational comprehension system for 3D object 
information, assisted by a hybrid computational ontology 
(i.e., combining several existing and new ontologies). 

A. Existing Models 

Extensive effort has been put into the task of 
understanding and attempting to re-create/simulate the 
processes by which a human being thinks. Using the 
underlying assumption that intelligence is wholly “the simple 
accrual and tuning of many small units of knowledge” [16], 
production-based models of cognition have had success in 
displaying human-like performance on a number of tasks 
(e.g., visual search [17] and natural language processing 
[18]). While there are debates regarding the similarity of 
what humans actually do to what we have achieved using the 
above assumption [19], there is little doubt that such systems 
can produce intelligent-seeming behavior, that can facilitate 
the development of vitally useful control structures in the 
field of robotics and computational intelligence [18]. 

One of the most influential models of human cognition is 
the ACT-R, or “Adaptive Character of Thought – Rational” 
model [16], developed over many years by John Anderson, 

who was a student of the seminal Cognitive Scientist Alan 
Newell (1927-1992). Anderson’s model is a hybrid 
symbolic/sub-symbolic system that incorporates various 
“modules” that are deemed necessary for rational behavior, 
and are thought to have biological correlates.  These include 
the modules Declarative (manages creation, storage and 
activation of memory “chunks”), Procedural (stores and 
executes productions based on expected utility), 
Intentional/Imaginal (goal formulation for directed 
behavior), and Visual (2D)/Audio (theoretically plausible 
implementation of visual and auditory perception), see Fig. 
2. An internal pattern-matching function searches for a 
production that matches the current state of the buffers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. A schematic representation of the canonical ACT-R cognitive 
model. 

 
ACT-R is formed as a knowledge model where the 

“chunks” are the elements of declarative knowledge in the 
ACT-R theory and are used to communicate information 
between modules through the buffers. A chunk is defined by 
its chunk type, that is described by its slots (here compared 
with properties), see table 1. Chunk types can be organized 
as a hierarchy of parent (SuperType)-child (SubType) 
relationships. The subtype will inherit all of the slots 
(properties) of the parent node(s).  

Other models that take a similar symbolic approach to 
model human cognition include Soar [20], EPIC [21], 
CLARION [22], and others (for a detailed review see [23]). 
While these have been successful to varying degrees at 
modeling specific human cognitive task(s) performance, it is 
becoming evident that such models are intrinsically limited 
by their disconnections from the real world in which humans 
(or robots) operate. A production based system is only as 
adaptive as its rule set allows given the inputs provided to it, 
that have generally been limited to “screen as eye” and 
“keyboard/mouse as hands” mappings.  A new wave of 
thought surrounding the development of cognitive models is 
embracing the need for “embodied” cognition, improving the 
ability of the system to sense and act.  One example of this is 
the ACT-R/E framework, used as an operating system for 
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mobile robotics developed by the American Naval Research 
Lab [24], depicted in Fig. 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. The “embodied” (Visual 3D) modifications introduced by Trafton 
et al. 2012.  Additions in the ACT-R/E are highlighted in red. 

 
The Object-Attribute-Relation (OAR) model of Wang, 

2007 [25], specifies the elements of a cognitive model in the 
fashion of an ontology, the logical model of memory.  In an 
attempt to formally describe the mechanism of human Long 
Term Memory (LTM), which he states is the “foundation of 
all forms of natural intelligence” (p. 66), Wang decomposes 
the construct into three elemental components – Objects, 
Attributes and Relations. This OAR model allows the 
computational specification of the human LTM formation 
and storage process, and is put forth as having sufficient 
explanatory power as to describe the “mental process and 
cognitive mechanisms of learning and knowledge 
representation” (p.72). This model has a strong parallel with 
the specification of knowledge in information processing 
Ontologies. This parallel is direct, as described by the 
relations given in Table I. 

TABLE I.  COMPARISON OF MODEL TYPE CONSTRUCTS 

 
 
 
 
 
 
 

A critical issue for any of these kinds of models is the 
relationship of their constructs to the environments in which 
they are expected to provide foundations for action. The core 
notion of embodiment is to provide the heretofore 
functionally “disembodied” computational model with 
sensors and effectors that allow its direct interaction with the 
physical world. In such a way, the inherent limitation of 
human-defined input may be overcome. In addition to 
physical sensory perception and manipulative ability, a 
human may have access to a detailed semantic understanding 
of the surrounding world.  In the quest to produce a non-

human intelligent actor within a physical space, we must 
provide the actor with an understanding of underlying 
structures, i.e. specific denotations in the physical world. 

V. PROPOSED MODEL 

In the CogOnto model, we propose a further 
augmentation of the cognitive models discussed above, 
providing the robot with detailed 3D schematic 
representations of objects that it encounters in real time, 
supported via task models, knowledge models and 
ontologies. 

The CogOnto model is composed of five parts    
<Si,Ci,Ai,Oi,Ri> , where i = 1.. N, and where  Si  is a finite set 

of situations,  Ci is a finite set of classes, Ai is a finite set of 
attributes for characterizing a class, Oi is a finite set of 
objects in a class, and Ri is a finite set of relationships among 
the objects.  In the CogOnto model (Fig. 4), we consider the 
following features [26][27]: 

 Situation: represents an interactive (i.e. dynamic) 

real world scenario.  

 ConceptNet: is a network of class-to-class 

relationships applicable in a given situation. 

 ObjectNet: an object is an instance of a class. 

ObjectNet is a network of object-to-object 

relationships. 

 AttributeNet: is a network between properties of 

classes and objects. 

 Relation: is a function associating concepts, 

classes, objects and attributes; e.g. a robot is part-

of an Intelligent Agent (IA), were the “part-of” 

relation connects two concepts. The relations 

(associations) may be modeled or created by an 

autonomous learning process. 

These constructs are not defined in detail here, but 
unlike the other models are not limited to textual/linguistic 
meanings. The CogOnto model illustrated in Fig. 4 has four 
major functional elements that share information: 1) the ES-
OE engine, 2) the eye tracking system interconnected with 
the ES-OE engine, 3) the OAR model functioning as the 
basis of the Cognitive System, and 4) the knowledge cloud, 
including external resources such as WordNet or Cyc. The 
latter is also called the Linked Open Data  and may be used 
to illustrate the intelligent process for sharing and exposing 
information in machine readable form by using uniform 
resource identifiers based on Berners-Lee’s [27][29] 
principles. These principles enable data communication 
guiding perception from procedural memory. 

The knowledge system of the CogOnto model can be 
perceived as a storage system that accesses real world object 
information and external semantic resource information via 
the existing knowledge cloud [29]. 
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Figure 4. An illustration of the CogOnto model and its operative states. 

 
The knowledge system represents the integration of 

formal symbolic and free text descriptors of an object.  

VI. INTEGRATING SEMANTIC WEB CONCEPTS, 

TECHNOLOGIES AND RESOURCES  

CogOnto integrates its own knowledge resources with 
external resources accessible via the web. For example, 
WordNet is a lexical database where nouns, verbs, adjectives 
and adverbs are grouped into sets of cognitive synonyms 
(synsets). To recall an object, the ‘synsets (WordNet 2.1)’ 
[30] and the W3C [31] standard can be used at a text level, to 
describe what an object is when it is text-labeled. Ontologies 
can be expressed by using Semantic Web tools, e.g. Web 
Ontology Language (OWL) [32] and the Resource 
description framework Schema (RDFS) [33]. 

 The OAR model, with its Object, Attribute and Relation 
parts, and the ontological framework, containing 
Class/Instance, Relationship and Properties, can be inter-
mapped so the object world can be comprehended using 
existing resources and using the 3D information represented 
internally within an object model. The 3D object’s internal 
structure and shape can either be structured as Free Form 
Geometry (FFG) with surfaces and curves, or as Polygonal 
Geometry (PG) with points, lines and faces. The objects can 
be extracted and exported into different file formats, such as 
e.g. .obj files, .stl files. The .stl file format is a triangular 
representation of a 3D object, where each triangle is uniquely 
defined by its normal and three points representing its 
vertices. The format is native to the stereolithography 
Computer Aided Design (CAD) software created by 3D 

Systems (in this kind of format it is also possible to print the 
object out from a 3D printing machine).   

The 3D object file contains different layers cognitively 
(form, volume, size, other descriptive attributes, etc.), 
supporting our senses and perception operating in parallel 
when performing allocated manipulation tasks. A human 
looking at an object can relate to the object both on a 
denotative- and on a connotative level. The denotative level 
is understood as a pure noun level without any cultural 
associations, nor any emotional or associative signifiers to 
the object, it is purely instrumental. The connotative layer is, 
on the other hand, the level of cultural and personal 
associations attached to an object with experience over time.  
Geometrical information within the 3D object can be 
represented using the X3D XML-based file format, an ISO 
standard for representing 3D computer graphics.  

VII. CONCLUSION AND FUTURE WORK 

The CogOnto model with support from the technological 
implementation of the eye tracker system with the ES-OE 
engine can represent cognitive relations that can be 
processed by a robot operating in a spatial world [34].  

Formal knowledge structures within CogOnto face 
similar challenges to other knowledge representation 
formalisms, and this paper has shown isomorphism with a 
number of examples. However, the primary advance 
proposed is to use cloud-based resources that are not limited 
to formal representations to enhance the robustness of 
knowledge processing by the integration of similarity-based 
search. Those cloud-based resources may use text and 
images. But more interesting extensions for future work 
include new forms of cloud content, such as multi-spectral 
images, point clouds and behavior tracks. The main ongoing 
research challenge is to provide suitable similarity metrics 
for these data forms, integrating search results with formal 
structures, and developing methods for integrating them in 
unified search, or meta-search, results.  
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