
IoT Device IdentificAtion and RecoGnition (IoTAG)

Lukas Hinterberger∗

and Bernhard Weber†
Dept. Electrical Engineering and

Information Technology
Ostbayerische Technische Hochschule

Regensburg, Germany
email:

lukas.hinterberger@st.oth-regensburg.de∗

bernhard1.weber@st.oth-regensburg.de†

Sebastian Fischer

Secure Systems Engineering
Fraunhofer AISEC
Berlin, Germany

email:
sebastian.fischer@aisec.fraunhofer.de

Katrin Neubauer‡

and Rudolf Hackenberg§
Dept. Computer Science and Mathematics

Ostbayerische Technische Hochschule
Regensburg, Germany

email:
katrin1.neubauer@oth-regensburg.de‡

rudolf.hackenberg@oth-regensburg.de§

Abstract—To ensure the secure operation of IoT devices in the
future, they must be continuously monitored. This starts with
an inventory of the devices, checking for a current software
version and extends to the encryption algorithms and active
services used. Based on this information, a security analysis and
rating of the whole network is possible. To solve this challenge
in the growing network environments, we present a proposal for
a standard. With the IoT Device IdentificAtion and RecoGnition
(IoTAG), each IoT device reports its current status to a central
location as required and provides information on security. This
information includes a unique ID, the exact device name, the
current software version, active services, cryptographic methods
used, etc. The information is signed to make misuse more difficult
and to ensure that the device can always be uniquely identified.
In this paper, we introduce IoTAG in detail and describe the
necessary requirements.

Keywords—Internet of Things; device identification; open stan-
dard; IoTAG; security rating.

I. INTRODUCTION

It has been shown that the use of Internet of Things (IoT)
technologies is always associated with risks. Both, in terms
of data protection and the reliability and security of an IoT
environment. It is not always possible to completely eliminate
all sources of risk. However, the threat potential can be
reduced by introducing new technologies to simplify system
maintenance. The Federal Office for Information Security in
Germany lists measures to protect IoT devices [1]. Based on
this, requirements for a compatibility interface will be defined,
which can be used to implement a central and manufacturer-
independent security management of IoT systems. The data to
be provided and the security requirements to be fulfilled by the
interface will be based on the draft of the European standard
for the security of IoT devices ETSI EN 303 645 v2.0.0 [2].
This standard defines basic requirements for the security of
IoT devices.

In order to be able to monitor and evaluate each component
individually, even in complex IoT environments, a way to
identify each device is required. This means that each device
must have a unique identifier, which may only be assigned at

least once within a closed system. At best, the identifier is
unique worldwide.

After each device has been recorded individually, it must
also be possible to identify the product type. This enables
the devices to be classified in safety categories. For example,
the failure of an individual telephone must be considered less
critical than the failure of an alarm system. It is only possible
to test a device for existing weak points or for information
published by the manufacturer if the product type is known.
In the latter case, at least the manufacturer and a clear product
designation is required.

In order to be able to check whether the firmware of a
device is up-to-date, it is necessary for a device to provide its
currently running firmware version. In addition, information
about the update behaviour of the device must be provided.
This includes information on whether the device can be up-
dated, whether it has an automatic update mechanism and up to
which point in time updates are provided by the manufacturer.

IoT devices are by definition in exchange with other network
components. This can be done either locally isolated in a sepa-
rate network or globally over the Internet. To protect sensitive
data from unauthorized access, the use of verified algorithms
and communication protocols is required. By providing an
overview of the encryption and hashing algorithms used by
a device, it is possible to check whether outdated or insecure
procedures are used. The same applies to network protocols
and network technologies in use. If a device provides all
network protocols it supports, including the protocol version,
it can be checked whether the device is vulnerable to attacks
against its communication.

To meet these requirements, we present a proposal for
a standard for the detection of IoT devices: IoT Device
IdentificAtion and RecoGnition (IoTAG). It focuses on the
security of the devices and will provide necessary information
to estimate the security of all devices in the network.

This paper is based on our previous publication [3] and
extends the idea of IoTAG with the necessary descriptions and
more details. It is structured as follows: Section II shows some

17Copyright (c) IARIA, 2020. ISBN: 978-1-61208-778-8

CLOUD COMPUTING 2020 : The Eleventh International Conference on Cloud Computing, GRIDs, and Virtualization

related work and Section III consists of the IoTAG definition,
subdivided into the dataset, the serialization, the integrity and
the communication. In Section IV, a brief conclusion is given.

II. RELATED WORK

There are several suggestions to detect IoT devices automat-
ically. However, most of them only consider functionality and
not security. Two concepts which also consider security are
the Thing Description and the Device Description Language.

A. Thing Description

The concept of Thing Description (TD), presented by the
World Wide Web Consortium (W3C), is a uniform repre-
sentation of metadata of a device, as well as the interfaces
provided by the device. It can be either physical or purely
virtual properties. These include device properties, such as
currently stored settings or sensor data.

In addition, information is provided on available control
actions or events that can be used to interact with the devices.
Furthermore, an optional “Security” field provides information
on the authorization procedures available for accessing device
resources. According to the W3C specifications, the TD is
exclusively a data exchange format for device metadata that
can be provided by the device itself or by an independent
resource [4].

For the use of this technology as a security interface,
the device-independent provision of information proves to be
problematic. As a result, it cannot be guaranteed that the infor-
mation actually refers to the device and that the data records
are up-to-date and correct. The Thing Description specification
does not provide any procedures for the transmitted values to
be signed by the device or another instance [4].

Also, the small amount of security related information de-
scribed above excludes TD for use in an automated monitoring
and testing scenario. Our requirements for the predefined
dataset, data integrity, as well as the availability of predefined
communication procedures can be regarded as not fulfilled.

B. Device Description Language

The IoT Device Description Language (IoT-DDL) is a
machine- and human-readable XML-based description for IoT
devices. The IoT-DDL is used by a device to provide informa-
tion about its capabilities, resources, entities and services, as
well as cloud-based functionalities. This includes information
about the hardware installed in a device (e.g., Secure Ele-
ments), software functions (e.g., switching the device on or
off) or external services (e.g., log server), as well as descriptive
metadata, which can include the device manufacturer or the
device name. But the scope of this information has not been
firmly defined.

The IoT-DDL focuses on both device-to-device and device-
to-cloud communication and is intended to simplify the
creation of heterogeneous IoT scenarios. Message Queuing
Telemetry Transport (MQTT) and the Constrained Application

Protocol (CoAP) are supported for communication between
devices. The security mechanisms supported by these pro-
tocols are not used to secure the communication. Instead, a
specially developed AES-based procedure is used to encrypt
the transmitted data [5].

Thus, in the case of the IoT-DDL, the requirement for a
firmly defined dataset and its integrity are also violated.

III. IOTAG DEFINITION

In contrast to existing interoperability procedures for facili-
tating the setup and control of IoT infrastructures, as presented
in Section II, a new technical proposal for the automated
identification and recognition of IoT devices (called IoTAG)
will be defined.

The focus of the IoTAG definition lies on the standardized
provision of security-critical device data, the integrity preser-
vation of the datasets to be transmitted and the relevance of the
information for an individual classification of each device with
regard to the implementation of security specifications and
recommendations. When designing the necessary guidelines
for this purpose, the requirements defined at the beginning of
this document for such a communication standard are taken
into account.

The implementation of IoTAG on the devices is done by
the manufacturers.

A. Dataset

The section “Dataset” consists of subsections which repre-
sent some of the attributes. These give an explanation why
this information must be provided by an IoTAG compatible
device and a description of the attribute’s content.

1) Manufacturer: The provision of a manufacturer’s des-
ignation is useful for several reasons. On the one hand,
there is always the possibility that devices with identical or
very similar designations are sold by different companies. On
the other hand, this information can be used to contact the
manufacturer and inform them about software errors or to be
able to make use of support services.

The information about the manufacturer thus contains the
name of the company that provides the firmware and its up-
dates. This is a string value that contains the official company
name according to the respective entry in the commercial
register.

2) Name: The name or designation of a device serves to
identify the product. This attribute contains the product name
under which the device is sold by the manufacturer in the form
of a string.

3) Serial number: The serial number of a product is a
unique marking of a device assigned by the manufacturer and
enables its identification within a product line. In the event
of production faults, the affected devices can be identified by
their serial numbers.

The representation of the serial number is manufacturer-
specific. Basically, it is an arbitrary string of characters that

18Copyright (c) IARIA, 2020. ISBN: 978-1-61208-778-8

CLOUD COMPUTING 2020 : The Eleventh International Conference on Cloud Computing, GRIDs, and Virtualization

is unique for each device in a product series and thus, in
conjunction with the manufacturer and product name, allows
a clear conclusion to be drawn about the object.

4) Type: The device type provides information about the
type of product. It indicates the main functionality of the de-
vice and can be used to draw conclusions about the complexity
of the device. This information is important for the security
of an IoT system in that it allows conclusions to be drawn
about the effects an attack on a device may have. For example,
an attack on a surveillance camera is a greater problem from
the perspective of data protection than an attack on a smoke
detector, for example. A locking system or an alarm system,
must also be classified as more security-critical than a TV.

Possible values for the product type specification are:

• alarm system
• camera
• smart lock
• smart speaker
• smart TV
• smoke detector

This list contains first suggestions and can be extended at any
time by further product definitions.

5) ID: In order to be able to identify a device at any time,
it must have a unique identifier. For this reason, a combination
of existing information is created for device identification:
the manufacturer, the product name and the serial number.
Although this information can be calculated by software, it is
also stored for manual linking of a dataset to a device.

The specifications included in the generation of the device
ID are to be regarded as constants and must not be changed
subsequently after the device has been taken into operation.

The device ID is a character string that contains a hash
value in alphanumeric representation. It is generated by con-
catenating the information about manufacturer, product name
and serial number, then generating the hash value of this
string using the SHA-256 algorithm [6] and finally encoding
the resulting binary data as base16 string [7]. The use of
SHA2 and SHA3 family algorithms is recommended by the
National Institute of Standards and Technology (NIST). For
performance reasons, the SHA2 algorithms are preferred to
the SHA3 algorithms [8] [9] [10].

6) Category: The product category fulfills a purpose com-
parable to that of the product type. An additional security-
related assessment can be carried out by dividing devices
into categories that describe their area of application or use
scenario. If the two categories “lighting” and “assisted living”
are considered as two different areas, the failure of a device
can have different effects. If a motion sensor responsible for
the lighting fails, the user must activate the light manually.
However, if a motion sensor from the assisted living area,
which is supposed to report whether the occupant of a house
is entering and leaving the bathtub, fails, the help hoped for
by using this system can be missed in an emergency like a
fall in the bathtub. Thus, devices in the assisted living area

are to be classified as more security-critical than pure comfort
functions.

The device category attribute can have the following values,
among others:

• assisted living
• entertainment
• household
• industry
• infrastructure
• lighting
• personal assistance
• security

These are also initial proposals. With the increasing spread
of IoT devices, the fields of application are also expanding,
so that further definitions are necessary.

7) Secure boot: Secure boot mechanisms can be used to
ensure the integrity of a device’s firmware at system startup.
When a device is started securely, signature mechanisms are
used to check whether the components involved, such as the
boot loader and operating system, are unchanged originals.
The information required for this verification is stored in a
suitable hardware module, such as a Trusted Platform Module
(TPM) [11] [12].

The secure boot attribute uses a boolean value. If no
software integrity check is performed, the value is “false”.

8) Firmware: In order to be able to check that the firmware
of a device is up-to-date, it must publish the firmware ver-
sion currently being executed. If a device requires a manual
installation of the firmware, there must be a possibility to
retrieve it from the manufacturer. To prevent software from
being obtained from dubious sources, the IoTAG dataset also
provides an internet address for downloading the firmware.

In contrast to the specifications described so far, the
firmware is not an atomic value, but two strings to be
considered separately: the firmware version (referred to as
“version”) as published by the device manufacturer, and a
Uniform Resource Locator (URL) [13], which refers to the
download resource for this firmware.

For consecutive versions, lexicographically ascending terms
are recommended so that the order of release can be deter-
mined.

9) Client software: If software for third-party devices is
required for the use of an IoT device, IoTAG will provide the
latest version supported by the device. In addition, a link to a
resource is also provided here from which this software can
be obtained. This eliminates the need for the user to search for
a source of supply, which in turn reduces the risk of obtaining
software from untrusted sources.

The specifications of the client software are analogous to
those of the device firmware (see 3.2.8). However, if no client
software is required, empty strings are specified.

19Copyright (c) IARIA, 2020. ISBN: 978-1-61208-778-8

CLOUD COMPUTING 2020 : The Eleventh International Conference on Cloud Computing, GRIDs, and Virtualization

10) Updates: The update behaviour of a device provides
information on whether a device updates itself automatically,
i.e., whether it checks for the availability of new firmware
versions and obtains and installs them, or whether it must be
manually updated to the new version.

It should be noted, that even if a device is configured for
automatic updating, the provision of new firmware by the
device manufacturer is also necessary. In order to be able to
take a device out of service when it is no longer supplied with
new software, it is necessary to specify the point in time from
which this is the case.

The update configuration information is also a multi-part
record within the update item. A boolean value is used to
indicate whether a device has an automatic update mechanism
and also uses it. “Automatic updates” is chosen as the name
for this value.

The end of support is a date formatted as a string according
to ISO 8601 [14] and integrated into IoTAG under the name
“end of life”.

11) Cryptography: In order to be able to make predictions
about the cryptographic capabilities of a device, it is necessary
that the algorithms used by a device to secure its communi-
cation are known and a statement can be made as to whether
these are implemented in hardware or software. It must also be
specified whether secret keys are stored exclusively in secure
hardware or also in memory areas accessible via software.

The private key required for the signature of IoTAG as
described in subsection C is treated individually. A separate
variable is introduced to show how this key is managed, as it
is essential for the reliability of IoTAG.

Two identical structures are subordinated to the superor-
dinate term cryptography. Each contains an attribute “IoTAG
key”, which is a boolean value. If the signature key is managed
in a secure hardware environment and cannot be read by
software, it takes the value “true” in the hardware structure
and the value “false” in the software structure. The reverse is
true if the key is accessible via software.

Another boolean value is the variable “key store”. This
indicates whether cryptographic keys to be kept secret are
stored in this area. This specification can be true in both
structures. An overview of the cryptographic algorithms used
in a device is given by the variable “algorithms”. This con-
tains a collection of character strings. Each element of this
collection contains a cryptographic algorithm according to its
standardised designation (example: “ecdsa-sha2-nistp256”, as
defined in RFC 5656 [15]).

12) Connectivity: The connectivity of a device describes its
physical possibilities to connect to communication partners.
Different technologies are used for data exchange. These
include the standards under IEEE 802.3 and IEEE 802.11
[16] developed by the Institute of Electrical and Electronics
Engineers (IEEE) as well as industrial standards such as
Bluetooth [17], ZigBee [18] or other.

For compatibility reasons, IoT devices can support older
versions in addition to the current standard of a communication
method. But if these have security problems, an attacker can
use them to gain access to confidential information [19] [20].

For the transmission of the supported communication stan-
dards, a multi-part data structure is used. For example, it will
have the attributes “IEEE802 11”, “Bluetooth” and “ZigBee”.
Each of them forms a collection of strings. While in the case
of Bluetooth and ZigBee the alphanumeric version numbers
are included, for the IEEE family of standards, the suffixes
of the individual standards are entered. If the suffix begins
with a hyphen, it is removed. The first standard of the family
is specified with an empty character string. Additionally, the
collection can contain the values “WEP”, “WPA”, “WPA2”
and “WPS”. These inform whether the respective technology
is used by a device.

13) Services: Network devices offer various services to
interact with them. Analogous to securing the communication
against external attacks as described in subsection D, the
interception of the connection by devices within the network
must also be prevented. This goal can be achieved, among
other things, by dispensing with unencrypted transmission
protocols. It should be noted, however, that the implementation
of these protocols can also contain errors and therefore the
version of the software used must be checked and published
by IoTAG.

A separate data structure is defined to describe a network
service. This contains the name of the service (Name), the
network port (Port), the protocol used (Protocol) including
any version designations, as well as the name and version
of the software (Software) that offers the service in the format
<designation>-<version>. Since the information whether
the connection is UDP or TCP-based is also required to
specify the network port, the port is specified in the format
<Port>/<UDP|TCP>.

The actual IoTAG attribute is ultimately a collection that
contains such a data structure for each service offered.

B. Serialization

To prevent incompatibilities due to incorrect interpretations,
the serialization format Javascript Object Notation (JSON),
according to the specification in ECMA-404 [21] and RFC
8259 [22] with UTF-8 encoding, is selected.

JSON is preferred over the Extensible Markup Language
(XML) because it has a higher performance in terms of
memory resource consumption and computing power [23].

Listing 1 shows a serialized IoTAG data set. The attribute
names to be used can be taken from this example. For space
reasons, the value of the “ID” attribute has been wrapped into
two lines.
{
"Manufacturer": "Beispiel GmbH",
"Name": "Example-Device",
"SerialNumber": "D1.0",
"Type": "example device",
"ID": "2071c7736acd16f6cea3727d3b7ecde5

20Copyright (c) IARIA, 2020. ISBN: 978-1-61208-778-8

CLOUD COMPUTING 2020 : The Eleventh International Conference on Cloud Computing, GRIDs, and Virtualization

3f4c2e97b421f3550248e19d7309c636",
"Category": "infrastructure",
"SecureBoot": false,
"Firmware": {

"Version": "1.0",
"URL": "https://192.168.102.94:10000/FirmwareInfo"

},
"ClientSoftware": {

"Version": "",
"URL": ""

},
"Updates": {

"AutomaticUpdates": false,
"EndOfLife": "2021-01-01T00:00:00"

},
"Cryptography": {

"Software": {
"IoTAGKey": true,
"KeyStore": true,
"Algorithms": [

"RSASSA-PSS",
"SHA-256",
"TLS_AES_128_GCM_SHA256",
"TLS_CHACHA20_POLY1305_SHA256",
"aes256-ctr",
"ecdsa-sha2-nistp521",
"diffie-hellman-group-exchange-sha256",
"hmac-sha2-256,hmac-sha2-512"

]
},
"Hardware": {

"IoTAGKey": false,
"KeyStore": false,
"Algorithms": []

}
},
"Connectivity": {

"IEEE802_3": [
"WPA2",
"b",
"g",
"n"

],
"Bluetooth": [

"4.2"
],
"ZigBee": []

},
"Services": [

{
"Name": "IoTAG",
"Port": "27795/TCP",
"Protocol": "HTTP/2",
"Software": "IoTAG-Server"

},
{

"Name": "SSH",
"Port": "22/TCP",
"Protocol": "SSH-2",
"Software": "OpenSSH-8.1"

}
]
}

Listing 1. IoTAG example

C. Integrity

1) Signature algorithm and authentication: The RSA pro-
cedure serves as the basis for the signature mechanism of
IoTAG. A minimum length of 2048 bits is recommended
for the keys required by this procedure [24]. Since the RSA
algorithm would always generate the same encryption text
for identical messages, methods have been developed that
combine the plaintext with a random value, the padding,
before each encryption process. The Public-Key Cryptography
Standards (PKCS) define in PKCS#1 with RSASSA-PKCS1-
v1 5 and RSASSA-PSS two signing procedures for RSA that
take such padding into account. The latter is preferable for new
developments, which is why it is used for IoTAG signatures
using the standard options defined in PKCS#1 [25].

To verify the signature, the message recipient must know
the sender’s public key. However, this must also ensure that an
attacker has not mistakenly published his key to the recipient
and is therefore able to generate misleading messages whose
signature is considered valid by the recipient. To counteract
this, the signer’s public key is published in conjunction with a
certificate, which in turn is signed by a trusted third party [12].
In IoTAG certificates are used according to the specification in
ITU-T X.509 [26] and RFC 2459 [27]. Such a certificate can
be issued directly by the manufacturer of a device and stored
on the device, or it can be created when the device is set up
and then signed by a local or external certification authority.

2) Signed dataset: Basically, the target of the signature is
always the IoTAG dataset in serialized form and thus a UTF-8
encoded character string (see subsection B). However, not this
entire string is used for the signature, but instead a hash sum
is calculated from it, which is then signed. As recommended
by NIST, the SHA-256 algorithm is used to generate this sum
[28].

Before the hash algorithm can be applied, the IoTAG string
is converted into a byte array. Only from this array the hash
sum is calculated, to which the signature algorithm is then
applied. If the array contains a terminating null byte, this is
ignored in the hash calculation.

D. Communication

The last open point to be defined is the IoTAG related
communication behaviour. This includes not only the retrieval
of IoTAG data from a device, but also the retrieval of software
resources via an URL, provided inside the IoTAG dataset.
The same technologies are used for both procedures, which
is why a general description of the communication endpoint,
the transmission protocol and the data format is given before
the two procedures are explained in more detail.

1) General description: The Hypertext Transfer Protocol
Version 2 with Transport Layer Security (TLS) [29] is selected
as the transmission protocol (HTTPS) [30]. This means that
an HTTPS-capable server application must be provided as
the communication endpoint for querying information, which
has a trustworthy certificate for encrypted communication.
This application does not have to support the full scope of
operations defined in RFC 2616 [31], it only has to be able to
respond to a single GET request by providing the respective
data record. The addressed resource is determined by the
respective URL.

For formatting the data for transmission within HTTP
packets, JSON is used.

2) Retrieving Software Resources: It is defined that the
IoTAG data set provided by a device always contains a URL to
obtain the latest available device firmware or, if necessary, the
software for client systems. It is not possible to download the
software directly via this URL. Instead, it is used to execute the
HTTP request described in subsection A. The response to this
request contains a JSON object, which in turn has the string

21Copyright (c) IARIA, 2020. ISBN: 978-1-61208-778-8

CLOUD COMPUTING 2020 : The Eleventh International Conference on Cloud Computing, GRIDs, and Virtualization

attributes “URL” and “Version”. This URL can now be used
directly to download the firmware. The second specification
informs about the version of the software.

3) Retrieving IoTAG: Every IoTAG compatible device must
provide a communication interface to retrieve the IoTAG data
set. In order to make this procedure uniform, a unique HTTP
URL must be defined via which a corresponding resource
can be accessed. This requires a uniform port number and
a predefined path for the request to the HTTP server. 27795 is
specified as the network port. The path consists of a single
segment called “iotag”. This results in the following URL
scheme, whereby the “<host>” statement is to be interpreted
according to the definition in RFC 3986 paragraph 3.2.2. [13]:
https://<host>:27795/iotag

4) Transmitted data record: The specification of the signa-
ture process shows that in addition to the actual IoTAG data
set, additional information is required to verify its correctness.
This is a certificate containing the key needed to verify the
signature as well as the signature itself. A separate JSON
object is also defined for this, which contains this information
in the form of the attributes “IoTAG”, “Certificates” and
“Signature”.

Since the signature is present as a byte sequence during its
calculation, it is encoded for transmission to base64 and can
thus be integrated into the JSON object as a string.

A uniform form for the transfer of the certificate must be
ensured. For the transmission of ITU-T X.509 certificates in
non-binary form, the coding according to RFC 7468 [32] is
suitable. Basically, the certificate is first converted into a binary
structure, taking into account the coding rules specified in
ITU-T X.690 [33], and then encoded to base64, which also
allows it to be embedded as a string in the JSON object. If
additional certificates are required for the verification of the
certificate, all certificates are first encoded and the resulting
character strings are then concatenated. The order of the
certificates must be observed according to the specification
in RFC 5246 chapter 7.4.2 [29].

The IoTAG dataset could be entered directly as an object,
since it is JSON-serialized for transmission anyway. To check
the signature, the IoTAG object must be extracted from the
parent object. This can be done in two ways: the recipient can
still treat the transmitted data as a string and try to extract
the IoTAG object by manipulating it. However, this procedure
is unusual and involves additional development effort, since
the corresponding extraction routine must be implemented.
Alternatively, the received JSON object can be deserialized
to an object of the respective programming language and then
processed further.

Although the latter approach is preferable, it also makes
signature verification more problematic. To perform this step,
the IoTAG object must be serialized to a string again after
extraction to calculate the hash sum. However, this serial-
ization produces different results depending on the software
used, and thus ultimately results in different hash values. A

signature check based on the respective hash sums would thus
fail, although the information remained unchanged.

To counter this problem, a way must be found to transfer
the IoTAG data set within a JSON object in such a way that it
can be extracted by deserialization without affecting the for-
matting. This can be achieved by treating the serialized IoTAG
data for transmission as a string rather than as an object. In this
case, all JSON control characters within this string must be
replaced by appropriate escape sequences before transmission
to ensure error-free interpretation. However, these must also be
removed by the receiver before the hash calculation in order
not to falsify the result.

Instead, preference is given to another approach. Here, the
transmission of the IoTAG data as a string is retained, but the
character string resulting from its serialization is first base64
encoded. The result of this process is then set as the value of
the IoTAG attribute. This enables the recipient of the data to
parse the received JSON object and decode the information it
contains, which ultimately results in the same form as it was
processed by the sender.

IV. CONCLUSION

With IoTAG, a fast and easy solution for the security man-
agement of IoT networks is described. The proposed standard
includes the necessary information for a risk analysis and the
possibility to monitor all devices, regarding to their running
software version, protocols and the encryption algorithms.

The implementation can be realized with little effort and
the security of the whole network can be improved easily.
However, this proposed standard must be implemented and
integrated into products by all manufacturers.

This standard can also help attackers to gain information
about the devices in the network, but with an improved
overview over the devices and their security state, it helps
more than it brings new risks.

As a next step, IoTAG can be discussed as a standard or an
existing standard can be extended with the features of IoTAG.
For this purpose, the signature process must also be adopted
to ensure data integrity.

We are currently working on implementation examples to
help getting started with IoTAG. With these different imple-
mentations, it is also possible to evaluate the best methods and
libraries for the signature and the JSON serialization.

REFERENCES

[1] Federal Office for Information Security (Germany), “SYS.4.4: All-
gemeines IoT-Gerät,” IT-Grundschutz-Kompendium 2. Version 2019,
Cologne, Bundesanzeiger Verlag GmbH, 2019, p. 3.

[2] European Telecommunications Standards Institute, “Draft ETSI EN 303
645 V2.0.0 (2019-11),” 2019.

[3] S. Fischer, K. Neubauer, L. Hinterberger, B. Weber, and R. Hackenberg,
“IoTAG: An Open Standard for IoT Device IdentificAtion and RecoG-
nition,” The Thirteenth International Conference on Emerging Security
Information, Systems and Technologies, IARIA, 2019, pp. 107-113.

[4] World Wide Web Consortium, “Web of Things (WoT) Thing Descrip-
tion,” Apr. 2018. [Online]. Available from: https://www.w3.org/TR/wot-
thing-description/ [accessed: 2020-07-20].

22Copyright (c) IARIA, 2020. ISBN: 978-1-61208-778-8

CLOUD COMPUTING 2020 : The Eleventh International Conference on Cloud Computing, GRIDs, and Virtualization

[5] A. E. Khaled, A. Helal, W. Lindquist, and C. Lee, “IoT-DDL—Device
Description Language for the “T” in IoT,” IEEE Access, Nr. 6, pp.
24048-24063, Apr. 2018.

[6] U.S. Department of Commerce und National Institute of Standards and
Technology, “Secure Hash Standard (SHS),” 2015.

[7] Internet Engineering Task Force, “RFC 4648 - The Base16, Base32,
and Base64 Data Encodings,” Oct. 2006. [Online]. Available from:
https://tools.ietf.org/html/rfc4648. [accessed: 2020-07-20].

[8] National Institute of Standards and Technology, “NIST Policy on Hash
Functions - Hash Functions — CSRC,” May 2019. [Online]. Avail-
able from: https://csrc.nist.gov/Projects/Hash-Functions/NIST-Policy-
on-Hash-Functions. [accessed: 2020-07-20].

[9] R. K. Dahal, J. Bhatta, and T. N. Dhamala, “Performance Analysis of
SHA-2 and SHA-3 Finalists,” International Journal on Cryptography and
Information Security (IJCIS), Sept. 2013, pp.720-730.

[10] U.S. Department of Commerce und National Institute of Standards
and Technology, “SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions,” 2015.

[11] J. Vermillard, “Sicherheit für IoT-Geräte,” Linux Magazin, Oct. 2015.
[12] A. S. Tanenbaum, “Moderne Betriebssysteme,” Hallbergmoos: Pearson

Deutschland GmbH, 2009, pp. 720-721.
[13] Internet Engineering Task Force, “RFC 3986 - Uniform Resource

Identifier (URI): Generic Syntax,” Jan. 2005. [Online]. Available from:
https://tools.ietf.org/html/rfc3986. [accessed: 2020-07-20].

[14] International Organization for Standardization, “ISO 8601:2004: Data
elements and interchange formats — Information interchange — Rep-
resentation of dates and times,” 2004.

[15] Internet Engineering Task Force, “RFC 5656 - Elliptic Curve Algorithm
Integration in the Secure Shell Transport Layer,” Dec. 2009. [Online].
Available from: https://tools.ietf.org/html/rfc5656. [accessed: 2020-07-
20].

[16] A. Healey, “GET 802(R) Standards,” [Online]. Avail-
able from: https://ieeexplore.ieee.org/browse/standards/get-
program/page/series?id=68. [accessed: 2020-07-20].

[17] Bluetooth SIG, Inc., “Bluetooth Core Specification, Revision 5.2,” 2019.
[18] ZigBee Alliance, “ZigBee Specification,” 2015.
[19] P. Kraft and A. Weyert, “Network Hacking,” Franzis Verlag GmbH,

2015, pp. 345-360.
[20] J. Erickson, “Hacking,” dpunkt.verlag GmbH, 2009, pp. 472-488.

[21] ECMA International, “The JSON Data Interchange Syntax,” 2017.
[22] Internet Engineering Task Force, “RFC 8259 - The JavaScript Object

Notation (JSON) Data Interchange Format,” Dec. 2017. [Online]. Avail-
able from: https://tools.ietf.org/html/rfc8259. [accessed: 2020-07-20].

[23] N. Nurseitov, M. Paulson, R. Reynolds, and C. Izurieta, “Comparison of
JSON and XML data interchange formats: A case study,” International
Conference on Computer Applications in Industry and Engineering,
CAINE, 2009, pp.157-162.

[24] U.S. Department of Commerce and National Institute of Standards and
Technology, “Recommendation for Key Management,” 2015.

[25] Internet Engineering Task Force, “RFC 8017 - PKCS #1: RSA Cryptog-
raphy Specifications Version 2.2,” Nov. 2016. [Online]. Available from:
https://tools.ietf.org/html/rfc8017. [accessed: 2020-07-20].

[26] International Telecommunication Union, “Recommendation ITU-T
X.509,” 2016.

[27] Internet Engineering Task Force, “RFC 2459 - Internet X.509 Public
Key Infrastructure Certificate and CRL Profile,” Jan. 1999. [Online].
Available from: https://tools.ietf.org/html/rfc2459. [accessed: 2020-07-
20].

[28] National Institute of Standards and Technology, “NIST Policy on Hash
Functions - Hash Functions — CSRC,” May 2019. [Online]. Avail-
able from: https://csrc.nist.gov/Projects/Hash-Functions/NIST-Policy-
on-Hash-Functions. [accessed: 2020-07-20].

[29] Internet Engineering Task Force, “RFC 5246 - The Transport Layer
Security (TLS) Protocol Version 1.2,” Aug. 2008. [Online]. Available
from: https://tools.ietf.org/html/rfc5246. [accessed: 2020-07-20].

[30] Internet Engineering Task Force, “RFC 7540 - Hypertext Transfer
Protocol Version 2 (HTTP/2),” May 2015. [Online]. Available from:
https://tools.ietf.org/html/rfc7540. [accessed: 2020-07-20].

[31] Internet Engineering Task Force, “RFC 2616 - Hypertext Trans-
fer Protocol – HTTP/1.1,” June 1999. [Online]. Available from:
https://tools.ietf.org/html/rfc2616. [accessed: 2020-07-20].

[32] Internet Engineering Task Force, “RFC 7468 - Textual Encodings of
PKIX, PKCS, and CMS Structures,” Apr. 2015. [Online]. Available
from: https://tools.ietf.org/html/rfc7468. [accessed: 2020-07-20].

[33] International Telecommunication Union, “Recommendation ITU-T
X.690,” 2015.

23Copyright (c) IARIA, 2020. ISBN: 978-1-61208-778-8

CLOUD COMPUTING 2020 : The Eleventh International Conference on Cloud Computing, GRIDs, and Virtualization

