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Abstract—In this paper, we presented EX-ACT-P, a tool for 

experimenting with a theorem prover. The heart of EX-ACT-P 

is ACT-P (A Configurable Theorem-Prover). ACT-P is a 

resolution-based theorem prover, which has a unique 

characteristic: allows the user to configure its resolution 

control regime. EX-ACT-P is an extension of ACT-P that 

allows user to experiment with theorem proving aspects, such 

as: configure a suitable resolution control regime, translate 

and automatically solve problems from the TPTP library, 

create and prove his/her own problems, display the proof steps 

in both text-based and graphical way and give information 

relevant to the proof process. So, EX-ACT-P can be useful to 

students for learning and to tutors for teaching aspects related 

to use of logic as a knowledge representation and reasoning 

language, by creating the right cognitive models, as well as to 

researchers for experimenting with theorem proving in ACT-

P. A small scale evaluation for students has shown promising 

results. 

Keywords- Automated reasoning; Theorem prover; Resolution 

control strategies; TPTP library; Teaching logic assistant 

I. INTRODUCTION  

Logic is one of the fundamental topics taught in computer 

science and/or engineering departments. In most such 

departments, logic is taught as a means for constructing 

formal proofs in a natural deduction style. However, 

teaching logic, especially first-order logic (FOL), as a 

knowledge representation and reasoning (KR&R) vehicle is 

also basic in all introductory artificial intelligence (AI) 

courses. We have constructed some tools for helping 

students in learning and tutors in teaching logic as a KR&R 

language (e.g., tools for translating natural language 

sentences into FOL ones or for converting FOL sentences 

into clause form, etc) [6]. However, we haven‟t constructed 

a tool for assisting in learning or teaching automated logic-

based reasoning. There have been tools assisting students in 

using logic as a natural deduction tool, usually called proof 

assistants or proof editors (e.g., like [1, 2, 3, 4, 7, 8]). Most 

of them give an emphasis on the user interface. Some of 

them are built on top of an interactive theorem prover, like 

Isabelle [11]. However, there are no tools for helping 

students in learning and teachers in teaching automated 

logic-based reasoning aspects. Even further, there are no 

tools for experimenting with controlling automated logic-

based proof processes. 

Theorem proving is a subfield of automated reasoning 

where logic is used as a KR&R vehicle. Resolution-based 

reasoning is a fundamental mechanism for logic-based 

reasoning, namely theorem proving. Many automated 

theorem provers (ATPs) are based on that mechanism. One 

of them based on first-order logic (FOL) is Prover9 [9]. So, 

such an ATP system could be the basis for a system 

assisting in teaching or generally in experimenting with 

automated logic-based reasoning. 

We introduce here a tool for experimenting with logic-

based reasoning via an ATP, namely ACT-P (A 

Configurable Theorem-Prover). ACT-P was initially 

introduced in [5] and is configurable in the sense that one 

can (re)define its resolution control regime. We call our tool 

EX-ACT-P (EXtended ACT-P), since it extends the 

interactive and presentation facilities of ACT-P. 

The structure of the paper is as follows. Section II 

presents an overview of ACT-P. In Section III, EX-ACT-P 

is described. Section IV deals with using ΕΧ-ACT-P, 

whereas Section V briefly refers to system evaluation. 

Finally, Section VI concludes the paper.  

 

II. ACT-P: AN OVERVIEW 

ACT-P (A Configurable Theorem-Prover) is the heart of 

EX-ACT-P. It is a skeleton resolution-based theorem 

prover, where specific steps are programmable by the user. 

ACT-P is based on a meta-level architecture. This means 

that it has an object-level language and a meta-level 

language. Its object-level language is a classical FOL. Its 

syntax is based on Cambridge Polish notation, using as 

connectives {~, &, V, =>} instead of {, , , } 

respectively and as quantifiers {forall, exists} instead of {, 

} respectively. For example, the following are two well-

formed ACT-P expressions: 

((forall ?x) ((exists ?y) (=> (& (hunter ?x) (animal ?y))  

       (kills ?x ?y)))) 

(~ ((exists ?x) (V (cat ?x) (~ (kills-mice ?x)))) 
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which correspond to the following conventionally notated 

formulas: 

(x) (y) (hunter(x)  animal(y))  kills(x, y) 

 (x) (cat(x)  kills-mice(x)) 

In the object-level, ACT-P is a classical theorem prover. 

It can accept a set of FOL sentences (the axioms), which 

converts into clause form (CF) resulting in a set of clauses. 

Then it can accept a FOL sentence (the theorem) to be 

proved from the axioms. To that end, ACT-P negates it, 

converts it into its CF and tries to prove it using binary 

resolution refutation. It finally returns the solution (T or 

variable bindings) or „no-solution‟.  

ACT-P internally represents its search space as an OR 

tree. Each branch of the tree represents a resolution step. 

Each node of the tree represents the updated set of clauses 

with the produced resolvent after execution of the incoming 

branch‟s step. We store clauses using the discrimination-tree 

indexing [10], which is an improvement to the version in 

[5]. This has significantly improved the efficiency of ACT-

P.  

The meta-level language of ACT-P is Common Lisp 

extended with a number of meta-primitives. Meta-primitives 

are predefined Lisp functions that implement a default 

resolution control regime and help users in implementing 

other resolution control strategies. That is, the user can 

redefine the bodies of the meta-primitives, which results in 

resolution control regime changes. Thus, a large number of 

different control strategies can be implemented. 

III. EX-ACT-P 

A. An Overview 

We have extended ACT-P into EX-ACT-P (EXtended ACT-

P) to be able to (a) experiment with and (b) practice with in 

a friendly manner. The first direction concerns tutors (even 

researchers), whereas the second concerns students. So, 

tutors/researchers can experiment with EX-ACT-P in order 

to test new possible exercises/problems related to KR&R or 

try new (combinations of) resolution strategies or test 

efficiency of them or even ACT-P itself. Students can 

practice by comparing their hand-made proofs with the ones 

provided by the system, see the differences when trying 

different strategies, study the steps of a proof etc. Students 

can practice with proofs that can‟t be made by hand, 

because they take many steps. 

More specifically, one can 

 Edit a problem in ACT-P FOL language 

 Convert a TPTP library problem into ACT-P FOL 

language 

 Determine different combinations of strategies 

 Produce an automated proof  

 See a linear text-based proof 

 See a graphical representation of a proof 

 See the number of produced clauses and the time 

required for a proof 

B. System Architecture 

The architecture of EX-ACT-P is illustrated in Fig. 1. It 

consists of six main units: the user interface (UI), the 

ACTRANS, the problem editor (PE), the ACT-P, the 

problem collection (PC) and the control strategies pool 

(CSP). 

 

Figure 1.   EX-ACT-P Architecture. 

PE is used to code a problem in ACT-P FOL language. 
Then can be added to PC, where it is available for 
experimentation. ACTRANS (Automated Code 
TRANSformer) is used for transforming TPTP library 
problems [12] into ACT-P language. Then the problems can 
be directly put into PC or be edited first through PE and 
then stored into PC. From CSP the user can select a proper 
combination of resolution control strategies to determine the 
overall control regime of ACT-P. 

 ACT-P is used to produce the proof for a selected 
problem from PC. Finally, UI is the means of interacting 
with the rest units of the system and presenting proof 
results. 

C. ACTRANS 

ACTRANS (Automated Code TRANSformer) is a very 

useful tool of EX-ACT-P. It takes as input a TPTP problem 

file (e.g., puz006-1.p), through a direct link to TPTP, and 

creates two Lisp files. The first (PUZ006-1.lsp) contains 

whatever the TPTP file contains except that the problem 

formulas are converted into ACT-P language. The second 

(PUZ006-1PR.lsp) contains the query of the problem, i.e. 

the theorem to be proved. 

Let see an example. Following are the axioms and the 

theorem representing problem “puz002-1” from Puzzle 

category in the TPTP library: 

cnf(only_cats_in_house,axiom, 

    ( ~ in_house(Cat) 

    | cat(Cat) )). 

cnf(gazers_are_suitable_pets,axiom, 

    ( ~ gazer(Gazer) 

    | suitable_pet(Gazer) )). 
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cnf(avoid_detested,axiom, 

    ( ~ detested(Detested) 

    | avoided(Detested) )). 

cnf(carnivores_are_prowlers,axiom, 

    ( ~ carnivore(Carnivore) 

    | prowler(Carnivore) )). 

cnf(cats_are_mice_killers,axiom, 

    ( ~ cat(Cat) 

    | mouse_killer(Cat) )). 

cnf(in_house_if_takes_to_me,axiom, 

    ( ~ takes_to_me(Taken_animal) 

    | in_house(Taken_animal) )). 

cnf(kangaroos_are_not_pets,axiom, 

    ( ~ kangaroo(Kangaroo) 

    | ~ suitable_pet(Kangaroo) )). 

cnf(mouse_killers_are_carnivores,axiom

, 

    ( ~ mouse_killer(Killer) 

    | carnivore(Killer) )). 

cnf(takes_to_me_or_detested,axiom, 

    ( takes_to_me(Animal) 

    | detested(Animal) )). 

cnf(prowlers_are_gazers,axiom, 

    ( ~ prowler(Prowler) 

    | gazer(Prowler) )). 

cnf(kangaroo_is_a_kangaroo,axiom, 

    ( kangaroo(the_kangaroo) )). 

cnf(avoid_kangaroo,negated_conjecture, 

    ( ~ avoided(the_kangaroo) )) 

 

 

Figure 2.  ACTRANS user interface. 

After passing through ACTRANS, they are converted to the 

following ACT-P sentences: 

(premise '(V (~(in_house ?Cat)) (cat 

?Cat))) 

(premise '(V (~(gazer ?Gazer)) 

(suitable_pet ?Gazer))) 

(premise '(V (~(detested ?Detested)) 

(avoided ?Detested))) 

(premise '(V (~(carnivore ?Carnivore)) 

(prowler ?Carnivore))) 

(premise '(V (~(cat ?Cat)) (mouse_killer 

?Cat))) 

(premise'(V (~(takes_to_me ?Taken_animal)) 

(in_house ?Taken_animal))) 

(premise '(V (~(kangaroo ?Kangaroo)) 

(~(suitable_pet ?Kangaroo)))) 

(premise '(V (~(mouse_killer ?Killer)) 

(carnivore ?Killer))) 

(premise '(V (takes_to_me ?Animal) 

(detested ?Animal))) 

(premise '(V (~(prowler ?Prowler)) (gazer 

?Prowler))) 

(premise '(kangaroo the_kangaroo)) 

(setf query '(~(~(avoided the_kangaroo))))  

All above sentences, except the last one, are included in the 

PUZ002-1.lsp file, while the last one is included in the 

PUZ002-1PR.lsp file. Figure 2 depicts the user interface of 

ACTRANS. 

D. Control Strategies 

We have categorized resolution control strategies 

according to the heuristics they use to reduce the search 

space and control resolution refutation process. That 

categorization helped us to design the reasoning cycle of 

ACT-P. We distinguish three major classes of heuristics. 

The first major class, resolution restricting strategies, 

concern generation of the search space and are used to 

increase efficiency by restricting the size of the search 

space. Resolution restricting strategies comprise two 

subtypes, namely parent selection strategies and clause 

elimination strategies. Parent selection strategies are based 

on the observation that not all possible resolvents have to be 

constructed to be able to derive the empty clause. They 

therefore impose restrictions on the clauses to be selected 

for resolution. Parent selection strategies have also been 

called 'refinement strategies' or 'restriction strategies'. The 

second type of resolution restricting strategies, clause 

elimination strategies, aim to eliminate clauses that will not 

be useful in further search. They are also called 

'simplification strategies' or 'deletion strategies'. 

The second main class of resolution control heuristics, 

resolution search strategies, concern the way the search 

space is searched. We distinguish between general search 

strategies and resolution ordering strategies. General search 

strategies traverse the search space in a blind way, without 

taking into account any resolution or domain or problem 

specific knowledge. Unlike general search strategies, 

resolution ordering strategies, aim to increase the efficiency 

of the theorem proving process by judiciously ordering 

potential resolutions. Clearly, such ordering strategies 

presuppose some ordering criterion. Best-first type 

strategies belong to this class.  

Whereas resolution search strategies concern the way in 

which the search space is searched, our third main class of 

heuristics, process oriented strategies, concern the way in 
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which resolutions are performed. They are typically used in 

conjunction with a specific parent selection strategy. We 

draw a distinction between resolving preparation and 

resolving operation strategies. The former concern 

operations on clauses before the actual application of the 

resolution rule. Resolving operation heuristics are used 

during actual resolution.  

We have implemented a number of strategies from each 

category and stored in CSP. A user can select an appropriate 

combination of strategies from some or all the categories, 

through UI, to determine the overall control regime of ACT-

P. A parent selection strategy should be first selected, since 

it will be the core strategy. 

 

  

Figure 3.  Classification of resolution control heuristics. 

E. Implementation Issues 

EX-ACT-P has been developed in Lispworks 4.4. The 

choice of Lispworks as the programming environment was 

made on the basis of its features, such as its support for 

projects that are complex or need rapid prototyping and 

delivery. The user interface of ACTRANS has been 

developed in MS Visual Studio, an environment for 

constructing graphical user interface 

IV. USING EX-ACT-P 

The main scenario for using EX-ACT-P is as follows: 

1. Connect to TPTP and choose a problem file 

2. Use ACTRANS to transform it into corresponding 

ACT-P files 

3. Alternatively, choose a problem form PC or create a 

new problem via PE 

4. Choose a combination of resolution strategies 

5. Call ACT-P to activate proof process and produce 

the proof file 

6. See the displayed proof information 

7. If satisfied, stop; otherwise, go to any of steps 1, 3 

or 4. 

Of course, one can start from step 3, by choosing a problem 

from PC or creating his/her own problem files.  

In step 3, the user can determine a combination of 

strategies from some of the drop-down menus, illustrated in 

Table I. 

A combination of strategies can include, for example, a 

parent selection, a clause elimination and a search 

strategies, or any two of them. Another type of combination 

can include a process oriented strategy and a search strategy 

etc. 

The screenshot in Fig. 4 presents the situation after 

completion of step 5. In the main window, the problem 

description file in ACT-P language is presented. Also, the 

proved theorem and proof information (number of axioms, 

number of produced clauses, number of used clauses and the 

CPU time required) are also displayed. At the right-hand 

side the selected problem and the chosen strategies are also 

displayed. 

TABLE I.  RESOLUTION CONTROL STRATEGIES IN EX-ACT-P 

Resolution Control Strategies 

Parent Selection 
Clause 

Elimination 
Search 

Process 

Oriented 

 

Input Resolution 
 

Linear 

Resolution 
 

Linear 

Input Resolution 
 

Set of Support 
Resolution 

 

Unit Resolution 
 

P1 Resolution 
 

N1 Resolution 
 

Hyperresolution 

 

Tautology  
Elimination 

 

Pure Literal 
Elimination 

 

Backward 

Subsumption 
 

Forward 
Subsumption 

Fewest 
Literals  

Preference 

 
Unit 

Preference 

Ordered 
Resolution 

 

OI-Resolution 
 

Lock 

Resolution 

 

Model 
Elimination  

   

 

 
Figure 4.   A screenshot of EX-ACT-P in use. 
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Figure 5.  A screenshot of the Proof window. 

By clicking on the “Show Proof” button, two windows, 

namely the Proof and the Proof Graph, appear. In Figure 5, 

a snapshot of the Proof window is presented. The Proof 

window contains step by step the proof process in a text-

base style.  

 

 
Figure 6.  A  Screenshot of the Proof Graph window using “Unit 

Resolution” 

Figure 6 and Figure 7 present two snapshots of the Proof 

Graph window, after having used two different control 

strategies. Figure 6 presents a proof graph of the problem 

“puz002-1” after having used the “Unit Resolution” 

strategy, whereas Figure 7 the one after having used “P1-

resolution‟. The user can now have a better view for 

understanding and comparing proofs. In this case, ACT-P 

solves the problem with fewer steps by using “P1 

Resolution” than by using “Unit Resolution”. The numbers 

in Figures 6 and 7 represent corresponding clauses (which 

are resolved in each step). 

 

Figure 7.  A  Screenshot of the Proof Graph window using  “P1 

Resolution” 

V. SYSTEM  EVALUATION 

The system was used by the class of the Artificial 

Intelligence course, in our Department, which consisted of 

twenty-five senior computer engineering students. The 

students had been taught about logic as a knowledge 

representation and automated reasoning during the course 

lectures. They were instructed to use the system. Then, they 

were asked to fill in a questionnaire including questions for 

evaluating usability and learning.  

 

TABLE II.  QUESTIONNAIRE RESULTS 

Q 

Questionnaire 

Questions 

Answers (%) 

Total Students 25 

1 2 3 4 5 

1 
How much did the system help you 
to learn  automated reasoning ? 

0 0 20 36 44 

2 
How much did the system help you 
to learn about resolution control 
strategies? 

0 4 24 32 40 

3 
Will you suggest the system to next 
year students? 

0 0 16 32 52 

4 
Will you use the system in the 
future to prove  problems? 

0 4 8 42 44 

5 
Did you find the interface easy to 
use? 

0 4 32 48 16 

 

 The questionnaire included eight questions. The 

questions 1-5 were based on Likert scale (1: not at all, 5: 
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very much). The result is shown as Table 1. Finally, 

questions 5-8 were of open type and concerned strong and 

weak points or problems faced in using the system. Twenty 

five students filled in the questionnaire. Their answers 

showed that the students in general were helped in learning 

automated reasoning with the system (Table II). Also, they 

found that the user interface is easy to use. On the other 

hand, 72% the students agreed that the system helped them 

in learning the resolution control strategies. 

 

VI. CONCLUSION AND FUTURE WORK 

In this paper, we present EX-ACT-P system, a tool for 

experimenting with an ATP system, namely ACT-P. 

Experimentation can be at student, tutor or even researcher 

level. A student can try to solve as many problems as 

required, compare hand-made solutions with automatic 

ones, see graphical representations of solutions and even try 

his/her own problems. A tutor can test any candidate 

exercises related to FOL based reasoning, check the 

complexity of an exercise, gain experience from using 

different strategies combinations etc. Finally, a researcher 

can try any problem from the TPTP library, even difficult 

ones, experiment with different combinations of strategies 

and see which combinations are more appropriate for which 

category of problems etc. We have used ACT-P in a number 

of difficult problems from the TPTP library. The results are 

more than promising, but we want to re-check it.  

EX-ACT-P can be improved in a number of ways. A 

first direction is the enhancement of the CSP, both in 

number of implemented strategies and its structure. At the 

moment, the structure of the CSP and corresponding 

interface menus do not absolutely reflect the categorization 

of the strategies of Fig. 3. Furthermore, the categorization of 

Fig. 3 is not final. It can be more sophisticated (like the one 

in [5]). 

A more interesting direction is to construct an intelligent 

system advising the user about which combinations of 

strategies have or have no meaning. Finally, a large scale 

experimentation with problems of various categories from 

TPTP problem library targeting at comparing various 

combinations of strategies, could create a guide for 

determining control regimes in resolution-based ATP 

systems. 
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