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Abstract—This paper studies the development of human
expertise in the game of Go. Although superficially a simple
game, Go is the most difficult of all established games for
artificial intelligence, no computer program yet achieving top
international level on a full 19x19 board. On smaller boards,
such as 9x9 computers are competitive, implying that the
understanding of the complex global interactions is the key to
human superiority. By mining thousands of positions online, we
show that at some player levels the sequence of plays leading
up to a local position is a stronger determinant of the next
move than the position alone. This suggests that the sequence
of plays is an indicator of global strategic factors and thus
provides a context for the next move in addition to the local
position itself.
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I. INTRODUCTION

The big picture often influence or override local factors
in many areas of human expertise, from board games to
politics. Challenging games, such as Chess and Go, provide
an excellent framework for studying expertise [1], [2],
[3], [4] since they are both strategically deep but tightly
constrained. This paper presents a striking demonstration of
this, mined from thousands of decisions online. In recent
work we have demonstrated transitions in the acquisition of
expertise in the game of Go [5]. This game is interesting
because it is currently the most difficult of all established
games for computational intelligence. Unlike Chess, where
the IBM computer Deep Blue [6], [7] triumphed over world
champion Kasparov.

We also demonstrated therein, from calculation of mutual
information between moves, that one of these transitions has
the character of a phase transition [8]. The idea of a phase
transition comes originally physics, such as the melting of
ice to give water. When such a physical phase transition
occurs there is a dramatic reorganisation of the system.
In this case water molecules which were fixed rigidly in
place in ice become free to move around and perhaps travel
long distances. During a phase transition, systems exhibit
long range order, where there are correlations in activity
or structure over large distances and system parameters
often exhibit power law behaviour, or fat-tailed distributions.
Another example of a phase transition is in the formation of

random graphs. At the transition the average path length, in
other words the number of steps from one node in the graph
to another rises to a peak, and then drops back down again.

A dynamical system examples is the Vicsek model de-
veloped for studying magnetic transitions in solid state
physics [9]. In this model particles travel around a two
dimensional grid, and, when they come within some spec-
ified distance of each other, their directions of movement
get slightly closer together. Phase transitions occur in this
system as particles flow around in groups, like flocks of
birds, but these groups are dynamic, continually forming
and dissolving.

Mutual information is a system property which measures
the extent to which the structure or behaviour of one part
of a system predicts the behaviour of another. In the Vicsek
model of above, at the transition the direction and velocity of
one particle provides some information about the direction
of all the other particles. The mutual information peaks
during the phase transition [9], [10], and this is thought to
be a general property of phase transitions along with the
other characteristics, notably long range order and power law
characteristics. We found a peak in mutual information as a
function of rank amongst Go players from 1 Dan Amateur
through to the very top players, 9 Dan Professional [8].
The previous work [8] has demonstrated phase transitions
in collective human decisions in Go. This paper presents
evidence that there is global influence on local decisions
and that the influence is greatest during the phase transition.

A. State of the Art in Game Expertise

Much of the work on human expertise has been based on
games, especially Chess, as in Gobet’s extensive work [1],
[11]. One of the key ideas, essentially from Nobel Laureate
Herbert Simon, is that human expertise involves building a
huge library of patterns [12], [13], although the application
of these ideas in artificial intelligence for games is relatively
new [14].

These patterns build up through the formation of chunks,
and psychological observables, such as memory for Chess
positions are well predicted by models such as CHREST [3].
The way the cognitive structures in the brain might change
as expertise develops, and in particular the appearance of
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phase transitions, is relatively new introduced by Harré and
Bossomaier [8], [5].

Further recent advances have been limited, particularly
in Go where a combination of the game space complexity
of Go [15] and a lack of genuinely human like heuristics
such as an evaluation function make progress difficult.
However with the development of ever more effective ran-
dom sampling techniques, such as the UCT-Monte Carlo
approach currently favoured by AI system developers [16],
some progress has been made in achieving strong amateur
play. However these techniques do not address the inherent
complexity of the game and the techniques that humans have
developed in order to address such issues, almost completely
because such techniques are not subject to easy investigation.

We argue that the sources of information players use
in order to make good decisions are of two types: local
and global. While every level of player in our study has
learned a great deal about the game of Go over the course
of their lives, it is how this information is implemented
via the choices they make that is of interest to us. This
relevance of the division of the problem space in to these
two parts can be seen in the work of Stern et al [17].
They were able to produce ‘best in class’ move prediction
for professional players in Go, achieving a 34% success
rate. This was achieved by training their system on 181,000
expert game records and using the most modern techniques
available for their analysis. The level of success achieved
in this work highlights one of the principal difficulties of
good performance in complex tasks: exact pattern matching
is not enough; AI systems need to be able to model how
non-local aspects i.e. information that cannot be derived by
exactly matching board configurations, influence decisions.
Loosely interpreted this is what is called influence in Go
and before our recent work it had not been reported in the
research literature.

II. METHODS

Harré and Bossomaier [8] examined the game trees 6
moves (i.e. 3 black and three white) deep for around 8,000
games across a range of Go expertise. At the low end were
2 kyu Amateurs, a rank reached by serious players after a
couple of years club play through the highest amateur rank
of 6 Dan Amateur (6A) to the top professional rank of 9 Dan
Professions (9P). Game data was obtained from the pandanet
Go server. Full details of experimental procedures are given
in Harré et al. [8]. The game trees were computed from 7x7
board sections in the corner, from games played between
players of the same rank. No symmetry was exploited, apart
from rotations to align each of the four corners (used to
maximise data yield per game). Note that although these
are the first 6 moves played in the region, they are not
necessarily, and usually are not, the first 6 moves of the
game.

For each possible move, mi, three probability distributions
were computed

1) the probability of the move, mi, occurring, P (m)
2) the conditional probability, P (mI |qi), of the move, mi

occurring from a given position, q − I
3) the conditional probability, P (mI |si) of the move oc-

curring from a given position, reached by a particular
order of moves, si

From these results the entropy and mutual information
were calculated, but this paper addresses findings from the
entropies alone. The move entropy, H(M), is taken over all
moves which can arise at each level in the game tree (i.e.
for the 6 moves in the sequence). (eqn. 1).

H(M) = −
∑

i

p(mi) log2[p(mi)] (1)

Entropy is a measure of disorder or randomness and is
maximal when the probabilities or all events are the same.
When the first move in the region there are 49 possible
positions and after 5 moves, 44, giving a maximal entropy
of log2 44 = 5.5 bits. But since the moves are far from
random the measured entropies are much lower than this.

The conditional entropy, C(M |qi), is the move entropy
calculated from the moves which can arise in a given
context, such as a position, qj , or sequence of moves, sj ,
leading to a position.

C(M |Q) = −
∑

i

p(mi|qj) log[p(mi|qj)] (2)

with the same expression used for an ordered sequence of
moves with sj replacing qj .

These entropic quantities are now calculated across all
ranks from amateur 2q, denoted am2q through, the amateur
dan ranks to am6d, and then to the highest rank of all,
professional 9 dan, pr9d and are shown in figures 1–3.

III. RESULTS

Figure 1 summarises the key findings of the paper. It
shows the conditional entropy as a function of move in the
sequence of 6 averaged across all ranks, both amateur and
professional. Error bars are calculated as in Harré et al. [5].
Up to move 3 the entropy for both the ordered and unordered
cases are the same. At move three they fall dramatically, but
the ordered average falls about a third more.

Figure 2 shows the entropy at each move from a given
position. For purely random moves the entropy at each move
in the sequence would be between 5 and 6 bits. The entropies
observed are, of course, much lower, usually less than 2 bits,
reflecting the structure inherent in the game.

The entropy for the third move is slightly less than for the
first two, but the entropy falls a little for the fourth move
and a lot more for the fifth and sixth moves. This is not
surprising given the reduced options available as the number
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Figure 1. Conditional entropy (eqn. 2) as a function of move averaged
over all ranks
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Figure 2. Entropies for moves from a given board position (reprinted from
[8])

of stones on the board increases. The entropy summed over
all moves declines linearly to the maximum amateur rank
and then increases slightly from from the first professional
rank.

Figure 3 shows the entropies which result from positions
which arose from a particular sequence of play. These
entropies are around 3 bits smaller, than for the unordered
case. The slope of the regression line for the amateur levels
is not so large, but the trend for the professionals displays a
different pattern: the summed entropy jumps near the start
of the professional ranks and then decreases with rank up
to 9P with a slope very similar to that for the amateur ranks
on the left of the figure.

The most interesting thing about this figure, though, is
the way the entropy for the last three moves shrinks and
vanishes as the amateur rank increases from 4A to 6A. In
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Figure 3. Entropy for the first six moves shown as a stacked bar chart.
The black bars represent the entropy at move 1, the dark grey at move 2 ad
so on for all six moves. The dashed regression lines show the total entropy
for the amateur and professional sequences.

fact the summed entropy for the first three moves is quite
similar to the unordered case, so the three bit loss is almost
all in the last three moves.

IV. DISCUSSION

There are two very interesting features of these results,
which we consider in turn: the difference between ordered
and unordered play; and the way the conditional entropy
varies with rank.

That the ordered and unordered play differ, implies that
the position at each move is not the sole determinant of
the opponent response. The much lower conditional entropy
after the first three moves for the ordered case strongly
suggests that the sequence of moves has revealed something
of the global context which has in turn fed back into move
selection. To see this, imagine that black is strong in one
area of the board and white in another. Since communication
lines are of great strategic importance in Go, the locations of
these areas will strongly influence the order of moves made
in the local area we examine. The first three moves implic-
itly contain some of this information, which subsequently
reduces the range of options in the second three moves.

The gradual decline in entropy with rank for amateur and
professional reflects a gradual reduction in the space of range
of options, which we could see as the elimination of poor
moves in established situations, similar to the mastering of
the opening in Chess.

Our data and results are explicitly based on an analysis
of the local information, but by implication they also say
a great deal about the global context that influences these
localised decisions. The first three moves in our study have
a reasonably similar conditional entropy of about 1.4-1.6
bits of information. This is the amount of information that
is common between each successive move within the local
region. Such measures of information are the best estimate
of how much one stochastic variable can tell us about
another [18]. The only other source of information available
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to the players are the pieces on the board that were not
included within our local region. We exclude the possibility
of being able to read the other opponent. While it is a
debated issue as to the importance of such skills, we believe
that it is much less significant than all the other pieces
on the board that were not within the local area of study.
The changing influence that non-local information has on
decisions during a game, is evident in the the significant
drop-off in the conditional entropy after move 3 in Figure 1,
a drop-off of shared information from one move to the next
of nearly an order of magnitude for the ordered play and
about half that for unordered play.

This change in the levels of conditional entropy as the
game progresses in the corner region of the board might be
due to the reducing size of the move space as the board
fills up. While this might have some minor influence on our
results, we should also expect such changes to be almost
linear as the number of available positions only drops by a
total of 1/43 per move. It is also possible, but exceptionally
unlikely, that after move 3 players choose much more
randomly, i.e. without concern for the pieces on board either
local or non-local, than they did for the first three moves.
Considering the vast training literature available to players
that readily teach them the many different variations of the
first 6 moves within the corner, and then how to contextualise
these decisions by considering what pieces occupy nearby
areas, we consider this to be an unlikely strategy.

Instead we argue that it is just this external influence, the
influence of the stones arrayed on the rest of the board that
is having such a striking influence on the condition entropy.
This is perhaps not so surprising when considered in the
light of the state of the game itself after 3 moves have
been played in the corner. These first moves can be thought
of as establishing the game board layout in terms of an
‘opening book’, highly stylised moves of local pieces where
the local pattern can be thought of as essentially uncoupled
from the rest of the board, or at least coupled to the same
extent for these first moves. This coupling then changes
significantly from the 4th move onwards where greater
consideration needs to be afforded to the other pieces on the
board. This change in focus of the information effectively
reduces significantly the information coupling between the
local moves and the local stones on the board.

The complete disappearance of entropy at the high am-
ateur ranks is very interesting. It suggests that the at this
level play has become somewhat stereotyped, and a major
change in thinking is needed to advance, which indeed
seems to happen on turning professional. Thus this loss of
entropy is consistent with the long range order found in
phase transitions [8]. This accords with the findings in Harré
et al [8], wherein a peak in mutual information is found at
the transition to professional, indicating some sort of major
cognitive reorganisation. At present we do not know how to
quantify such a reorganisation and this remains an exciting

open question. Ongoing work is attempting to apply the
CHREST models to Go [3] and to determine how phase
transitions might be predicted.
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