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Abstract—This paper presents learning approaches to model
the interaction between a robotic manipulator and its working
environment. The approaches used are fuzzy modeling, neu-
ral networks and support vector machines. The interaction
tackled in this paper is between the robot visual perception
of the work environment and its actuators, while performing
positioning tasks. This interaction, e.g., model, is obtaining only
on measurements. This fact allows to obtain an uncalibrated
model of the interaction, minimizing the setup time of the
robotic system, not requiring calibrated robot kinematic and
camera models. The input-output sample data used to learn the
model are visual features from the work environment and the
robot joint velocities, respectively. Experimental data, obtained
from a IR52C robot and a visual stereo system, was used to
validate the obtained models. Due to its accuracy and lower
computational complexity, when compared to the other three,
the off-line fuzzy model was used to control the robot, which
clearly shows the effectiveness of the approach.

Keywords-Fuzzy Modeling, Neural Networks, Support Vector
Machines, Computer Vision, Robotic Manipulators.

I. INTRODUCTION

Visual servo control of robots is an area in continuous
expansion, since vision sensors provide much more infor-
mation about the working environment of the robot, than
any other type of sensors. The area of robotics that addresses
this concept is also called Visual Servoing, which essentially
defines the control methods for dynamic systems, using
information from vision sensors (cameras). The basis of
this work came from the idea of modeling the interaction
between the motion and vision of an industrial robot manip-
ulator, without a-priori calibration of the system. Industrial
manipulators are usually programmed using 3D coordinates
of the work environment. This lead us to use stereo vision
to obtain the image features, in order to obtain the 3D
coordinates to control the robot.

To perform Uncalibrated Visual Servo Control, the robot-
camera model must be estimated. Previous work from the
authors [5], showed that Uncalibrated Visual Servo Control
can be applied to control an industrial manipulator using
vision, with the following advantages: no need to calibrate
the robot; no need to calibrate the camera(s); the controller
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has no singularities. In [5] was developed a system based
on off-line fuzzy modeling.

In this paper, the estimation is performed by learning.
Four approaches are presented, the first off-line fuzzy mod-
eling [5], the second on-line fuzzy modeling [11], the
third neural networks [13] and the fourth support vector
machines [14]. Neural networks and support vector machines
are two major machine learning approaches, and were not
yet applied to the estimation of the robot-camera model.
These approaches are used to compare the previous work
results [5], obtained using the off-line fuzzy modeling, and
also to find a better alternative to fuzzy modeling. On-line
fuzzy modeling pretend to be an extension of the off-line
fuzzy modeling approach. These four approaches lead to a
model capable of controlling the visual servo system. The
learning approaches are used to derive the inverse robot-
camera model, i.e., the inverse Jacobian, in order to compute
the joints and end-effector velocities in a straightforward
manner. The models can be directly applied as a controller,
which is a simple way to implement a controller in real-time.
Note that this feature is very important in robotic systems.

This paper is organized as follows. Section II describes
briefly the concept of visual servo control and presents
the uncalibrated visual servo control approach. Section III
presents very briefly on-line and off-line fuzzy modeling,
neural networks and support vector machines. Section IV
describes the experimental setup and presents the obtained
results, where the identified models are discussed. Finally,
Section V presents the conclusions and the future work.

II. VisuAL SERVO CONTROL

A. Calibrated Visual Servo Control

In this paper 3D visual servoing with 3D features, [1],
is used in an eye-to-hand system, [2], where the camera is
fixed and looking the robot and the object. The 3D image
features, s are 3D points of the object in the camera frame,
p. The kinematic modeling of the transformation between
the image features velocities, s, and the joints velocities ¢
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is defined as follows, [1]:

s=[-I3 Sp) |- We-“Jr-4=1J-4q, ey
where I is the 3 x 3 identity matrix, S(p) is the skew-
symmetric matrix of the 3D point p, ‘W, is defined as the
transformation between the camera and end-effector frames
velocities, and ¢Jg is the robot Jacobian. The 3D point is
obtained from the captured image using a pose estimation

algorithm, [1].

B. Uncalibrated Visual Servo Control

To derive an accurate Jacobian, J, a perfect modeling
of the camera, the chosen image features, the position of
the camera related to the world, and the depth of the target
related to the camera frame must be accurately determined.
Even when a perfect model of the Jacobian is available, it
can contain singularities, which hampers the application of
a control law. Remind that the Jacobian must be inverted
to send the camera velocity to the robot inner control
loop. When the Jacobian is singular, the control cannot be
correctly performed.

There are visual servo control systems that obviate the
calibration step and estimate the robot-camera model either
online or offline. The robot-camera model may be estimated:

o Analytically, using nonlinear least square optimization
[3], and

o By learning or training, using fuzzy membership func-
tions and neural networks [4], [5].

In addition, the control system may estimate an image
Jacobian and use the known robot model, or a coupled robot-
camera Jacobian may be estimated.

To overcome the difficulties regarding the Jacobian, a
differential relationship between the features and camera
velocities was proposed in [4]. This approach states that the
joint variation depends on the image features variation and
the previous position of the robot manipulator:

Sq(k) = Fy ' (8s(k + 1), q(k)). )
In visual servo control, the goal is to obtain a joint velocity,
dq(k), capable of driving the robot according to a desired
image feature position, s(k+ 1), with an also desired image
feature error, ds(k+1), from any position in the joint spaces.
This goal can be accomplished by modeling the inverse
function F)~ ! using fuzzy modeling as proposed in this
paper and presented in Section III. This new approach to
visual servo control allows to overcome the problems stated
previously regarding the Jacobian and the calibration of the
robot-camera model. It can be applied to all types of visual
servo control. It was apllied to 2D in [5], and it will be
applied to 3D in this paper.
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III. LEARNING APPROACHES TO MODELING
A. Fuzzy Models

From the modeling techniques based on soft computing,
fuzzy modeling is one of the most appealing. If no a priori
knowledge is available, the rules and membership functions
can be directly extracted from process measurement. Fuzzy
models provide a transparent description of the system,
that can reflect a possible nonlinearity of the system. The
fuzzy models implemented in the presented toolbox are
Takagi-Sugeno fuzzy models [6] where the consequents are
crisp functions of the antecedent variables and linguistic or
Mandani [7], [8] fuzzy models where both the antecedent
and consequent are fuzzy propositions.

1) Takagi Sugeno: Takagi-Sugeno (TS) models consist of
fuzzy rules describing a local input-output relation, typically
in an affine form:

Ri If 1 is Ail and ...and Ty is Azn

then y;, = a;x+0b;, 1=12,..., K. 3)

Here R; is the ith rule, x = [z1,...,7,]T are the antecedent
variables, A;1,...,A;, are fuzzy sets defined in the an-
tecedent space, and y; is the rule output variable. K denotes
the number of rules in the rule base, and the aggregated
output of the model, g, is calculated by taking the weighted
average of the rule consequents:

S By
ZiKzl Bi ,

where f3; is the degree of activation of the ith rule: 5; =
H?:l/’l/Aij (.1‘]'), 1 =1,... 7K, and A”(JZ]) R — [07 1]
is the membership function of the fuzzy set A;; in the
antecedent of R;.

To identify the model in (3), the regression matrix X and
an output vector y are constructed from the available data:
X" = [x1,...,xn), ¥y" = [y1,.. ., yn], where N > n is
the number of samples used for identification. The number
of rules, K, the antecedent fuzzy sets, A;;, and the conse-
quent parameters, a;,b; are determined by means of fuzzy
clustering in the product space of the inputs and the outputs
[9]. Hence, the data set Z to be clustered is composed from
X and y: ZT = [X, y]. Given Z and an estimated number of
clusters K, the Gustafson-Kessel fuzzy clustering algorithm
[10] is applied to compute the fuzzy partition matrix U.

The fuzzy sets in the antecedent of the rules are obtained
from the partition matrix U, whose ikth element /1,5, € [0, 1]
is the membership degree of the data object z; in cluster
i. One-dimensional fuzzy sets A;; are obtained from the
multidimensional fuzzy sets defined point-wise in the ith
row of the partition matrix by projections onto the space of
the input variables x ;. The point-wise defined fuzzy sets A;;
are approximated by suitable parametric functions in order
to compute fi4,; () for any value of z;.

Y= “4)
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The consequent parameters for each rule are obtained as a
weighted ordinary least-square estimate. Let 67 = [al;b;],
let X, denote the matrix [X; 1] and let W; denote a diagonal
matrix in R V*¥ having the degree of activation, 3;(xy), as
its kth diagonal element. Assuming that the columns of X,
are linearly independent and (;(x;) > 0 for 1 < k < N,
the weighted least-squares solution of y = X.6+ ¢ becomes

0; = [XTW,X.] ' XTW.y . (5)

Previous work of the first author have already stated that
this approach can obtain a model capable of controlling an
image based visual servoing system [5].

2) Evolving: The model obtained from the techniques
presented in the previous two sections is assumed to be
fixed, since it is learned in off-line mode. Recently attention
is focused in on-line learning [11], where in a first phase,
input-output data is partitioned using unsupervised clustering
methods and in a second phase, parameter identification is
performed using a supervised learning method.

In On-Line Fuzzy Modeling and according to [11], also
rule-based models of the TS type, are considered. Typically
in the affine form described in (3), where the input-output
data is acquired continuously. The new data, arriving at
some time instant, can bring new information from the
system, which could indicate a change in its dynamics. This
information may change an existing rule, by changing the
spread of the membership functions, or even introduce a new
one. To achieve this, the algorithm must be able to judge the
informative potential and the importance of the new data.

In the following is briefly presented the on-line fuzzy
modeling algorithm, proposed in [11], called evolving fuzzy
systems. The first step is based on the subtractive clustering
algorithm [12], where the input-output data is partitioned.
The procedure used must be initialized, i.e., the focal point
of the first cluster is equal to the first data point and its
potential is equal to one. Starting from the first data point,
the potential of the next data point is calculated recursively
using a Cauchy type function of first order:

Pe(z) = L . k=23,.. (6

+1
T Simt g (d))?
where Pk(zk) denotes the potentlal of the data point zj
calculated at time k; cl],c =zl — 7, denotes projection of
the distance between two data points (2] and z}) on the axis
27,

When a new data point arrives it also influences the
potential of the already defined center of the K clusters
(2F,i=1,2,...,K). A recursive formula for the update of
the cluster centers potential is defined in [11]:

(k= 1)Pr—1y(2})
k= 2+ Po_1y(2) + Paey (27) + X001 (d))?

where Py (z]) is the potential at time & of the cluster center,
related to the rule <.

P(2]) =

3
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The next step of the algorithm is to compare the potential
of the actual data point to the potentials of the existing
cluster centers.

If the potential of a new data point is higher than the
potential of the existing cluster centers, then the new data
point is accepted as a new cluster center and a new rule
is formed. If in addition to the previous condition the new
data point is close to an old cluster center, the old cluster
center is replaced. The decision to create or remove rules
was based on the following principles:

1)The sample has a high potential is legible to be a focal
point of a fuzzy rule:

Py (2x) > max(Py(z])) (7)

2)A sample that is over an area of spatial data are is not

covered by other rules, is also eligible to form a rule:
Pk(zk) < mm(Pk(z:‘)) (8)

3)To avoid overlap and redundancy of information in
creating new rules, the following condition is also checked:

Ji, i = [1’R]§Mij($(k)) >

R denotes the number of fuzzy rules up to the moment k.
The membership function are gaussian, with the form:

e Vi g = [1,n] ©9)

2

= e rllzi—zi;l , 10)
The consequents of the fuzzy rules are obtained using

the global parameter estimation procedure based on the

weighted recursive least squares, presented in [11].

B. Neural Networks

Neural networks have found profound success in the area
of pattern recognition, function approximation, optimization,
pattern matching and associative memories. By repeatedly
showing a neural network inputs classified into groups, the
network can be trained to discern the criteria used to classify,
and it can do so in a generalized manner allowing successful
classification of new inputs not used during training [13]. In
the present paper a feedforward backpropagation network
with 5 neurons, with sigmoid activation functions in the
hidden layer and a linear one in the output layer, is used
to obtain the model of the interaction.

C. Support Vector Machines

The support vector machine (SVM) maps an input vector
x into a high-dimensional feature space Z through some
nonlinear mapping, chosen a priori. In this space, optimal
separating hyperplanes are constructed. In the case of regres-
sion, SVM performs modeling between several clusters by
finding decision hyper surfaces determined by certain points
of the training set, termed Support Vectors [14].
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Figure 1. The eye-to-hand experimental setup.
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Figure 2. Configuration of the markers placed on the end-effector.

IV. EXPERIMENTAL RESULTS
A. Experimental Setup

To validate the proposed approach, we use the IR52C
Robotic Manipulator and a stereo vision system, with U-
Eye cameras, in eye-to-hand configuration. The experimental
setup is presented in Fig. 1. The PC2 acquire and process
[15] the images from cameras and sends 3D data to the
network using UDP protocol. Computer PC1 receives UDP
packets coming from the PC2, and implement the visual
servo control algorithm, to control the robot. To extract the
3D features for visual servo control, an object with tree
LEDs, was placed in end-effector, with the marker configu-
ration depicted in Figure 2. Computer PC2 acquires images
from cameras, perform color segmentation of images, and
extract the 3D coordinates, in real-time, corresponding to the
3D position of the three markers, [15]. These nine features
are send to the network.

1) Modeling Results: For the robotic application in this
paper, the models are identified using input-output data
from the inputs ¢(k) and the outputs ds(k + 1), following
the procedure described in [5]. In this paper, the approach
presented in [16] to obtain the training set was used. Note
that we are interested in the identification of an inverse
model as in equation 2.

To obtain the data for model identification, the robot
must move in the 3D workspace within the field of view of
cameras, making a 3D spiral with a center point, (Fig. 3).
The variables needed for identification, ¢(k) and ds(k + 1),
are obtained from the spiral. This allows to cover a wide
range of values for ¢(k) and ds(k+ 1), by the equations 11
and 12.
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Figure 3. 3D Spiral path for model identification.

Table I
RESULTS OF THE OFF-LINE FUZZY MODEL

Rules VAF MSE
Joint 1 3 98,2% 0,23
Joint 2 3 97,3% 0,93
Joint 3 3 944% 2,81
Joint 4 3 93,2% 1,21
Joint 5 3 98,2% 0,23

O0s(k+1)=s"—s(k+1) (11)
*— q(k
i) = L9 (12)

To estimate the modeling accuracy, we use the VAF
(Variance Accounted For), defined in equation 13, where
”cov” represent the covariance vector, and "MSE” (Mean
Squared Error), defined in equation 14. A perfect match
occurs, when VAF is 100% and MSE have value 0.

~ covly: — i)

VAF =1
cov(y:)

x 100% (13)

1 ~ 2
MSE =% (5 = v) (14)

In Table 1, are presented the values of VAF and MSE for
the off-line fuzzy modeling. With only three rules, excellent
values of VAF and MSE were obtained, meaning that the
model is good for estimating the joint velocities.

In Off-Line Fuzzy Modeling the number of clusters (rules)
must be defined a priori in order to obtain a model. In
On-Line Fuzzy Modeling, evolutionary algorithms are used
after initialization, and will estimate the number of rules
required in accordance with the potential associated with
each data. The results from On-Line Fuzzy Modeling are
presented in Table 2. The variable €2 is the initialization
parameter of the algorithm, that varies with the type of data.
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Table II
RESULTS OF THE ON-LINE FUZZY MODEL

[$] VAF MSE  Rules
Joint 1 | 400 979% 0,04 82
Joint 2 | 215 94,1% 0,37 74
Joint 3 | 250 95,6% 0,36 75
Joint 4 | 250 93,1% 0,20 66
Joint 5 | 342  64,3% 1,18 82
Table III

RESULTS OF THE NEURAL METHOD MODEL

VAF MSE
Joint 1 | 98,3% 0,22
Joint 2 | 97,3% 0,94
Joint 3 | 944% 2,84
Joint 4 | 939% 1,08
Joint 5 | 98,2% 0,23

The results presented in Table 2, show very good results
with the exception of the last joint, but at the expense of a
high number of rules, which will hopefully be minimized in
future works. In Table 3 the results obtained with the neural
network approach are presented, with similar results to the
fuzzy off-line approach with only 5 neurons in the hidden
layer. The SVM approach lead to better results, presented
in Table 4, but at expenses of the complexity of the model
since there are almost 900 support vectors. This fact does
not allow a real time control of the robot, because of the
computational time.

From the presented results of the four learning ap-
proaches, the on-line fuzzy model gives the best results,
when taking only into account the error parameters, MSE
or VAF. Since the model must be implemented to control
the robot, the computational time is very important. Taking
this parameter into account, the off-line fuzzy model must
be used for control because it only has 3 if-then rules when
compared to the 82 rules, only for joint 1, of the on-line
model. The computational complexity of the neural networks
and the SVM is similar to the on-line model case.

2) Control Results: The modeling results obtained lead us
to implement the off-line approach because of the simplicity
of the model (only 3 if-then rules), when compared to the
neural network and the support vector machine. The on-
line fuzzy model have not achieved good results for control,
specially due to joint 5.

The control results were obtained using the Off-Line fuzzy
model based control, defined in Fig. 4.

Inverse
Fuzzy Model

t

| Stereo
Vision

Figure 4. Uncalibrated Visual Servo Control Loop.
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Table IV
RESULTS OF THE SUPPORT VECTOR MACHINE MODEL

VAF MSE
Joint 1 | 99,7% 0,04
Joint 2 | 99,6% 0,14
Joint 3 | 99.2% 0,39
Joint4 | 993% 0,13
Joint 5 | 99,6% 0,04

To test the fuzzy models estimated, some trajectories were
set within the workspace of the robot. The results obtained
are quite satisfactory. Although some initial oscillations of
the 3D positions error, the robot could stabilize and stop at
a position close to the desired value of presenting a small
error, within 3mm. Figure 5, Figure 6 and Figure 7, show
the error for each marker, with respect to the 3D coordinates
X, Y, Z, respectively, obtained in one of several trajectories
performed with the robot. The control approach can stabilize
the robot, as depicted in Figures 5 to 7, which shows the
evolution of the robot joint velocities during the trajectory.

V. CONCLUSIONS AND FUTURE WORK

This paper presented a comparison between four learning
approaches to obtain the interaction between the robot
manipulator actuators and vision, when the robot performs
positioning tasks. Four methods are presented and compared:
Off-line Fuzzy Modeling, On-Line Fuzzy Modeling, Neural
Networks and Support Vector Machines. The Off-line Fuzzy
Modeling approach proven to be the adequate choice to
control the robotic manipulator. With the Off-Line Model,
was implemented a controller based on the learned fuzzy
model, to control the IR52C robot to perform trajectories in
its workspace. This controller presented very good results,
with errors within 3mm of the desired position. The future
goal is to implement a procedure that can update on-line the
off-line learned model. For that, the first steps were already
accomplished, i.e., a model based on Evolving Takagi-
Sugeno Fuzzy Systems was obtained in this paper. With this
approach very good results of VAF and MSE were obtained,
with very satisfactory accuracy. The main objective of the
future work is to reduce the number of rules of the on-line
model, to allow that an On-Line Fuzzy model can control
the IR52C Robotic Manipulator.
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