
Inverse ACO Applied for Exploration and Surveillance in Unknown Environments

Rodrigo Calvo, Janderson R. de Oliveira and Roseli A. F. Romero
Department of Computer Sciences

University of Sao Paulo
Sao Carlos - SP, Brazil

Email: {rcalvo,jrodrigo,rafrance}@icmc.usp.br

Mauricio Figueiredo
Department of Computer Sciences
Federal University of Sao Carlos

Sao Carlos - SP, Brazil
Email: mauricio@dc.ufscar.br

Abstract—This paper focuses on a distributed strategy
proposed to coordinate a multiple robot system applied to
exploration and surveillance tasks. The strategy is based on the
artificial ant system theory. According to it robots are guided
to unexplored or not recently explored regions. The main
features of the strategy are, among others: low computation
cost; and independence of the number of robots. Results
from preceding investigations confirm the strategy is able to
emerge a cooperative robot behavior, that is, the exploration
and surveillance tasks are synergistically executed. This paper
concerns specifically the robustness of the coordination strategy
regarding to the environment structure. Two metrics are
adopted for evaluation: needed time to conclude the exploration
task, and time between two consecutive senses on a same region.
Simulation results show that the coordination strategy is able
to establish effective trajectories, that is, robots are guided to
explore the environment and to sense repeatedly and completely
the environment.

Keywords-multiple robot systems; surveillance task; ant colony
systems; environment exploration; swarm systems; mobile robots

I. INTRODUCTION

The more sophisticated is the robotic field technology
the higher is the possibility of multiple agent systems to
become usual. This expectation associated with the potential
advantages of using multiple agents over a single one cap-
tivates the attention of the scientific community. Nowadays,
the literature provides many articles that focus on multiple
robot systems applied to basic tasks, such as: exploration,
covering, and surveillance [1], [2].

The enormous potential associated with the multiple agent
systems is exploited only if the respective coordination
strategies are efficient. Whatever the task is considered, they
have to satisfy some basic requirements, such as: small
redundancy of agent effort; and strong cooperative agent
behavior [3]. Other requirements come from the task the
robots have to accomplish. Considering all things together, it
is plausible the design of coordination strategies for multiple
agent systems is a challenge problem in robotics [4].

The strategy described in [5] is able to guide robots
applied to construct a common map cooperatively as they
explore the environment. The authors introduce the notion
of a frontier, which is a boundary between the explored and
unexplored areas. As the robots move, new boundaries are

detected and frontiers are grouped in regions. Then, robots
navigate toward the centroid of the closest region, while
sharing maps. The strategy, centralized and based on the A∗

algorithm, receives information from every robot and defines
the next steering direction of each robot..

Several applications of multiple agents are designed to
accomplish security and surveillance tasks [6]. Coordination
strategies based solely on mathematical formulation are very
parameter dependent and suffer critical degradation due to
agent failure [7]. Bio-inspired and evolutionary theories
provide fundamentals to design alternative strategies [8].

The technique in [9] focuses on intelligent decision mak-
ing for security. During the security mission, robots engage
in four behaviors: patrol, inspect, chase intruder and guard.
A fuzzy logic-based method is used for decision making that
establishes qualitative relationships, in terms meaningful to
human information, between different possible input types
and efficient outputs.

The surveillance system described in [10] is to detect
changes in environment comparing color histograms be-
tween current images and those images previously taken.
Unfortunately the environment is totally static.

Considering the surveillance problem, the coordination
strategy named Inverse Ant System-Based Surveillance Sys-
tem (IAS-SS) is once more investigated. It is designed
according to a modified version of the ant algorithm pre-
sented in [11]. Results from preceding investigations confirm
that the strategy is able to emerge a cooperative robot
behavior, that is, the exploration and surveillance tasks are
synergistically executed. This paper concerns specifically
the robustness of the coordination strategy regarding to the
environment structure. Different environment structures are
considered, all of them designed from a rectangular space
divided in 10 small spaces. Passage ways that connect
spaces may be partially or totally blocked using walls.
Following this procedure, 10 environment structures, each of
which associated with a particular degree of complexity, are
considered to evaluate the performance of the coordination
strategy. Two metrics are adopted for evaluation: needed
time to conclude the exploration task, and time between
two consecutive senses on a same region. Simulation re-
sults show that the coordination strategy is able establish
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effective trajectories, that is, robots are guided to explore
the environment and to sense repeatedly and completely the
environment.

The remainder of the paper is organized such as follows.
Section II provides fundamentals of the artificial ant sys-
tem theory. The description of the multiple robot system
for exploration and surveillance tasks and the coordination
strategy IAS-SS are the focuses of the Section IV. Section V
shows simulation results obtained from a set of experiments.
The main contributions and relevant aspects of the paper
as well as expectations for future works are highlighted in
Section VI.

II. ANT SYSTEM

Surprisingly the complex tasks that ant colonies perform,
such as object transportation and build edges, demand rela-
tively more capabilities that a single ant is endowed [12].

Biological ants have two known mechanisms to estab-
lish communication, namely, direct and indirect. Biological
ants not only exchange stimuli when they meet; but also
exchange stimuli indirectly (a communication mechanism
called stigmergy). Ants deposit a specific type of substance
(pheromone) on the ground while they move. There are
different types of pheromone, each of which associated with
a particular meaning. If a pheromone trail is found and this
pheromone type indicates food, then more and more ants
follow this trail, depositing more pheromone and reinforcing
the stimuli. An opposite behavior happens if the pheromone
is of the aversive type, indicating risk and danger. Stigmergy
mechanism is considered one of the factors that decisively
contribute to amplify the capabilities of a single ant. Ant
colonies use the stigmergy mechanism to coordinate their
activities in a distributed way [13].

Artificial ant systems are the artificial counterparts of the
biological ant colonies, designed to solve complex problems,
among others: optimization combinatorial problems [11].
Analogously artificial ants (e.g., robots) are able to use
the stigmergic communication. Pheromone trail provides a
type of distributed information that artificial agents may
use to take decisions or modify to express previous expe-
riences [14]. A distributed coordination behavior emerges
from this capability, providing solutions to problems asso-
ciated with exploration in hyperspace.

III. DEFINITIONS AND PRELIMINARY CONCEPTS

The collaborative behavior of robots is based on the
repulsion instead of the attraction to pheromone. In order to
mark a specific region as visited, a robot leaves pheromone
on its position along the navigation. According to adopted
pheromone’s repulsion characteristic, the robot’s reaction
consists in avoiding paths already covered. Analogous to
real ants colony, the pheromone deposited by robots are
open to evaporation phenomena. This provokes a gradual
reduction of amount of pheromone of the region. Therefore,

the robots are in constant searching regions with low amount
of the pheromone. As consequence of evaporation, the robots
realize exploration and surveillance behaviors.

Differently from works related, the surveillance term re-
ferred in this paper consists in the coverage of a determined
environment in a continuous way. This requires that the
robots to walk in the environment continuously and to visit
many times parts of the environment. So, they are spread out
in order to minimize the execution time and have the optimal
coverage. The great challenge for solving this problem is in
the coordination of the robots and in the definition of their
trajectories.

The multiple robot system is composed by a group of
k ∈ N∗ identical robots vehicles, where each robot has the
capacity for measuring a sensory function from the envi-
ronment with sensor range radius R. The sensory function
indicates the relative importance of different areas in the
environment. It can represent the quantity that is detected
by the robot’s sensor directly, such as the temperature or
lightness of the environment. More specifically, in our case,
the sensory function measures the quantity of the detected
concentration of a chemical substance. The sensory function
is defined as

f : A ⊂ R 7−→ R (1)

where A is the set of sensor signals received by robot at
each instant.

We are assuming that robots ri, i = 1, . . . , k move in
planar workspace Q ⊂ R2 and that an arbitrary point in Q
is denoted by q. It is also assumed that the robot’s position in
the environment is known previously. Let Li

t be the covered
area by the sensor of rith robot at instant t. A point q ∈ Q
is visited by rith robot at instant t, if q ∈ Li

t and ri(tq) =
1. Let us also to consider the following definitions. At the
instant when the environment is entirely covered, it is said
that a Surveillance Epoch (SE) is completed. In each SE, all
points q ∈ Q are visited at least once. The period of time
needed to cover the whole environment (all points) and to
conclude a SE is denoted by Surveillance Interval (SI). So,
we can define that an optimal coverage of the environment
for surveillance task is achieved by minimizing the period
of time SI.

Then, the main aim is to reduce the period which a point
q is non visited. Let us to consider tq1 and tqs be the instants
when any robot visits the point q, such that, tq1 < tq2 and that
q ∈ Q is non visited at any instant t within interval (tq1, t

q
2).

Thus, the shortest time interval between any two consecutive
visits of any point q is given by:

min
∑
q∈Q

(tq2 − t
q
1)

subject to:

ri(t
q) = 0, ∀i = 1, . . . , k and ∀tq, tq1 < tq < tq2;
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ri(t
q
1) = 1, ∀i = 1, , . . . , k;

ri(t
q
2) = 1, ∀i = 1, . . . , k

IV. INVERSE ANT SYSTEM-BASED SURVEILLANCE
SYSTEM (IAS-SS)

While the robots navigate, they deposit a specific sub-
stance, the pheromone (the analogue of the pheromone in
biological ant systems), into the environment. At each time
each robot receives stimuli from the pheromone and adjusts
its navigation direction. This is the only one decision that a
robot takes. In fact, the robot navigation system considers a
set of stimuli detected at different angles and same distance.
The lesser is the detected amount of the substance the greater
is the probability that the robot takes the navigation direction
equal to the angle where this amount of substance is.

The logic of the decision in the IAS-SS is the opposite
of that adopted in the traditional ant system theory. The
logic adopted there generates a positive feedback, that is,
the greater the amount the substance the greater is the
probability of the agent to follow the respective direction.

The block diagram in Figure 1 represents the sequence of
main actions that an agent system performs at each iteration.

Figure 1. Functional Diagram Block for a single agent.

It is important to mention that the robots exhibit the ob-
stacle avoidance behavior, but there is no specific embedded
navigation mechanism for that. In fact this navigation skill
emerges from the synergy among the artificial agents as a
natural consequence of how the pheromone is released on the
environment and the effects the pheromone stimuli generate.

A detailed description of the IAS-SS system is given
below. Consider a group of N robots k, k = 1, . . . , N . Every
robot k performs two basic operations: steering direction
adjustment and pheromone deposition.

A. Steering Direction Adjustment

Two strategies to determine the steering direction angle
are adopted in [15]. The first, Stochastic Sampling (SS),
considers all pheromone stimuli that the sensor detects at
the border of its range (Figure 2). The second, Best Ranked
Stochastic Sampling (BRSS), determines the adjusting of
steering angle based on only those stimuli associated with
the least amount of pheromone. However, Stochastic Sam-
pling mechanism showed to be efficient for large areas where
the amount of pheromone deposited is similar on every point
due to the stochastic nature of the strategy. Because BRSS
strategy maximizes the explored area in reduced period of
time, only it is considered here.

The model of the sensor adopted is such that it detects
pheromone stimuli at a specific distance R, from −90

degrees to 90 degrees, corresponding to the average of the
amount of pheromone deposited in an angle interval. The
total range of 180 degrees is divided in identical angle
intervals, such that the sensor detects stimuli corresponding
to different angles As, s = 1, ..., S.

Figure 2. Robot and sensor models

1) Best Ranked Stochastic Sampling: Two subsets of an-
gle intervals S is considered to define the steering direction.
The first, subset U the angle intervals are those that the
amount of pheromone is very low. Specifically, the strategy
sorts the intervals according to the respective amount of
the pheromone. Then only those angles As associated with
the least amount of pheromone (best ranked intervals) are
considered to define the steering direction. The second
subset V consists of elements chosen randomly, according
to a uniform distribution, from the angles As that are not in
the first subset.

A probability value is assigned to each discrete angle
in both of the subsets U and V . The probability assigned
to the angle As is inversely proportional to the amount of
pheromone deposited in the respective angle interval, that is,
the lower is the amount of pheromone detected, the higher
is the probability associated with the angle. Specifically, the
probability P (s) assigned to the angle As is:

P (s) =
1

τs/
∑

i∈{U,V } τi
(2)

where τs is the amount of pheromone corresponding to the
angle As.

The adjusting of steering direction is determined accord-
ing to a discrete random variable a defined through the
probability P (s), assuming values in the set As, s = 1, ..., S.

According to this strategy, robots tend to move to direc-
tions where there is low amount of pheromone. The general
behavior observed is that the robots move to unexplored
areas or areas scarcely visited by robots during some period
of time. The adjusting of steering direction is given by:

Θk(t) = Θk(t− 1) + γA(s∗) (3)

where Θk(t) is the steering of movement of robot k at
instant t, γ ∈ [0, 1] is the constant coefficient for smoothing
of steering direction adjusting and A(s∗) is the selected
direction by probability of equation 2.
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B. Pheromone Releasing and Evaporation

In traditional artificial ant systems, agents release
pheromone on the ground only on their respective positions
signaling exactly the robot way [11]. Differently, the artifi-
cial agents in the IAS-SS spread pheromone on a wide area
in front of their respective positions, corresponding to sensor
range area.

Once the agent determines the steering direction, but
before it moves, it spreads pheromone. The amount of
pheromone deposited on the ground decreases as the distance
from the robot increases. The model for the pheromone
releasing is such as follows. Consider that Lt and Q are the
sensor range area at iteration t and the entire environment
space, respectively, such that Lt ⊂ Q ⊂ R2. Then, the
amount of pheromone ∆k

X(t), that the kth robot deposited
on the position X at iteration t is:

∆k
X =

{
e

−(X−Xk)2

σ2 , if X ∈ Lt

0, otherwise
(4)

where Xk is the position of the kth robot and σ is the
Gaussian dispersion.

Multiple robots deposit pheromone in the environment at
same time, then the total amount of pheromone deposited
on the position X at iteration t depends on the contribution
of every robot.

Furthermore, pheromone is not a stable substance, that is,
it evaporates according to a specific rate. The total amount
of the pheromone that evaporates ΦX(t) at position X and
time t is modeled such as follow:

ΦX(t) = (1− ρ)τX(t) (5)

where ρ is the evaporation rate and τX(t) is the total amount
of pheromone on the position X at iteration t.

Therefore, the total amount of pheromone τX(t) at X and
at time t is (Equation 6):

τX(t) = Φ(t− 1) +

K∑
k=1

∆k
x,y (6)

V. EXPERIMENTAL RESULTS

Experiment simulations are developed to evaluate prelim-
inarily the bioinspired coordination strategy IAS-SS. The
strategy is considered to generate the dynamics of multiple
robot systems applied to exploration and surveillance tasks.

Experiments are carried out in Player/Stage platform that
models various robots and sensors simulating simultaneously
their exact dynamics. Although this platform includes nav-
igation mechanism for obstacle avoidance, this behavior, in
IAS-SS system, emerges only from consequence of repulsive
nature of pheromone. The robot model used is Pioneer 2DX
equipped with laser range-finder SICK LMS 200.

The exploration task is executed if the environment is
completely covered. Moreover, the faster the system com-
pletes the task, the better is the performance; the system
carries out the surveillance task if there is no instant T∗

such that after this instant exists a region that is not sensed
anymore. Despite this definition for surveillance task is
accurate, it is not suitable since may be impossible to find
T∗. Therefore, it is important that the system conclude the
task continually, that is, the system has to be able to sense
the entire environment considering that a new sensing task
is started when the system concludes the previous one.
Furthermore, the lesser is the maximum time between two
consecutive sensing tasks, the better is the performance.

The system parameters used in the experiments are: σ =
0.4R (pheromone releasing rate); ρ = 10−4 (evaporation
rate); τX(0) = 0.5 (the amount of pheromone at iteration
t = 0); R = 8.00 meters (radius of the semicircle where the
pheromone is deposited and provided by laser range finder);
γ = 0.5 (coefficient for smoothing of steering direction
adjusting); Robot speed: 0.5 meter per second; S = 360
(number of angle intervals); Number of elements of subsets
U and V correspond to 30% and 10% of size of S set,
respectively; Maximum number of iterations of simulations:
1000. The values assigned to parameters σ and ρ are defined
through analysis of performance of IAS-SS in [15].

The steering direction strategy adopted for all experiments
is BRSS (see Section IV-A1) due to its more efficient perfor-
mance than other strategies described in [15]. According to
randomness characteristic of this strategy, all experiments
are executed 3 times. Thus, average of performances are
computed to evaluate them. The discrete time is adopted in
simulation and it is equivalent to the number of iterations.

The environments where the IAS-SS system carries out
the tasks are divided in connected small regions called
here rooms. The used division model of environments in
following experiments is illustrated in Figure 3(a). The en-
vironments are designed from the division model according
to a complexity level. This complexity level is measured
according to number of options to travel the environment
(among rooms), that is, through graph structure resultant
from connection among rooms Figure 3(b). The more path
options to reach a specific region are available, the com-
plexity level of environment is higher. For environments
of Figures 3(c) and 3(d), the graph structure is the same
of the graph of Figure 3(b), hence, the complexity is low.
As obstacles are inserted into environments blocking the
passage among rooms, the respective edges of graph are
removed and, thus, the complexity is higher.

For analysis, the rooms are numbered (Figure 3(a)). A
room is said to be visited if its central point is reached by any
robot. In this case, the group of all central points corresponds
to the set Q defined in equation 1. Hence, the scenario
considered here is an instance of the problem formulated.

Since there are ten rooms, four robots are considered for
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3. Environment models: (a) environment divided in rooms; (b)
connection graph among rooms; (c)-(l) environment from #1 to #10.

experiments to assign at least two rooms to each robot.
This forces the robots travels long distances increasing the
likelihood find challenging situations as obstacles. All robots
start at room 1.

Although it is clear that the exploration time increases as
complexity level increases, the surveillance task is accom-
plished even with a restricted number of path options. This
emphasizes that environment structure is not a factor that
impedes the tasks to execute. Even robots in environments
with higher complexity level can carry out the tasks. The
environment sensing (SE) is completed independently of the
environment structure. As general behavior of the system,
the length of SI period is increased while the complexity
level of environment increases. Also, as consequence of the
higher complexity, the number of completed SE is smaller.
This can be observed in Table I. The average of number
of SE decreases and the average of SI presents a strong
increasing tendency, which is not monotonic due to the
random nature of experiments. Therefore, it is observed
that the system self-adapt according to changes in the
environment model. A more detailed view of results of table,
regarding the average of SI, is presented in the Figure 4. It
shows the boxplots of the distribution of the performance.

Additional information about the behavior of the system

Table I
PERFORMANCE OF CONFIGURATION WITH BRSS MECHANISM AND

INCREASING THE COMPLEXITY LEVEL

Environment Number of SE Average of SI
#1 17± 3 57.46± 10.41
#2 15.66± 2.08 61.9± 7.83
#3 13.66± 0.57 70.76± 6.27
#4 15± 2 63.77± 8.91
#5 12.66± 1.52 77.29± 11.58
#6 11± 1.73 87.65± 19.59
#7 9± 0.01 97.75± 7.7
#8 7.66± 0.73 114.17± 23.82
#9 7.51± 1.32 119.49± 3.88
#10 7.33± 1.52 115.23± 24.9

Figure 4. Boxplots of distribution of the average of surveillance intervals
for different degree of complexity of environment.

can be gathered observing the Figure 5. Data used to plot the
graphic are from the trial with the median number of SI for
simulation of environment #5 . Four graphics are presented,
each of which registering the behavior (room changing) of
one of the robots. Each vertical line indicates the SE, that is,
the iteration when the IAS-SS senses the entire environment
(the robots visit cooperatively all the 10 rooms), considering
that a new sense task is started after the system concludes
the earlier one.

The self-adapt trait of the system is visualized through the
trajectories of robots in Figure 6. Due to limited space, only
the obtained trajectories from simulation of environments
#1, #5 and #10 are showed in order to contrast the
high difference of complexity level among them. It can
be observed that the trajectories are concentrated in a trail
when the rooms are small. An explanation for this outcome
is the small size of rooms. In this case, the sensor range
covers whole the room. While for large regions resultant
from junction rooms in environments #1 and #5, the robots
move away from the trail to cover the entire environment
efficiently. The data presented are from the trial with the
median number of SI for each environment.
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Figure 5. IAS-SS performance according to environment #5.
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Figure 6. Trajectories of robots during exploration and surveillance tasks:
environments (a) #1; (b) #5; (c) #10.

VI. CONCLUSIONS AND FUTURE WORKS

This work described a new bioinspired distributed coordi-
nation strategy, named IAS-SS, for multiple agent systems
applied to exploration and surveillance tasks. The strategy is
based on a swarm theory, specifically the ant system theory.
The IAS-SS strategy defines steering directions that guide
preferably the agents to where the amount of pheromone is
lesser. The strategy is not dependent on the knowledge of
the environment structure and changes the system dynamics
in order to reach a good performance.

As future works some parameters of the IAS-SS system
will be considered for analysis, e.g., the pheromone releasing
mechanism. Moreover, a localization method will be inte-
grated to IAS-SS system in order to deploy it in real robots.
In this case, a chemical sensor will be attached to the front
of robot. Similarly, a device to disperse the chemical will be
deployed. A more simple way is to consider only distance
sensor and set the cells of built map to indicate that there
is amount of pheromone at respective position. In addition,
more complex surveillance tasks, e.g., those that a strange
agent invades the environment, will be investigated.
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