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Abstract - The Analytic Hierarchy Process (AHP) proposed 

by T. L. Saaty has been widely used in decision making. Inner 

dependence method AHP is used for cases in which criteria or 

alternatives are not independent enough and using the original 

AHP or inner dependence AHP may cause results to lose 

reliability because the comparison matrix is not necessarily 

sufficiently consistent. In such cases, fuzzy representation for 

weighting criteria or alternatives using results from sensitivity 

analysis is useful. We present local weights of normal AHP 

alternatives via fuzzy sets, and then calculate modified fuzzy 

weights. We also get overall weights of alternatives based on 

certain assumptions. Results show the fuzziness of inner 

dependence AHP if the comparison matrix is not sufficiently 

consistent and individual alternatives do not have enough 

independence.  

Keywords - decision making; AHP; fuzzy sets; sensitivity 

analysis. 

 

I.  INTRODUCTION 

The Analytic Hierarchy Process (AHP) proposed by T.L. 

Saaty in 1977 [1][2][3] is widely used in decision making, 

because it reflects humans feelings “naturally”. A normal AHP 

assumes independence among criteria and alternatives, 

although it is difficult to choose enough independent elements. 

Inner dependence method AHP [4] is used to solve this 

problem even for criteria or alternatives having dependence.  

A comparison matrix may not, however, have enough 

consistency when AHP or inner dependence is used because, 

for instance, a problem may contain too many criteria or 

alternatives for decision making, meaning that answers from 

decision-makers, i.e., comparison matrix components, are 

ambiguous or fuzzy [5]. To solve this problem, we consider 

that weights should also have ambiguity or fuzziness. 

Therefore, it is necessary to represent these weights using 

fuzzy sets. 

Our research applies sensitivity analysis [6] to inner 

dependence AHP to analyze how much the components of a 

pairwise comparison matrix influence the weights and 

consistency of a matrix [7]. This may enable us to show the 

magnitude of fuzziness in weights. We previously proposed 

new representation for criteria and alternatives weights in 

AHP [8][9], also representation for criteria weights for inner 

dependence, as L-R fuzzy numbers [10]. In this paper, we 

propose a fuzzy representation of overall alternative weights 

for double inner dependence structure AHP, using results from 

sensitivity analysis and fuzzy operations. We then represent 

fuzziness as a result of double inner dependence AHP when a 

comparison matrix among alternatives does not have enough 

consistency.   
In Section 2, we introduce AHP and its inner dependence 

method. The sensitivity analyses for AHP are described in 

Section 3. Then the fuzzy weight representation is defined in 

Section 4, and Section 5 is a conclusion. 

 

II.  INNER DEPENDENCE  AHP 

In this section, we introduce steps of normal AHP and its 

inner dependence method. 

A. Process of Normal AHP 

 (Process 1) Representation of structure by a hierarchy. 

The problem under consideration can be represented in a 

hierarchical structure. The highest level of the hierarchy 

consists of a unique element that is the overall objective. At 

the lower levels, there are multiple activities (i.e., elements 

within a single level) with relationships among elements of the 

adjacent higher level to be considered. The activities are 

evaluated using subjective judgments of a decision maker. 

Elements that lie at the upper level are called parent elements 

while those that lie at lower level are called child elements. 

Alternative elements are put at the lowest level of the 

hierarchy 

(Process 2) Paired comparison between elements at each 

level. A pairwise comparison matrix A is created from a 

decision maker's answers. Let n be the number of elements at 

a certain level. The upper triangular components of the 

comparison matrix aij (i< j = 1,…,n) are 9, 8, .. , 2, 1, 1/2, …, 

or 1/9. These denote intensities of importance from activity i 

to j. The lower triangular components aji are described with 

reciprocal numbers as follows 

in addition, for diagonal elements, let aii = 1. The lower 

triangular components and diagonal elements are occasionally 

omitted from the written equation as they are evident if upper 

triangular components are shown. The decision maker should 

make n(n-1)/2 paired comparisons at a level with n elements. 

aa ijji /1  (1) 
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(Process 3) Calculations of weight at each level. The 

weights of the elements, which represent grade of importance 

among each element, are calculated from the pairwise 

comparison matrix. The eigenvector that corresponds to a 

positive eigenvalue of the matrix is used in calculations 

throughout in this paper. 

(Process 4) Priority of an alternative by a composition of 

weights. The composite weight can be calculated from the 

weights of one level lower. With repetition, the weights of the 

alternative, which are the priorities of the alternatives with 

respect to the overall objective, are finally found. 

B. Consistency 

Since components of the comparison matrix are obtained 

by comparisons between two elements, coherent consistency 

is not guaranteed.  In AHP, the consistency of the comparison 

matrix A is measured by the following consistency index (C.I.) 

where n is the order of matrix A, and λA is its maximum 

eigenvalue. 

It should be noted that C.I. 0 holds. Also, if the value of 

C.I. becomes smaller, then the degree of consistency becomes 

higher, and vice versa. The comparison matrix is consistent if 

the following inequality holds. 

1.0C.I.                   (3) 

Also consistency ratio (C.R.) is defined as  

C.I.
C.R. ,

M
                  (4) 

where M is random consistency value. However we only 

employ C.I., since we mainly use 4 or 5-dimensional data 

whose random consistency value is not far from 1 

C. Inner Dependence Structure  

The normal AHP ordinarily assumes independence among 

criteria and alternatives, although it is difficult to choose 

enough independent elements. Inner dependence AHP [4] is 

used to solve this type of problem even for criteria or 

alternatives having dependence.  

In the method, using a dependency matrix F={ fij }, we can 

calculate modified weights w
(n)

 as follows, 

where w is weights from independent criteria or alternatives, 

i.e., normal weights of normal AHP and dependency matrix F 

is consist of eigenvectors of influence matrices showing 

dependency among criteria or alternatives.  

If there is dependence among alternatives, we can calculate 

modified weights of alternatives ui
(n)

 with only respect to 

criterion i. Then we composite these 2 weights to calculate 

overall weights of alternative k, 
( )n

kv  as follow: 

( ) ( )
m

n n

k i ik

i

v w u  

where m is number of criteria. 

 

III. SENSITIVITY ANALYSES 

When we actually use AHP, it often occurs that a 

comparison matrix is not consistent or that there is not great 

difference among the overall weights of the alternatives. In 

these cases, it is very important to investigate how 

components of the pairwise comparison matrix influence on 

its consistency or on the weights. To analyse how results are 

influenced when a certain variable has changed, we can use 

sensitivity analysis.  

In this study, we use a method that some of the present 

authors have proposed before. It evaluates a fluctuation of the 

consistency index and the weights when the comparison 

matrix is perturbed. It is useful because it does not change a 

structure of the data. 

Since the pairwise comparison matrix is a positive square 

matrix, Perron-Frobenius theorem holds [11]. From Perron-

Frobenius theorem, following theorem about a perturbed 

comparison matrix holds. 

Theorem 1 Let A = (aij), (i, j = 1,…, n) denote a comparison 

matrix and let A(ε) = A+εDA, DA=(aijdij) denote a matrix 

that has been perturbed. Let λA be the Frobenius root of A, w 

be the eigenvector corresponding to λ A, and v be the 

eigenvector corresponding to the Frobenius root of A'. Then, a 

Frobenius root λ ( ε ) of A( ε ) and a corresponding 

eigenvector w(ε) can be expressed as follows 

),()( )1(  oA  (6) 

),()( )1(  owww  (7) 

where 

,
'

'

)1(

wv

wDv A
 (8) 

w
(1)

 is an n-dimension vector that satisfies 

,)()( )1()1(
ww IDIA AA   (9) 

where o(ε ) denotes an n-dimension vector in which all 

components are o(ε). 

 

A. Analysis for consistency of pairwise comparison 

About a fluctuation of the consistency index, following 

corollary can be obtained from Theorem 1. 

,
1

C.I.





n

nA  
(2) 

w
(n)=Fw (5) 
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Corollary 1 Using appropriate gij, we can represent the 

consistency index C.I.(ε) of the perturbed comparison matrix 

A(ε) as follows 

).(C.I.)(C.I.  odg
n

i

n

j
ijij
 (10) 

  To see gij in the equation (10) in Corollary 1, how the 

components of a comparison matrix impart influence on its 

consistency can be found. 

 

B.   Analysis for weights of AHP  

About the fluctuation of the weights, following corollary 

also can be obtained from Theorem 1. 

Corollary 2 Using appropriate hij
(k)

, we can represent the 

fluctuation w
(1)

=(wk
(1)

) of the weight (i.e., the eigenvector 

corresponding to the Frobenius root) as follows 

.)()1(
dhw ij

n

i

n

j

k
ijk  (11) 

From the equation (7) in Theorem 1, the component that 

has a great influence on weight w(ε) is the component which 

has the greatest influence on w
(1)

. Accordingly, from Corollary 

2, how components of a comparison matrix impart influence 

on the weights, can be found, to see hij
(k) 

in the equation (11). 

 Calculations or proofs of these theorem and corollaries are 

shown in [7]. 

    

 

IV.  FUZZY WEIGHTS REPRESENTATIONS 

A comparison matrix often has poor consistency (i.e.,  

0.1<C.I.<0.2) because it encompasses several criteria or 

alternatives. In these cases, comparison matrix components are 

considered to be fuzzy because they are results from human 

fuzzy judgment. Weights should therefore be treated as fuzzy 

numbers. 

A. L-R Fuzzy Numbers  

To represent fuzziness of weights, an L-R fuzzy number is 

used. 

L-R fuzzy number 

),,(
LR

mM                               (12) 

is defined as fuzzy sets whose membership function is as 

follows. 




















 








 



).(

),(

)(

mx
xm

L

mx
mx

R

x
M




  

where L(x) and R(x) are shape function . 

B. Fuzzy Weights of Criteria or Alternatives of normal AHP 

From the fluctuation of the consistency index, the multiple 

coefficient gijhij
(k)

 in Corollary 1 and 2 is considered as the 

influence on aij . 

Since gij is always positive, if the coefficient hij
(k)

 is 

positive, the real weight of criterion or alternative k is 

considered to be larger than wk. Conversely, if hij
(k)

 is negative, 

the real weight of criterion or alternative k is considered to be 

smaller. Therefore, the sign of hij
(k)

 represents the direction of 

the fuzzy number spread. The absolute value gij | hij
(k)

| 

represents the size of the influence. 

On the other hand, if C.I. becomes bigger, then the 

judgment becomes fuzzier. 

Consequently, multiple C.I. gij|hij
(k)

| can be regarded as a 

spread of a fuzzy weight   concerned with aij. 

Definition 1 (fuzzy weight) Let wk
(n)

 be a crisp weight of 

criterion or alternative k of inner dependence model, and gij | 

hij
(k)

| denote the coefficients found in Corollary 1 and 2. If 

0.1<C.I.<0.2, then a fuzzy weight kw   is defined by  

( , , )k k k k LRw w                     (13) 

where 

,||),(C.I. 
n

i

n

j

kijijkijk hghs         (14) 

,||),(C.I. 
n

i

n

j

kijijkijk hghs         (15) 










)0.(0

)0(,1
),(

h

h
hs ，










)0.(0

)0(,1
),(

h

h
hs  

 

C. Fuzzy Weights for Inner dependence among Alternatives 

For inner dependence structure among alternatives, we can 

define and calculate modified fuzzy local weights of 

alternatives 
( ) ( )( ),n n

i ikuu 　 1,...,k m with only respect to 

criterion i using an dependence matrix AF  as follows,  

( ) ( ) ( ) ( )( , , )n n n n

ik ik ik ik LRu u  
                    (16)

 

where  

( ) ( )( )n n

i ik A iu F u u
                       (17) 

iu  is crisp local alternative weights with only respect to 

criterion i and ,ik ik  are calculated by fuzzy multiple 

operations, equation(5) and definition 1. 
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Fuzzy overall weights of alternative k for inner dependence 

among alternatives can be also calculated as follows, using 

fuzzy multiple  and fuzzy summation operations: 

( ) ( )
m

n n

k i ik

i

v w u   

where ( )iww  is crisp weights of criteria. 

Then we can evaluate fuzzy overall weights of alternatives 

with their centers and spreads. 

V.  CONCLUSIONS 

 We proposed a kind of modified local fuzzy weight by use 

of sensitivity analyses for inner dependence AHP in case of 

the dependence among alternatives exist. Moreover we can 

also calculate overall alternative weights for the inner 

dependence by fuzzy sets.  

Our approach shows how to represent weights and how the 

result of AHP has fuzziness when data is not sufficiently 

consistent or reliable.  

We now plan to investigate the properties of these fuzzy 

weights more and apply it to real data. In the future work, we 

will use this idea for not only inner dependence but also outer 

dependence structure.   
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APPENDIX 

[Proof] (Theorem 1) 

From Perron-Frobenius theorem [11], the Frobenius root A  

is the simple root. Thus, expansions (6) and (7) are valid. And 

then, characteristic equations become 

)),())(((     

))()((
)1(

1

)1(

)1(

1




oww

oww





o

DA

A

A  

.11 ww AA   

From these two equations, (9) can be obtained. Further, by 

Perron-Frobenius theorem, eigenvalue of A and transposed A’ 

is same, therefore 

AA v' v  

holds, and it becomes 

(1)

AD v'w v' w . 

  

Thus, equation (8) holds. (Q.E.D) 
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