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Abstract—In this contribution, an implicative variant of the
conjunctive normal form will be recalled and further studied.
This normal form is an alternative to the Perfilieva’s conjunc-
tive normal form. It will be shown that it is a suitable model
for a particular case of graded fuzzy rules introduced as a
generalization of classical fuzzy rules. Moreover, approximation
properties of the implicative variant of the conjunctive normal
form provide a view on a class of fuzzy relations that can
be “efficiently” approximated using this normal form. Newly,
a suitable inference rule the graded rules formalized using
the implicative variant of the conjunctive normal form will
be introduced and analyzed. Results in this field extend the
theory of approximate reasoning as well as the theory of fuzzy
functions.

Keywords-Graded fuzzy rules; Normal forms; Approximate
reasoning; Fuzzy functions; Fuzzy control;

I. INTRODUCTION

The Implicative model [1], [2], [3] of fuzzy rules is
present from the birth of the theory fuzzy rules. Unfortu-
nately, they are used very rarely in practical applications
and the Mamdani-Assilian model [4], [5] completely dom-
inates the field [6]. Among others, the cause of this fact
lies mainly in a visual simplicity of the Mamdani-Assilian
model, more precisely, a vivid graphical representation by
the membership function interpreting this model. Theoretical
results (see, e.g., [2]) explain why it is so
• the Mamdani-Assilian model suites generally for a

relation dependency;
• the Implicative model works well only for a functional

dependency.
More precisely, the extensionality is required from a relation
that we approximate by the Mamdani-Assilian model. While
in the case of the Implicative model, we require additionally
the functionality. Provided that the requirements are fulfilled
we can expect a well behaving model in the following
sense: the Mamdani-Assilian model provides approximation
of an ideal fuzzy relation from below and the Implicative
model from the above and moreover, it can be done with an
arbitrary precision.

In this contribution, we present theoretical results relating
to Implicative model of fuzzy rules that show for what kind
of dependencies it will works properly and which type of in-
ference has to be used to receive a desirable output. For this

purpose, we will recall formalizations of graded fuzzy rules
(introduced in [7] as a generalization of the known fuzzy
rules) by fuzzy relations in three different forms known as
normal forms. Two of them has been introduced by I. Perfil-
ieva in [8] and therefore we denote them Perfilieva’s normal
forms. The remaining normal form has been introduced in
[9] as a generalization of the Implicative model and it will be
called implicative normal form. These formalizations allow
to involve additional imprecision, uncertainty or vagueness
related to each fuzzy rule in the form of particular degrees
attached to the respective fragment of the normal form.
Interpretation using the natural language is explained further
in the text or we can refer to [7], [10], [9] for more details
on this problematic.

It has been shown [11] that specially chosen normal forms
can serve as the best approximating fuzzy relations. In the
following we will not touch this problematic and we focus
mainly on the explaining differences between the traditional
approach to fuzzy rules represented by Hájek’s work [2] and
the graded approach to fuzzy rules [10]. Section IV will
be devoted to implicative normal forms and their known
properties. Newly, we will present in Section V properties
related to approximate reasoning with graded fuzzy rules
formalized by the implicative normal form.

II. HÁJEK’S APPROACH TO FUZZY CONTROL

One of the original approaches for a fuzzy rule base
construction generally works only for the so called positive
samples w.r.t. some (binary) fuzzy relation F , i.e., (c,d) ∈
X ×Y is called the positive sample w.r.t. F if F(c,d) = 1.
The definition can be extended for sets in the following way:

S = {(ci,di)| ci ∈ X ,di ∈ Y, i ∈ I = {1,2, . . . ,n}} (1)

is a set of the positive samples w.r.t. F if each (ci,di) is the
positive sample w.r.t. F . Analogously, we say that S is a set
of the negative samples w.r.t. F if for each i∈ I : F(ci,di) = 0
(or ¬F(ci,di) = 1, where ¬x = x→ 0 and → stands for some
fuzzy implication that is usually interpreted as the residuum
to a t-norm).

In [2], Hájek used a set of the positive samples to
create a fuzzy rule base using an indistinguishability (or
similarity) relation. This procedure can be interpreted from
the algebraic point of view it in the following way:
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• Requirements:
1) For the sequel, let X ,Y be nonempty sets of

objects, I be as above and

L = 〈L,∗,→∗,∧,∨,0,1〉,
be a complete residuated lattice.

2) Moreover, let F ⊂∼ X×Y (i.e., a fuzzy relation on
X ×Y ), ≈1⊂∼ X2,≈2⊂∼ Y 2 be similarity relations
and x̄ = [x,y], x̄′ = [x′,y′];

3) S be a set in the form (1) of the positive samples
w.r.t. F .

• Fuzzy rules are defined as

Mamd(x,y) =d f
∨

i∈I

((x≈1 ci)∗ (y≈2 di)),

Rules(x,y) =d f
∧

i∈I

((x≈1 ci)→∗ (y≈2 di)).

• Properties:
1) If F is extensional then Mamd ⊆ F = 1, where

A ⊆ B ≡d f
∧

x∈X (A(x) →∗ B(x)) for the unary
fuzzy relations A,B and analogously for n-ary
fuzzy relations.

2) If F is functional (for the definition see the
following section) then F ⊆ Rules = 1.

3) If F is extensional (for the definition see the
following section) and functional then

∧

x∈X

∨

i∈I

(x≈1 ci)∗ (x≈1 ci)≤ (Rules⊆Mamd),

(2)
which consequently gives us the following esti-
mations

∧

x∈X

∨

i∈I

(x≈1 ci)∗ (x≈1 ci)≤ (F ≈Mamd),
(F ≈ Rules), (3)

where F ≈ S≡d f (F ⊆ S)∗ (S⊆ F).
In the original source, Hájek investigated also properties of
fuzzy control based on Mamd and (max,∗) compositional
rule of inference.

III. GRADED FUZZY RULES FORMALIZED BY
PERFLIEVA’S NORMAL FORMS

Graded fuzzy rules (introduced in [7] and further elabo-
rated in [10]) were motivated by a need of improvement of
approximation using fuzzy rules. Graded fuzzy rules were
originally formalized using Perfilieva’s normal forms [8]. Let
us provide the original definition [8] and further explain a
connection to graded fuzzy rules.

For a generality, we do not put any requirements on ≈1(2),
they are assume to be arbitrary binary fuzzy relations in the
sequel.

Definition 1 The disjunctive normal form (DNF for short)
for a fuzzy relation F is

DNFF(x̄) =d f
∨

i∈I

[(ci ≈1 x)∗ (di ≈2 y)∗F(ci,di)], (4)

The conjunctive normal form (CNF for short) for F is given
by

CNFF(x̄) =d f∧

i∈I

[((x≈1 ci)∗ (y≈2 di))→∗ F(ci,di)]. (5)

As stated in [10], [7], an ambiguity or uncertainty over a
certain fuzzy rule can be can be implemented using a degree
that equips the respective rule and together they form the so
called graded fuzzy rule. A visualization of a collection of
graded fuzzy rules is the following:

f1º/(x ∈ A1 and y ∈ B1) OR
. . . OR

fnº/(x ∈ An and y ∈ Bn),

for the case of DNF and
f1¹/(x ∈ A1 and y ∈ B1) AND

. . . AND
fn¹/(x ∈ An and y ∈ Bn),

for the case of CNF, where

Symbol Interpretation of
fi F(ci,di)

x ∈ Ai (x≈1 ci)
y ∈ Bi (y≈2 di)
∗ and
∨ OR
∧ AND

We can read a particular graded fuzzy rule fº/[x,y] ∈ R as

“[x,y] are related by R at most to the degree f ”,

analogously, f¹/A reads as

“[x,y] are related by R at least to the degree f ”,

Let us explain why “at least” and “at most” are used in
the reading of graded fuzzy rules by analyzing one particular
graded rule for, i.e., the one particular fragment of the
normal form:

1) In the case of DNF, we conclude that the op-
eration of conjunction ∗ applied on the relation
[(ci ≈1 x)∗ (di ≈2 y)]︸ ︷︷ ︸

R(x,y)

and the degree F(ci,di) exhibits

as a kind of shift or resize operator. The reason for
this claim is that the final fuzzy relation does not
exceed this degree, i.e., R(x,y) ∗F(ci,di) ≤ F(ci,di)
(it follows from a ∗ b ≤ b). This fact is distinguished
by the symbol º that we read as “at most” in the
associated graded fuzzy rule.
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2) In the case of CNF, we have a different situation. The
implication →∗ with the degree on the right input
position behaves as a rotation and shift (or resize)
operator. It means that the final fuzzy relation fulfills
[((x ≈1 ci) ∗ (y ≈2 di)) →∗ F(ci,di)] ≥ F(ci,di) (fol-
lows from b ≤ a →∗ b). Analogously, we distinguish
this fact by the symbol ¹ in the graded fuzzy rule and
we read it as “at least”.

As shown in [8], [12] (generalized to non-symmetric ≈1,2
in [13] and extended to graded theorems in [10]) graded
fuzzy rules based on Perfilieva’s normal forms are suitable
for extensional fuzzy relations.

Definition 2 F is extensional w.r.t. ≈1,≈2 if

x≈1 x′ ∗ y≈2 y′ ∗F(x̄)≤ F(x̄′), (6)

is valid for all x,x′ ∈ X and y,y′ ∈ Y .

Theorem 3 [8], [11] Let us consider an extensional fuzzy
relation F in the above defined sense. Then
• DNFF lies below F and CNFF is above;
• a precision of the approximation expressed in terms of

the equivalence ↔∗ (bi-residual operation) depends on
the distribution of (ci,di)’s over X×Y :

∨

i∈I

[(ci ≈1 x)∗ (x≈1 ci)∗ (di ≈2 y)∗ (y≈2 di)]

≤ DNFF(x̄)↔∗ F(x̄), (7)

and the same estimation is valid for CNFF(x̄)↔∗ F(x̄).

These results can be extended to graded properties so that
also partially extensional relations can be allowed. First,
let us recall the graded extensionality taken from [10] and
translated into our algebraic framework.

Definition 4 A relation F is said to be a-extensional w.r.t.
≈1,≈2 if

a =
∧

x,x′∈X ,y,y′∈Y

[[(x≈1 x′)∗ (y≈2 y′)∗

F(x̄)]→∗ F(x̄′)], (8)

where a ∈ L. We will shortly denote the right side of the
above equality by Ext≈1,≈2 F.

Observe that using the classical definition of extensionality
we determine a crisp class of fuzzy relations that are 1-
extensional. a-extensionality also determines a crisp class
of fuzzy relations that are a-extensional. But truth values
computed by Ext≈1,≈2 F for all fuzzy relations over the
universe of the discourse define the fuzzy class of fuzzy
relations that are extensional.

Example 5 Let L be the standard Łukasiewicz algebra and

F(x̄) =d f y↔∗ (x · x)
on M2, where M = {0.05 · k| k = 0,1, . . . ,20}. Then F is
extensional w.r.t. ≈1,≈2 defined as

x≈1 y =d f (x↔∗ y)∗ (x↔∗ y),
x≈2 y =d f x↔∗ y.

In the terms of graded extensionality, it is

1-extensional w.r.t. ≈1,≈2.

But if we change ≈1 to ↔∗ then we obtain that

F is 0.75-extensional w.r.t. ≈2,≈2.

And even worse, if we take the original ≈1 and change ≈2
to ≈1 then we have that

F is 0.19-extensional w.r.t. ≈1,≈1.

The following theorem summarizes properties of approx-
imation using the normal forms in the graded style that
allows also not completely extensional relations and in this
case, it provides information about the resulting quality of
the approximation by estimation of degrees of the required
properties.

Theorem 6 [10]Let F be a-extensional. Then
• Subsethood: a≤ (DNFF ⊆ F), a≤ (F ⊆ CNFF).
• Estimation for a precision of the approximation:

a∗
∧

x∈X ,y∈Y

C(x̄)≤ (DNFF ≈ F),

where C(x̄) denotes the left side of the inequality (7).
The same estimation holds for CNFF .

The first two inequalities say that the degree of extension-
ality estimates the degree of inclusion of DNFF in F and
F in CNFF , respectively. The last inequality provides the
lower estimation of the quality of approximation using the
normal form that is generated by the degree of extensionality
and the degree of lets say the good covering expressed by∧

x∈X ,y∈Y C(x̄). Informally speaking, higher the degrees of
requirements (extensionality and good covering) better is the
resulting approximation.

IV. GRADED FUZZY RULES FORMALIZED BY
THE IMPLICATIVE NORMAL FORM

In this section, we are going to recall an implicative
variant of the conjunctive normal form (implicative normal
form for short) introduced in [9] and to show its properties.
This normal form differs from the Perfilieva’s conjunctive
normal form and it has been introduced for a distinct
purpose. While the Perfilieva’s conjunctive normal form is
suitable for extensional fuzzy relations and negative samples,
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the implicative normal form has been aimed for functional
fuzzy relations and positive samples.

Definition 7 The conjunctive normal form – implicative
variant (INF for short) for a fuzzy relation F is

INFF(x̄) =d f
∧

i∈I

[F(ci,di)→∗

[(ci ≈1 x)→∗ (di ≈2 y)]]. (9)

For the sake of brevity and in order to simplify the distinction
between the conjunctive normal forms, we will call the con-
junctive normal form – implicative variant as the implicative
normal form.

Generally for non-symmetric ≈1,≈2, we can introduce
also a variant of the above defined INF by juxtaposition of
the variables and constants

INF′F(x̄) =d f
∧

i∈I

[F(ci,di)→∗

[(x≈1 ci)→∗ (y≈2 di)]]. (10)

Obviously, most of the results are valid for both implicative
normal forms therefore, we will deal only with INF in the
sequel and we will explain differences where it will be
necessary.

Now, let us explain a connection with graded fuzzy rules.
Let us take into account only a single segment of INF and
we analyze its core, i.e., we have F(ci,di)→∗ [(ci ≈1 x)→∗
(di ≈2 y)] = 1 that is valid if and only if (ci ≈1 x)→∗ (di ≈2
y) ∈ [F(ci,di),1]. Therefore we interpret this fuzzy relation
in INF as one graded fuzzy rule in the form

fi¹/(If x ∈ Ai then y ∈ Bi),

where the used symbols are interpreted as it was specified
in the table in Section III and additionally, “If . . . then”
interprets →∗. We read the above graded fuzzy rule as
“(If x ∈ A then y ∈ B) at least to the degree fi” with the
above explained meaning. Hence, INF formalizes the fol-
lowing collection of graded fuzzy rules:

f1¹/(If x ∈ A1 then y ∈ B1) AND
. . . AND

fn¹/(If x ∈ An then y ∈ Bn).

As noted at the beginning of this section, the implicative
normal forms are suited to approximate functional fuzzy
relations (slightly less general version is used in the field
of fuzzy control see, e.g., [14], [2], [15]). The following
definition will be directly in the graded form inspired
by [16], where it has been introduced within the formal
framework of fuzzy class theory [17].

Definition 8 A relation F is said to be a-functional w.r.t.
≈1,2 if

a =
∧

x,x′∈X ,y,y′∈Y

[[(x≈1 x′)∗

F(x,y)∗F(x′,y′)]→∗ (y≈2 y′)].

We will shortly denote the right side of the above equality
by Fun≈1,2 F.

Example 9 In the setting of Example 5, we can compute
the following degrees of functionality for F:

F is 1-functional w.r.t. ≈1,≈2;
F is 0.75-functional w.r.t. ≈2,≈2;
F is 0.5-functional w.r.t. ≈1,≈1;
F is 0.31-functional w.r.t. ≈2,≈1.

If we change the background algebraic structure to the
standard product algebra then the fist degree of function-
ality will remain the same and the rest will change to
0.25,0.05,0.0125, respectively.

Let us provide the main results taken from [9] relating
to properties of an approximation (analogous to the Hajek’s
results) using the implicative normal forms.

Theorem 10 If F is a-functional then

a≤
∧

x∈X ,y∈Y

(F(x,y)→∗ INF(x,y)).

It means that the degree of functionality Fun≈1,2 F is the
lower estimation of the inclusion F and INF denoted as
F ⊆ INF, i.e., Fun≈1,2 F ≤ F ⊆ INF.

Theorem 11 Let C and C′ be given by

C(x) =d f
∨

i∈I

[(ci ≈1 x)∗ (ci ≈1 x)], (11)

C′(x) =d f
∨

i∈I

[(ci ≈1 x)∗ (x≈1 ci)]. (12)

If F is a-functional and b-extensional and moreover, the
normal forms are constructed in the nodes taken from the
set Samples then

a∗b∗
∧

x∈X

C(x)≤
∧

x∈X ,y∈Y

(F(x,y)↔∗ INF(x,y)).

The result for INF′F with symmetric ≈2 is the same inequal-
ity with C′ instead of C. Moreover, an interpretation of this
result is analogous to the one given for Theorem 6.

Example 12 From Example 5 and 9, it follows that the pre-
cision of approximation of F using INF w.r.t. ≈1,≈2 depends
only on the suitable partition of X×Y such that

∧
x∈X C(x) is

as high as possible (it also leads to an optimization problem)
in the both cases of the background algebra. While, e.g., in
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the case of ≈2,≈2 and the Łukasiewicz standard algebra,
we have that

0.5︸︷︷︸
0.75∗0.75

∗
∧

x∈X

C(x)≤
∧

x∈X ,y∈Y

(F(x,y)↔∗ INF(x,y)).

From the sequence of examples, we see that the normal
form based approximations and hence generally “fuzzy rule
based approximations” are very sensitive to all choices of
the input parameters such as the choice of the background
algebra, binary fuzzy relations ≈1,≈2 number of nodes and
their distribution over the respective universe.

V. CONSEQUENCES OF THE IMPLICATIVE NORMAL
FORM BASED FORMALIZATION TO FUZZY CONTROL

From the point of view of fuzzy control, it is important
to investigate the outputs of the particular approximate
inference (reasoning). It appeared [10], that it is necessary to
distinguish between approximate inference using DNF and
CNF. Let us briefly describe them together with the new
inference rule for INF:

RDNF :
A′,DNF

B∗
, RCNF :

A′,CNF
B∗∗

and RINF :
A′, INF

B′
,

where

B∗(y) =d f
∨

x∈X

(A′(x)∗DNFF(x,y)),

B∗∗(y) =d f
∧

x∈X

(A′(x)→∗ CNFF(x,y)),

B′(y) =d f
∨

x∈X

(A′(x)∗ INFF(x,y)).

We refer to [7], [10] for properties of RDNF and RCNF. Due
to the space limitation, we will provide only properties of
RINF without proofs.

Theorem 13 Let

Ai(x) =d f (x≈1 ci),
Bi(y) =d f F(ci,di)→∗ (y≈2 di).

• (A′ ⊆ Ai)→∗ (B′ ⊆ Bi);
•

∨
x∈X (Ai(x))∗ (Ai ⊆ A′)→∗ (Bi ⊆ B′);

•
∨

x∈X (Ai(x))∗ (Ai ≈ A′)→∗ (Bi ≈ B′).

From these properties we see that RINF is very natural
approximate inference since it provides an expected output
without complicated requirements. Indeed, there is only one
extraordinary requirement

∨
x∈X (Ai(x)) that can be charac-

terized as non-emptiness and it can be read as: there exists
x ∈ Ai.

Example 14 As an illustration, let us consider Łukasiewicz
standard algebra and two graded fuzzy rules

0.9¹/(If x ∈ A1 then y ∈ B1) AND
0.8¹/(If x ∈ A2 then y ∈ B2),

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Fuzzy sets on X , A1 – black
line; A2 – blue line.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Fuzzy sets on Y , B1 – black
line; B2 – blue line

Figure 1. Fuzzy sets in the graded fuzzy rules from Example 14
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Figure 2. Graded fuzzy rules from Example 14

where Ai,Bi are (non-symmetric) triangular fuzzy numbers
depicted on Figure 1. The resulting fuzzy relation is vi-
sualized on Figure 2. The output of the inference RINF
with the input fuzzy set A′ (blue line on Figure 3(a), i.e.,
shifted A1) is a fuzzy set B′ drawn on Figure 3(b). On
these figures, we demonstrate the last inequality in the above
theorem: (A1 ≈ A′) .= 0.6667 and

∨
x∈X (A1(x)) = 1, hence,

0.06667 ≤ (0.9→∗ B1) ≈ B′. In the case of the input fuzzy
set A′ identical with A1 (or A2), we obtain exactly 0.9→∗ B1
(0.8→∗ B2) as the output B′.

The following properties relate to a position of the re-
constructed implicative rule A′ →∗ B′ and the ideal fuzzy
relation F .

Theorem 15 Assume the notational convention as in Theo-

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) A1,A2 – black line; A′ –
blue line.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) 0.9 →∗ B1,0.8 →∗ B2 –
black line; B′ – blue line

Figure 3. Inference over the graded fuzzy rules from Example 14
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rem 13 and moreover

Fh(y) =d f
∨

x∈X

F(x,y);

• If F is a-functional then a≤ F ⊆ (A′→∗ B′);
• If F is a-functional and b-extensional then

a∗b∗
∧

x∈X

C(x)≤ (A′→∗ B′)⊆ (A′→∗ Fh).

The first inequality shows that the degree of functionality of
F estimates the degree of inclusion of F in A′→∗ B′. And
the second inequality provides an estimation of the reverse
inclusion, i.e., the degrees of extensionality, functionality
and the good partition estimates inclusion of A′ →∗ B′ in
A′→∗ Fh. An open question remains whether it is possible
to prove (A′→∗ B′)⊆ F .

VI. CONCLUSIONS

In this contribution the INF has been recalled together
with the results showing its suitability for an approximation
of dependencies represented by functional and extensional
fuzzy relations. In Theorem 11, an estimation of the equiv-
alence between the given fuzzy relation and its INF has
been provided. The resulting inequality is the same as in
the case of DNF and CNF. Which gives us a confidence
on the efficiency of INF. Moreover, we have worked purely
with the graded notions and all provided results carry the
information about the involved degrees. Hence, they widens
an applicability of normal forms to partially extensional and
partially functional fuzzy relations.

Additionally, a connection between graded fuzzy rules and
the INF was explained. Indeed, graded fuzzy rules can be
seen as classical fuzzy rules with the modified antecedent
parts (a different modification for each normal form). This
view provides an insight into the nature of descriptions
formalized by normal forms.

Finally, a suitable inference rule has been introduced and
studied. Our choice of the inference rule is supported by
the theoretical results mainly by Theorem 13 that explains
behavior of an output of this inference w.r.t. a particular
fuzzy set on the consequent part of the respective fuzzy
rule. This theoretical analysis of the generalized Implicative
model of fuzzy rules is aimed to provide a complete view on
the problematic of well setting of a fuzzy rule base system
and indeed justifying its proper behavior.
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[17] L. Běhounek and P. Cintula, “Fuzzy class theory,” Fuzzy Sets
and Systems, vol. 154, no. 1, pp. 34–55, 2005.

121

COGNITIVE 2011 : The Third International Conference on Advanced Cognitive Technologies and Applications

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-155-7


