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Abstract—This work presents an innovative method of compar-
ing sets of textual documents with an aim to identify common
phrase sequences. The SHAPD2 (Sentence Hashing Algorithm
for Plagiarism Detection 2) algorithm was designed to achieve the
goal of a single-pass corpus to corpus comparison. The algorithm
was developed taking into account results and observations from
previous research activities. It is a highly efficient solution that
finds application with considerable amounts of data and excels
over other approaches. One of its possible applications is detection
of potential plagiarisms comparing not a document against a
corpus, but corpus to corpus. Algorithm’s performance allows
for applications in situations where results have to be served an
instant after issuing a query. This makes the SHAPD2 algorithm
a valuable alternative to the available solutions.

Keywords—document comparison, plagiary detection, longest
common subsequence, sentence hashing, Natural Language Pro-
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I. INTRODUCTION

This article presents results of the research aimed at design-
ing a novel algorithm capable of robust detection of common
subsequences, which is more efficient than existing methods
based on sentence hashing [12], [28]. The information retrieval
task in which it is more efficient solution is to compare 2 large
corpora of text documents in a sequential matter – a corpus of
suspicious documents against a corpus of source documents
(originals) – in order to detect possible plagiarism attempts.
The SHAPD2 builds upon earlier research activities which
produced good results. These solutions were part of research
on Semantically Enhanced Intellectual Property Protection
System (SeiPro2S)[6]. The final architecture of SeiPro2S and
its functionality has been described in [11]. The novel algo-
rithm proves to be effective in the task defined above, achieving
the new level of applicability in previously unreachable sce-
narios. Such performance was verified throughout experiments
considering millions of document-to-document comparisons.

The SHAPD2 algorithm operates on hash-sums that repre-
sent individual sentences. A similar method was used in a num-
ber of other known algorithms working with n-gramms, such
as w–shingling [22], minhash [3], simhash [12], etc. It also
includes findings from author’ previous developments, namely
the SHAPD algorithm[8]. However, thanks to improvements,
code optimization and introducing new approach, SHAPD2
is a new solution, described in detail in the following sections.

II. RELATED WORK

The SHAPD2 algorithm allows for a robust and a resilient
computation of the longest common subsequence shared by

one or many input documents. The SHAPD2 algorithm pro-
cesses documents by dividing them into a stream of sentences,
where unnaturally long sentences (enumerations, itemizations,
etc.) are handled by a special procedure [8]. Such an approach
allows to extract extremely long sentences from paragraphs
and process them individually.

The process is driven by a modular additive hashing.
Hashing is a commonly used technique in Natural Language
Processing (NLP) and Information Retrieval (IR) tasks that is
used in order to achieve faster word retrieval. In plagiarism
detection it is crucial, however, to identify and match longer
common word sequences (with special focus on sentences)
function with collision lists. Every concept (term) in a sentence
is hashed by assigning a number from a previously defined
range (during the experiments the limit was set to a large prime
number). Furthermore, the individual hashes are summed to
represent a sentence. Thanks to the additive nature of the
hashing function, sentences with a changed concept order are
treated as equivalents. A collision of sentence hashes, where
the individual concepts are assigned natural numbers is negli-
gible. Thus, the resulting algorithm not only finds the longest
common sequences, but also the longest common quasi-
sequences (allowing minor editing changes such as syntactic
changes, insertions, deletions and synonym replacements, as
well as combining or splitting multiple sentences to change
their structure).

The task of matching the longest common subsequence is an
important one in the many sub-domains of computer science.
Its most naive implementation was deemed to have a time
complexity of O(m1∗m2) (where m1 and m2 are the numbers
of concepts in compared documents). The question whether it
is possible to achieve significantly better results was first raised
by Knuth in [13].

One of the most important implementations of the search
for the longest common subsequence is to be found in [19],
which features time complexity O((m1 ∗m2)/log(m2)). This
work presents an application of Smith-Waterman algorithm for
matching the longest common subsequence in textual data.
This is a top achievement of algorithms that do not operate
with text frames and their hashes. Other works such as [15],
[21] or [23] prove that better efficiency is yielded rather by
careful engineering strategies than a fundamental change in
time complexity. All of the above cited works use algorithms,
which time complexity is near quadratic which results in
drastic drop of efficiency when dealing with documents of
considerable length.

It was first observed in [22] that the introduction of a special
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structure based on the hashing technique, which was known
later as shingling or chunks (a continuous sequence of fixed-
length tokens in a document) can substantially improve the
efficiency of deciding about the level of similarity of two
documents by observing the number of common shinglings.
This technique was introduced to detect near duplicate web
pages. The following works such as [3], [1] introduce further
extensions to the original idea.

Charikar [12] proposed a locality sensitive hashing scheme
for comparing documents. A number of works represented by
publications such as [4] or [2] have provided plausible methods
to further boost the measuring of similarities between entities.
Later, Henzinger [16] combined the algorithms of Broder et al.
and Charikar to improve overall precision and recall. Recently
Zhang [28] suggested a new algorithm based on sequence
matching, which determines the location of duplicated parts
in documents. Algorithms based on shingling are commonly
utilized to identify duplicates or near-duplicates because of
their ability to perform clustering tasks in linear computational
complexity[24][17].

The important distinction between those given above and
the SHAPD (version 1 and version 2) is the emphasis on a
sentence as the basic structure for comparison of documents
and a starting point of determining a longest common subse-
quence. Thanks to such an assumption, SHAPD (version 1 and
version 2) provides better results in terms of time needed to
compute the results. Moreover, its functioning does not end at
the stage of establishing that two or more documents overlap.
It readily delivers data on which sequences overlap, the length
of the overlapping and it does so even when the sequences are
locally discontinued.

The capability to perform these makes it a method that
can be naturally chosen in plagiarism detection, because such
situations are common when attempt to hide plagiarism. In
addition, it implements the construction of hashes representing
the sentence in an additive manner, thus word order is not an
issue while comparing documents.
W − shingling algorithm runs significantly slower when

the task is to give a length of a long common subsequence.
Due to the fixed frame orientation, when performing such
operation w − shingling behaves in a fashion similar to the
Smith-Waterman algorithm resulting in a significant drop of
efficiency.

The importance of plagiarism detection is recognized in
many publications. One might argue that, it is an essential task
in times, where access to information is nearly unrestricted
and a culture for sharing without attribution is a recognized
problem (see [25] and [5]). Yet, as this work presents a special
case of an algorithm for a longest common subsequence that
can be used in other applications.

III. THE SHAPD2 ALGORITHM

Hashing is a commonly used technique in Natural Language
Processing tasks used in order to achieve faster word retrieval.
In plagiarism detection it is crucial, however, to identify and
match longer common word sequences (with special focus on
sentences).

SHAPD2 focuses on whole sentence sequences. A natural
way of splitting a text document is to divide it into sentences
and it can be assumed that documents containing the same
sequences also contain the same sentences.

However, in text documents, there are situations in which
there are cases when there are extremely long passages of
text without a full-stop mark (such as different types of
enumerations, tables, listings, etc.). Some sort of strategy needs
to be devised for such cases, i.e. how to split portions of text,
which are longer than the reasonable length of a sentence in
a natural language.
SHAPD2 utilizes a brand new mechanism to organizing

the hash-index as well as to searching through the index. It
uses additional data structures such as correspondence array
to aid in the process.

As introduced before, there are two corpora of documents
comprise the algorithm’s input: a corpus of source documents
(originals) D = {d1, d2, ..., dn}, and a corpus of suspicious
documents to be verified regarding possible plagiaries, P =
{p1, p2, ..., pr}.

Before applying algorithm for there is necessary to carry out
text-refinement process what is standard procedure in NLP/IR
task (starting from unstructured text document input to a struc-
ture containing stacked sequentially descriptors of concepts
found in the input document). Action that make up the process
of text-refinement in documents starts from extracting lexical
units (tokenization), and further text-refinement operations are:
elimination of the words without semantic importance from the
so-called information stop-list, the identification of multiword
concepts (when phrase of several words create one concept),
bringing concepts to the main form by lemmatization (for
Polish documents) or stemming (for English documents using
a popular Porter stemmer [26]). It is particularly difficult task
for highly flexible languages, such as Polish, Russian or French
(multiple noun declination forms and verb conjugation forms).
In lemmatization procedure there is used Ispell dictionary for
Polish documents and finite state automaton (FSA). The goal
of both stemming and lemmatization is to reduce inflectional
forms and sometimes derivationally related forms of a word
to a common base form.

Synonyms need to be represented with the same concept
descriptors using lexical relationships of synonymy from se-
mantic network. It allows correct similarity analysis and also
increases classification algorithms efficiency without loss in
comparison quality [18].

Abstracting process faces another problem here, which is
polysemy. One word can represent multiple meanings, so the
apparent similarity need to be eliminated. It is done by concept
disambiguation, which identifies word meaning depending on
its context, is important to ensure that no irrelevant documents
will be returned in response to a query [20].

The final effect of refinement procedure is the structure of
documents containing ordered descriptors of concepts derived
from the input document. This structure can be stored as an
abstract (data for creating index) of the document, and then
use during phase 2 (comparing documents).

Then, all documents need to be split into text frames of
comparable length – preferably sentences, or in the case of
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TABLE I. SAMPLE KEY DETERMINATION IN SHAPD2 ALGORITHM

davies scott 1998 1.pdf
Applying Online Search Techniques to Reinforcement Learning Scott Davies Andrew Y.
Ng Andrew Moore
In reinforcement learning it is frequently necessary to resort to an approximation to the
true optimal value function. Here we investigate the benefits of online search in such
cases. We examine local searches, where the agent performs a nite-depth lookahead
search, and global searches, where the agent performs a search for a trajectory all the
way from the current state to a goal state.

hash value sentence/frame
4176335 reinforcement learning frequently necessary resort approxi-

mation true optimal value function
1699726 investigate benefits online search cases
2842476 examine local searches agent performs nite depth
2710940 lookahead search global searches agent performs search
2448654 trajectory way current state goal state

dayan-92.pdf
The Convergence of TD(X) for General X PETER DAYAN Machine Learning, 8, 341-362
(1992), Kluwer Academic Publishers, Boston, 1992
The methods of temporal differences (TD), first defined as such by Sutton (1984; 1988),
fall into this simpler category. Given some parametric way of predicting the expected
values of states, they alter the parameters to reduce the inconsistency between the
estimate from one state and the estimates from the next state or states.

hash value sentence/frame
2906878 methods temporal differences td defined sutton fall simpler

category
2496872 given parametric way predicting expected values states alter
2339613 parameters reduce inconsistency estimate state estimates

state states

longer sentences – shorter phrases. A coefficient α is a user-
defined value, which allows to set the expected number of
frames that a longer sentence is split into. The coefficient
ranges from 6 to 12 concepts. The new procedure of uniform
fragmentation is described in listing of Algorithm 1.

Algorithm 1 Phase 1. Splitting text into comparable frames
f := roundup(l/α)
while f > 0 do
a := roundup(d/f)
c̄ := getConceptsFromSentence(s, a)
calculateHash(c̄)
l := l − a
f := f − 1

end while
l - sentence s length
α - alpha coefficient
f – number of frames to split a longer sentence into
a – current frame length
c̄ – vector of frame concepts

The first version of the SHAPD algorithm was able to com-
pare a suspicious document with exactly one document from
the corpus P . The SHAPD2 algorithm is able to compare a sus-
picious document with the entire corpus of source documents.
For all documents di from corpus P (containing suspicious
documents), the correspondence array CL and maxima array
TM are cleared. For each frame, set of tuples is retrieved
from index table T . If there are any entries existing, it is
then checked whether they point to the same source document
and to the previous frame. If the condition is true, local

correspondence maximum is increased by one. Otherwise, the
local maximum is decreased.

After all of the frames are checked, table TM storing
the correspondence maxima are searched for records whose
correspondence maxima are greater than a threshold set e
(the number of matching frames to be reported as a potential
plagiarism). Frame and document number are returned in these
cases.

Sample outputs from a sentence splitting and hash calcu-
lation in Phase 1 are shown in Table I. As a result, every
document from the original corpus, as well as all suspicious
documents, is represented by index as a list of sentence hashes.
The first version of the SHAPD algorithm was able to compare
a suspicious document with exactly one document from the
corpus P . The SHAPD2 algorithm is able to compare a sus-
picious document with the entire corpus of source documents
in single pass.

In the next step, a hash table T is created for all documents
from corpus D, where for each key the following tuple of
values is stored: T [ki,j ] =< i, j >, (document number, frame
number) (see Figure 1).

For phase 2, a correspondence list CL is declared, with
elements of the following structure: nd – document number, ml

– local maximum, and nl – frame number for local sequence
match.

Another data structure is the maxima array TM for all r
documents in corpus P , which contains records with structure
as follows: mg – global maximum, ng – frame number with
global sequence match.

Phase 2 is performed sequentially for all documents from
corpus P . Its logic is listed in Algorithm 2.

Fig. 1. Hash table T indexing a corpus D of source documents and hashes
from suspicious document di ∈ P

IV. EXPERIMENT

In order to evaluate the algorithm’s efficiency, a series
of experiments were carried out. The most widely used test
collection Reuters-21578 [27] for text categorization has been
used as a source of the testing data. The Reuters-21578
corpus consists of multiple sets of annotated documents. A
collection of source documents (originals) as well as suspicious
documents (including potential plagiarism cases) has been
derived from the Reuters corpus.
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Algorithm 2 Phase 2
{Build hash table T}
for di ∈ D do

for framej ∈ di do
addHashToIndex(T )

end for
end for{Find longest common frame sequences}
for di ∈ P do
clear(CL)
clear(TM)
for framej ∈ di do

if existsT (ki,j) then
if T (ki,j).i = i ∧ T (ki,j).j = j − 1 then
CL(i).ml + +
update(TM)

end if
else
CL(i).ml −−

end if
end for
for tm ∈ TM do

if tm.mg > e then
return(tm.ng)

end if
end for

end for

TABLE II. DETAILS OF COMPARISON (PRESENTED IN FIGURE 1)
BETWEEN A SUSPICIOUS DOCUMENT di AND A CORPUS D REPRESENTED

BY HASH TABLE T

ki ∈T CL table TM table
1 k0 /∈T
2 k1 ∈T {ml = 1, nd = 1, nl = 2} TM1 = {mg = 1, ng = 2}
3 k4 ∈T {ml = 1, nd = 2, nl = 7} TM2 = {mg = 1, ng = 7}

{ml = 1, nd = 3, nl = 6} TM3 = {mg = 1, ng = 6}
4 k2 ∈T {ml = 1, nd = 1, nl = 3}

{ml = 2, nd = 3, nl = 7} TM3 = {mg = 2, ng = 7}
5 k5 /∈T {ml = 1, nd = 3, nl = 7}
6 k6 ∈T {ml = 1, nd = 2, nl = 9}

{ml = 2, nd = 3, nl = 8}
{ml = 1, nd = 5, nl = 2} TM5 = {mg = 1, ng = 2}

7 k7 ∈T {ml = 3, nd = 3, nl = 9} TM3 = {mg = 3, ng = 9}

kj – hash key of frame j from document di

A set of 3,000 original documents was used as source set,
and several sets including 1,000 to 6,000 suspicious documents
were used as a set of suspicious documents. The sets were
compared using two algorithms: w-shingling and SHAPD2.
All tests were carried out on one computing platform, a stock
laptop computer with an 8-core processor (four cores in hyper-
threading mode), clocked at 2.0 GHz.

The basic results of efficiency test are as follows. A
comparison of one suspicious document to a set of 3,000
originals (containing about 3060 words on average) takes
7.13 milliseconds. As many as 420,700 document-to-document
comparisons were achieved in 1-second intervals.

As the hash-table remains unchanged after Phase 1, it is
possible to run further processing in parallel threads, because
of a sequential way of comparing the indiviual suspicious

TABLE III. PROCESSING TIME [MS] FOR COMPARING n SUSPICIOUS
DOCUMENTS WITH A CORPUS OF 3,000 ORIGINAL DOCUMENTS

n w-shingling SHAPD2
1000 5680 4608
1500 6654 5114
2000 8581 5820
2500 9478 6374
3000 11967 7125
3500 14864 7213
4000 16899 7527
4500 20242 7818
5000 23200 8437
5500 33955 8656
6000 50586 8742

documents. In effect, further acceleration has been achieved,
resulting in single comparison time of 3.45 milliseconds in-
stead of 7.13 milliseconds.

The resulting times of tests’ execution are presented in
Tables III and IV and visualized on Figure 2. One can observe
that the efficiency turns out to be better by an order of
magnitude from w − shingling. This enables a new area
of applications, including plagiarism detection using much
larger source document corpus, as well as making document
comparisons against a medium-size corpus possible in nearly
on-line time.

If two sentences differ only in one concept, the hash keys
created for them will be different, even when those concepts
are synonyms. In such situation the last operation in text
refinement procedure should be a generalization of concepts
using semantic compression. Moreover, the algorithm uses
the same techniques whose high effectiveness has already
been proven [10] in plagiarism detection employing semantic
compression[7], as well as their strong resilience to false-
positive examples of plagiarism[9], which may be an issue
in cases when competitive algorithms are used.

The Clough & Stevenson Corpus of Plagiarised Short
Answers[14] was used for the benchmark. It serves the purpose
of plagiarism detection as it is built from an initial set of doc-
uments as the base, which was then altered by the participants
in a number of ways so that everyone could measure how well
their approach to plagiarism detection works.

One might address the issue of the common ancestor as a
document that is cited the most in a number of documents.
Thanks to SHAPD2, one can easly handle it with no addi-
tional modifications except for the length of text frame used
in given application[10].

It is even more interesting to apply SHAPD2 in conjunc-
tion with semantic compression in order to handle situations
in which author has not cited sources, yet used formulations
that can be traced to some actual document.

V. CONCLUSIONS

To summarize, there should be emphasizee the following
properties of the SHAPD2 algorithm:
• The algorithm developed has a very low computational

complexity – evaluated to linearithmic, proving to be
extremely efficient in a task of finding long common
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Fig. 2. Processing times (ms) of comparing n suspicious documents with a
corpus of 3,000 documents using w− shingling and SHAPD2 algorithms

TABLE IV. PROCESSING TIME [MS] FOR COMPARING 3,000
SUSPICIOUS DOCUMENTS WITH A CORPUS OF n ORIGINAL DOCUMENTS

n SHAPD2
1000 3142
1500 4141
2000 5239
2500 5704
3000 7137
3500 9194
4000 9722
4500 10563
5000 11678
5500 15270
6000 22182

sequences in compared documents. This was confirmed
on the experiments with Reuters-21578 corpus.

• SHAPD2 is resilient to fluctuating word order in
sentences. It is especially important in use cases in lan-
guages with a highly flexible syntax (e.g. Polish, which
allows multiple correct word sequences, although having
a SVO-based (Subject-Verb-Object-based) syntax, like
English).

• The algorithm is resilient to small sentence inclusions
or deletions (as the Smith&Waterman algorithm is),
which is an important feature in plagiarism detection,
as it is a common strategy of slight modifications when
committing plagiaries.

• The designed SHAPD2 algorithm employing semantic
compression is highly efficient in plagiarism detection
and is strongly resilient to false-positive examples of
plagiarism, which may be an issue in cases when com-
petitive algorithms are used.

• Utilization of NLP techniques, such as term identifica-
tion and disambiguation, semantic compression, would
surly improve the effectiveness of plagiarism detection,
which is subject to further developments.
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